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A simple probabilistic- description of marginally closed locally interacting processes in discrete time is
given. We find the invariant measures and prove the approach to equilibrium for a wide class of initial
conditions.

1. Introduction

We consider discrete time Markov processes & = (&(x), xeZ"), t=0,1,..., with
values in S”" for a denumerable set S. The main assumptions are:

(1) local interaction (see Definition 1) which roughly means that & (x) depends
only on §,_,(x+y), y€ Q, for some fixed finite Q<= Z";

(2) conditional independence: &(x), xeZ*, are conditionally independent
given & _,; '

(3) marginal closedness (see Definition 2). The meaning is that, if we write the
finite dimensional distributions of order m of & (x) for fixed f as linear combinations
of finite dimensional distributions of £,_,(x), in a form similar to the BBGKY
hierarchy (differential equations for the time evolution of correlation functions) in
the physical literature, then there will appear only distributions of order < m.

It was remarked by Spitzer [16] that the simple exclusion process enjoys property
(3). For the voter model this property was used in [2]. Property (3) for some processes
was noted anew in [9], where the general class of processes with decoupled hierarchy
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of equations for correlation functions or decoupled moment hierarchy was first
studied.

Here we continue that study and get a complete solution of some problems:
necessary and sufficient conditions for marginal closedness and a simple probabilistic
i}Lerpretation for it, as well as convergence of all correlation functions.

/"/ The main reason for a study of such processes is in the fact that there are very

" few examples of processes with local interactions admitting a sufficiently complete
description. Among them there are small perturbations of independent processes,
with finite [11, 13], compact [1, 18] or non-compact [8, 12] set of states, small
perturbation of Gaussian processes [10], and also some where the low temperature
region ‘is controlled’ [3, 17].

It is also very popular now [4, 5, 6] to study the hydrodynamical behaviour of
processes of the type (1—&)Lo+¢&L,, where L, is the stochastic operator for a
marginally closed process and L, for a process which is not marginally closed. This
process is usually studied at times of the order ™' where L, is applied ‘a finite
number of times’. The crucial property which permits one to treat processes of this
kind is the marginal closedness of L,. So it is of interest to study the general class
of possible processes L.

We consider only processes in discrete time. Among conditionally independent
processes, the voter model is the typical example. It appears to be degenerate, in
some sense, but nevertheless, conditionally independent marginally closed processes
have the same nature as the voter model. But non conditionally independent
processes are richer: this class includes the simple exclusion model with several
kinds of particles and ‘chemical reactions’ between them.

The main limitation of our study is the translation invariance of the initial
distribution: however we study different types of conservation laws. Conservation
laws govern the behaviour of the process with non translation invariant initial
distribution (e.g., they govern the hydrodynamical behaviour [5, 14]).

To obtain the results, we used an exact ‘path expansion’ together with domination
by a suitably chosen ‘dual process’.

Results

In Section 3 the marginally closed conditionally independent processes are character-
ized. In Section 4 we examine those processes for dimension »=1,2 under any
translation invariant initial distribution, study their ergodic behaviour and obtain
the explicit formulas for the invariant measures. In the same section we also examine
the cases where the convergence is exponential. We obtain sufficient conditions for
this type of convergence in any dimension. In Section 5 we generalize the results
of Section 4 with slightly stricter conditions (the decay of correlations is assumed
to be not too slow) for dimension » = 3. We obtain invariant measures and ergodic
properties. In Section 6 several examples of marginally closed non-conditionally
independent processes are given.
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2. Processes with local interaction

We shall consider Markov processes in discrete time
&=(&(x)), xeZ' tel.,

where & (x) takes values in a finite or countable set S. Let £ (A) be the configuration
(&(x), xe A) on the set AeZ".

Definition 1. £ is called a process with local interaction if there exists a finite set
Q<2Z" such that, for all given values of ¢, the conditional distribution of £_,,
x € Z’, is such that its conditional finite dimensional distributions

P& (x) =5, &0(x)=55,..., Eai(x,) = Snlé?:)

depend only on &(U(x;+ Q)). We also assume that this conditional distribution is
invariant with respect to translations, in x and t. The process &, is called conditionally
independent if for all t=0,1,..., the random variables &_,(x), xeZ” are condi-
tionally independent given &,

3. Equations for marginally closed processes
Let, for any finite X = Z", sy € S* be a configuration on X with values in S. Let us
put
Py(sx; )=P(&(x) =5, xe X).
From Definition 1, we have that
P(¢(x) =5, xe X |€) = Ax(sx; £(2), e X +Q).
Then,

Py(sx;t+1)= Y Ax(sx, Sxto) " < l)lo 3.;;(51(2))>

SX+Q

= Z Ax(Sx, SIX+Q) ' Px+o(slx+o; t), (1)

SX+Q

where (-) is the expectation of the random variable (-). This recurrent relation is
similar to the BBGKY-hierarchy in statistical mechanics.

Remark 1. For a particle system the correlation functions are usually defined in a
different way. Here the state space at a point is N° i.e., we specify the number of
particles of types s for any seS. The correlation functions are written as
P(x,, 815...; X,, 8,) where the x; and (or) s, can coincide. It is the probability that
in the point x there are not less than ZL] 0. x5, Darticles of type s.
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Sometimes, by using linear consistency conditions for Py (sy ; t)} one can reduce
(1) to

_ Pelsx; 1+ 1) =YY Axy(sx, sy)Py(shy; 1), (2)

Y sy

where the summation extends over all Y= X+ Q with |Y|<|X|.
This remark gives rise to the following,

Definition 2. A marginally closed process is a process for which there exist functions
Ax v(sx, s’) on $* xSV such that for any X, s, s}, t we have

P(¢.(x)=s.,xeX|&(x)=5s.,z€2") =2 Axy(sx, sy), (3)

where the summation extends over all Y= X + Q with |Y|<|X|. In particular, we

have that Ay (sx ; £(z), z€ X + Q), introduced above, is equal to )., Axy(sx ; &(2),
zeY).

Definition 3. A process £ with local interaction is called conditionally linear if there
exist real functions a,(-,-) on xS, ye Q, such that

P(3,(&n(x)=1]8)= ¥ T as, )8 (&(x+y)), (4)

s'’eS veQ

where 6,(s’) is the Kronecker symbol.

It is easy to prove that a conditionally independent process is marginally closed
if and only if it is conditionally linear.
Relations (4) are consistent iff for any s € S and any function s'(y)€ S, y€ Q,

B X alss'(y)=0,

yeQ

N (5)
(ii) ZZa},(s, s'(y))=1.
So for any y and s/,
Y a,(s,s)=q, (6)

does not depend on s’, and

Y g, =1.

Let us note that the right-hand side of (4) is invariant with respect to transformations
a,(s,s")>a,(s, s")+c,(s)

with arbitrary ¢,(s) subject to the condition 2, ¢.(s}=0, and for any s€ S. Let us
now show how, by using appropriately these transformations, we can force a,(s, s')
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to be non negative. Let us fix s and among the |Q| vectors a,(s, s'), let us find those
having some negative components. Let y,,..., y, be the indices of these vectors
and let d,, =inf; a, (s, si) sothat d, <a, (s, s'), forany s’e S, i=1,..., m. All other
vectors a,(s, s'), y€{y:, ..., y.} have only nonnegative components. Let us put for
such y,

-~

d,=infa,(s,s)=0.

Then by (i),
Yd,+¥d,=0.

Then we can put

¢, (s)=ld,],
and choose for yg{y,,..., ¥}
. d,)-d
e Cd)d

xd,)

sothat) .. . .¢(s)=Yd, and} ¢ (s)=0.
So we can assume from now on that a,(s, s')=0 for all y, s, s".

4. Ergodic behaviour of conditionally linear processes

Below we study the invariant measures and large time behaviour of conditionally
independent and marginally closed processes. In particular we show that this
behaviour is completely determined by the behaviour of the one point correlation
Sfunctions.

Let us denote

Pv,,“.,x,,(sl’ cees Sas t) = P{gl(xl) =S, é:[(xn) = Sn}
=(8,,(&(xy)) - - - 8, (&(x,))).
Then from (4) we have the closed relationship for one point functions
P(s;t+1)= 3% a.(s,s' )P (s 1). (7)
We assume the initial conditions to be translational invariant; then they will be

so for any f and in particular P.(s; t) = p(s; t) does not depend on x and we get
from (7),

p(s, 1+1) =3 b(s, s")p(s's 1),

where

b(s,s")=% a.(s,s').
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By (5) b(s, s") is the transition probability matrix (from s’ to s) of a Markov chain
with state space S which we denote by L,. First of all let us note that, if L, has
one class of essential states and is zero recurrent or transient, then p(s; 1) >0 for
t >0 for any s. By domination it is clear that for any x,, ..., x,, 5

sy S,
llm le...x(sla"'ssn;t)zo' /
M Feox //
Further on we shall consider the case where L, has k classes of essential states and
we shall assume that any of these classes is aperiodic and positive recurrent (see
Theorem 5 about periodic case). All proofs will be based on the path representation
of n-point functions.

Graphical representation for such problems were introduced by Harris [8] and
have been widely used. But different situations need careful adjustments.

From (4) we get
Xpyenns X,,(sh"'asn; t): z , Z ayl(sh s’l) . ay,,(sn, S;)

Vis--a¥n

S50y

B (&a ity ) - 8 (& (xa+ ). (8)
Some of the points x;+ y; can coincide and then the corresponding term is nonzero
only if si=s; for coincident points x;+y,= x;+y;. We want to give graphical
interpretation to (8) and to its iterations. For this reason, we consider ‘space-time’
points (x, 1)€ Z" x Z .. We shall call an ordered pair ((x, t), (x’, t~1)) of points an
edge and call the two points the vertices of the edge.

If we iterate (8) until time zero, we shall have a number of terms. It is convenient
to enumerate these terms by marked graphs. We begin with the definition of these
graphs. Let us fix some set X ={x,,..., x,} and define the class & = R(X; t) of
graphs G. All vertices of these graphs lie in Z" x{0,1,..., t}. Then R = R(X; ) is
uniquely defined by the following properties:

(1) the vertices of any graph Ge ®(X; ) on the t-slice Z"x{t} are exactly
(X1, 1), ..., (%, 1);

(2) for any vertex (x, t'), 0<t'<1t, of G there is exactly one edge of G with the
upper vertex (x, t'), i.e., an edge ((x, t'), (x', t'— 1)) for some x’, such that g #0;

(3) for any vertex (x,t'), 0=t <t of G there is at least one edge with lower
vertex (x, '), i.e., an edge ((x', t'+1), (x, t')) such that g,_.. #0.

A marked graph is a graph G together with a function s assigning to any vertex
v of G some s(v)=s55(v)e S. If not otherwise stated we consider only marks sg
such that sg((x;, 1)) =s; for i=1, ..., n. We define the contribution I(G, ss) of the
marked graphs G, s by

)

I(G,s56)= 1] av_(s(v),s(v")- <H 5.Y<v>(§o(X(v)))>
edges v

:P(G’ SG)'H(G’ SG)’ (9)

where the first product is over all edges (v, v') = ((x, 1), (x', ' —1)) of G and the

second product is over all vertices v = (x(v), 0) of G on the zero time slice. Iterating
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(8) up to time zero and just looking at the result, we ea< 1y prove the following path
summation formula.

Lemma 1.

le ..... x"(Sl,...,S,,;t): Z I(Ga SG)a (10)

G.sg

where the sum is over all marked graphs of (X ; t) such that sg(v) = s, for any vertex
l -
v=(x,1). O

1 We note that the number of vertices on the time slice Z* x{t'} decreases when ¢’
decreases. A graph G is connected if there is exactly one vertex on the zero time

l slice. Let us denote by ®.= R.(X; t) the set of all connected graphs in & = R(X; 1),
let &,.=R — R, be all nonconnected graphs.

Domination by a ‘dual’ random walk

Our estimate will become clear with the use of the following random process X (7),
) T7=0,...,1 We call 7 inverse time. At the moment =0 n particles occupy initial
positions at the points x,,...,x,. So X(0) is the set {x,,..., x,}. Then particles
| begin to perform independently random walks x,(7) until two or more particles
: come to the same point. From this moment the particles glue together and continue
to perform a random walk as one new particle from the point where they become
glued. These random walks on Z” are translation invariant and have one-step
t transition probabilities

plx>x+y)=gq,.

Let us fix x,...,x, and s,,..., s, at the moment ¢ (of direct time), the graph G
and the values s(v,),...,s(v,) of a mark at time zero, v,,..., v, being all the
vertices of G at time zero. Our main estimate is the following.

Lemma 2.
L
z P(Gs SG)S H qya (11)
sG edges
where for an edge with upper vertex (x, t') and lower vertex (x', t'—1), y denotes the
difference x'—x and the sum Y is over s with fixed final s, ...,s, and initial
; s(vy), ..., s(v,,) marks.

Proof. It is clear that

Z P(G, SG): H qy’ (12)
SG edges
where Zi is over s where only the initial marks s(v,), ..., s(v,,) are fixed. Formula
(12) is proved easily by induction t—1- ¢ by using the fact that q, do not depend
on s’ in (6). O
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Dimension v=1, 2

Theorem 1. Let v=1,2 and let L, have exactly one class of essential states and be
ergodic, 7(s) being its stationary probabilities. Then for any translation invariant initial
distribution of the process &,, t =0, the correlation Sfunctions Px (sx; t) converge when
t >0 to a limit which is equal to

.

Px(sx;0)= 3% ¥ 72 w(s) X P(G, sg), (13)
=1 s GeRAX;7) s

where R(X; 1)< R(X; 7) is the set of graphs which become connected only on the

zero slice (this means that their restriction to Z" x{1,..., 1} is not connected) and

2., is over all marks with s(x;, 7)=s;, s, =s where vy is the unique (due to the

connectedness) vertex of G on the zero slice. So (13) is the unique invariant translation

invariant distribution.

Proof. Let us separate in the right-hand side of (10) sums over connected and |
disconnected graphs. Let us observe that if (x,,..., x,; t) are fixed
P.= 3 Il q (14)
Ge R, edges ]
is exactly the probability that at least two of n particles beginning their random
walks at x, ..., x, will not glue together during a time 1. Let us choose two particles,
e.g., the points x,, x, at the initial moment 7 =0 of the inverse time . -
Then the difference x,(7) — x,(7), is the random walk of one particle in Z" with
one-step transition probabilities
p(x->x)= )) 4,9, (15)

Yr.Vai X' —x =y -y,

This is a symmetric random walk on Z".

Sofor v =1, 2 it reaches the origin almost surely. As there are C?, pairs of particles, E
then P, in (14) tends to zero when ¢ - c0. ¢
But the nonconnected part of (10) can be estimated by u
Y X IG, sg) tl
GeR, sG S

< P, sup Y P&(x(0)=5(v),. .., Efx(0n)) = $(0,)) = P,

Dl vy s(v)),n8(,)

(
where the sup is over all positions of vertices on the zero-slice. So we have to deal I
only with connected graphs in (10). The series (13) is dominated by u

Y 2 m(s)P7), (16)
=1 s : T
th

where P.(7) is the probability that all particles will become glued together exactly %
at the moment 7 (some of them can glue earlier of course). :
So (13) is evidently convergent.
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But for fixed ¢ the difference between Px(sx, t) and the partial sum Z'T:, of (13)
is dominated by

. L P I()=pi(5)]+ Pl (a7

where p,_.(s) is the probability of the state s for the Markov chain L, at the moment
) t — 7, for some fixed initial distribution p,(s). But (17) tends to zero for f— 0.
So the theorem is proved. []

Theorem 2. Let v be equal to 1 or 2 and L, have k> 1 classes of essential states each
of them ergodic. Then the set of invariant translational invariant distributions is the
convex envelope of k extreme distributions which are given by (13) with m(s) = m.(s),
i=1,...,k where m(s) are the stationary probabilities of the ith class of L, (i.e.,
when po(s) =0 except for s in the ith class). Moreover for any initial translation invariant
i distribution the correlation functions Px (sx ; t) converge to a limit completely defined
by the one-point initial correlation function.

- 0 a0

Proof. The proof is the same as for Theorem 1. []

The voter model

This 1s the well known example where S ={0, 1} and (4) can be written as

Pléa(x)=118)= L adi(x+y),

with a,>0,Y a,=1.

In a sense this example is degenerate as L, here has the unit matrix as transition
probability matrix, i.e., b(s, s') = §,,.. The extreme invariant measures are measures
concentrated at the points £(x)=1 or &(x)=0. The extreme measures are not so
trivial when some class of essential states of L, has more than one state. To
understand their structure we would have to examine more closely the structure of
the limit distribution described in Theorem 1, i.e., when there is one class of essential
states in L,.

Cases of exponential convergence

It appears that there is a large class of processes with exponential convergence (let
us observe that this is not true for the voter model).

Theorem 3. Let S be finite and L, be ergodic (here the dimension v is arbitrary). If
there exist y, s, such that a,(s, s') > 0 for any s', then for some 0 < a <1 not depending
onnand forall x,,...,x,,8, ..., 5.,

x,,(sls""sn;t)_le ,,,,, x,,(s15"'ssn;m)i<cnal~
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Proof. Let us first note that if there exist s, and y, such that a, (o, s)>0 for all
s', then putting

d=min a,(s,, s")
o

we can rewrite (3) as follows (using Y, §,(&(x+y))=1),
P(8,(¢1) = 1]&) =X 4,(s, 5)8,(&(x+ ) + 88, (18)

where @, = a, for all y # y,, s# s, s’ and
a,(so, 8" )=a,(s,,s)—8 Vs
So if we put 5y =Y. 4d,(s, s') then
y8,=1-8. (19)

After this we shall use a graphical representation similar to the previous one but
with some modifications. The presence of & in the right-hand side of (18) after
iterations of (8) will give us some paths which end before 7=t with the & term.
More exactly in property (2) of the class # we shall change the word ‘exactly’ to
‘at most’. If there is no edge satisfying property (2) then we shall say that the vertex
is final and assign to it the extra factor 8. So for 7> co the contribution of all graphs
G will be finite with probability one and the limiting distribution will be given by

Pe(sx;00)= 3 ¥ 85y ] dss), (20)

7=1 G, s edges
where G, runs over all graphs with last final point at the moment 7, k(G.,) being
the number of final points of G,.

So here we have a simpler situation. The last series is exponentially convergent
due to (19). O

From the representation (20) the existence of exponential bounds for the limiting
field follows easily. E.g., the following theorem holds.

Theorem 4. Under the condition of Theorem 3, the limit random field exhibits exponen-
tial decay of 2-points correlation functions

|PX1sX2(s1’ 825 w) - 77(51)#(32)] < Ca‘xlfxz

Jor some 0 < a <1.
Proof. The proof is a standard exercise in cluster expansion. [J

So one may think (with assumptions similar to those of Theorem 3) of the structure
of invariant measures as follows: in the sense of statistical mechanics they are \
low-temperature expansions around the ground states which are given by the case t
where the k classes consist of one state each (so that the transition matrix is the
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1 unit matrix). It seems likely that Theorem 3 could be improved. E.g., if the conditions
of Theorem 3 are not fulfilled, one can try to iterate (8) for a finite number of times
to find y, s such that a,(s, s)>0 for all s". But the following example shows that
this is not always possible. Let us take |S|=2, Q={y, y,}, »=1, y, be even and y,
odd. Then let us put

) 4,(0,0)=a,(1,1)=a>0,  a,(0,1)=a,(1,0)=0,
a,,(0,0)=a,(1,1)=0,  a,(0,1)=a,(1,0)=B>0,
at+pB=1.

Then y = ny,+my, (we consider the product of n matrices a,, and m matrices

a,,) can be even only if m is even, but then the product could be only a diagonal

) matrix. If y is odd then m is odd too (n#0) and in this case only matrices with
zero diagonal terms can appear.

- Periodic case

Let us first note that under the conditions of Theorem 3 L, can not be periodic. The
following theorem gives examples of periodic behaviour of processes with local
interaction.

Theorem S. Let the conditions of Theorem 1 be fulfilled except that we assume L, to
be periodic with period d,>1. Then for any 0<d <d, the correlation functions
Px(sx; dot+d) converge when t- o0 and the limit is defined by the same formula
(13) with w(s) = m,(s) being the limit probabilities for P, +4(s), depending of course
on the initial distribution on L,. If at the initial time any periodic class of L, has
stationary distribution, then our process exhibits the exact periodic behaviour. [

5. Dimension v 23

The main difterence here from the case »=1,2 is that the non-connected graphs
give non-zero contribution to the invariant measure. Some combinatorial machinery
is necessary and we present it now. Let X be a finite subset of Z* and sy a
configuration on it. Let P,(X; sy ) be the correlation functions at time t. Cumulants

PiX ;5 sx) =(8,(&(x)), ..., 8, (£(x,))
for X ={x,,..., x,}, sx =(s1,..., 5,), are usually defined by the inductive formula
k -~
Pr(X;SX)ZZ H PI(XiaSX‘)s (21)
a i=1

where the sum is over all partitions e« ={X,,..., X}, k=1,...,n of X and sx, 1s
the restriction of sy to X,.
Our main assumption here is more severe than for dimensions 1 and 2.
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An [;-assumption. For any n,

Y TIP(X, sx)| <. (22)

X:0eX,|X|=n sx

We also assume that v =3 and that the set of all linear combinations of vectors
from Q with integer coefficients coincides with all the additive group Z”.
Using (21) we can write for IT in the right-hand side of (9) for any G, s,

II(G, s6) =2 IL(G, s5).

Let us denote o = 0 the partition with |a| =k = n. Recall that IT(-, - ) is a correlation
function and IT,(-, +) is the corresponding cumulant.

Lemma 3. With the same notation as in Lemma 2, for any a #0,

lim ¥ P(G, sg) IL(G,s5)=0 (23)
(>0 G
Sfor any given x,,...,x,,8.,...,S,.

Proof. We use the following notation: if @ =(X,,..., X,), we fix some X with
0ec X! and such that there exist yi with X;=X)+y, i=1,..., k Consider the
following event A, = A,(xy,...,x,; X9,..., X}) for the inverse random walk pro-
cess, defined for fixed ¢, x;,..., x,, and for fixed X!, i=1,..., k, A, ={there exist
at least two particles, at inverse time zero, such that they fall at the moment ¢ into
some X;}. We see that P(A,)~>0, as r- o0, because this probability is dominated
by a finite sum of probabilities that two particles with initial difference x, —x; have
at time ¢ the fixed difference of a pair of points in X?, for some I Let us remark
that this is true for any dimension. So the left-hand side in (23) is dominated by

) P(A(xiy -, %03 X0, 0, X)) ﬁ Po(X?, sxo)l, (24)

{sx0h XY sk 01X ]

which tends to zero by the I/,-assumption. Let us note that 2y, is contained in
P(A,). So we are left with

Y P(G,sg) - IIy(G, s5). (25)
G5
The class % is the disjoint union of classes % of graphs G with exactly k connected

components; R'=%R.. Let R"(X; sx) be the subclass of R"(X; t) characterized
by the fixed mark sy.

Let us consider first the class #". Any Ge R" is the union of n non-intersecting
paths

I ={(x:,0), (i, 1)y ooy (X =x,, )}, (26)
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i=1,...,n For n=1 we know that

) Y P-Iy=Y b"(s,, s)p(s";0)=p(sy; 1),
G,s¢; s
s where b'"'is the matrix of r-step transition probabilities of L,. For any n, we include

the class &;(X; sy ) into the new class g}?(X; sx) of n-tuples of paths I, with
marks s(x;,, [) but with arbitrary intersections (so one point (x’, t') may have several
marks belonging to different paths). Let us define the contribution of the paths by

P(Fb ] Fn) :l_[ ax,,‘x,<,+l(s(xi,l+l > l+ 1)’ s(xil’ l)) H P(s(xi(h 0)9 0)
il i

n
Let ?/57”” bethesetofall(I',...,I',)e 9?7 with the last intersection at the moment
t—7—1;s0 at the moments t—, ..., ¢ the paths I'; do not intersect. So

Y P(G, s I G, 56)
) Geh'
(—1
:HP(SHI)_Z z . P(Fl""’lﬂn)

i =0 (', )edh ' 7
1 :H p(si’ t)
’ t—1

-2 X PG,s(G)) ¥ Ta,(s(xryt=7),s)p(s], 1—7-1),
t =0 G,,s(G,) {visit
’ (27)

where G, is the arbitrary graph in 27(X; sy ) and Liy.sy depends on G, and is over
all s;e S and over all y,€ Q such that among the points Xi—Fty,i=1,...,n, at
least two coincide. We claim that (27) tends as 1> to

ac

Mr(s)=Y L P(Gso) ¥ Il a(si(x0,0) shm(s)).  (28)

i T=0 (G,5G)eRT(X,sx) {vesiti=1

Due to the last },, ., the first 3 is in fact over only such G that at least two of
their initial points have distance not exceeding diam Q. So this sum
Zio ZGCM P,(G, sg) is dominated by in(n —1) times the mean number of visits
that a random walk starting at point x; —x; makes to Q before hitting the origin.
Let us recall that the mean number of visits to x beginning at x' before visiting the
origin, go(x, x'), is bounded by g,(x, x) and that for »=3 the random walk is
transient; so go(x, x') < gy(x, x) <Y p'’(0,0) <o (see [15, Proposition 1, Chapter
II1]). From this the convergence (27) - (28) follows.

Let us consider now, the class Z+ for any k <n. Let R (7, 7,) be the class of all
graphs with exactly k paths at the moments t~7,—7,, t~7,—7,+1,..., f—7, and
with more paths for r—7,+1,.... We assume also that at the moment t~—1— 1,
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at least two vertices of these graphs have distance between them not exceeding
diam Q. Then we can write,

n—1

L X PG, sc)l}(G, 5)

k=1 (G,sglen*

="_l{i L P(G,so) 1 plsit=)

=1 (G,s¢;)e F X

[ Bkl |

—(1-6a) X X ) P(G, sg)

T=1 15=0 (Gsg)e® (1,73)

k

X Z ) [1 ay‘(si(xi; =7~ 1,), S;)P(Sz,’, =71 —7— 1)}, (29)
{visi}i=1

where in %% again as in (13) we take only graphs which have more than k components

on Z"x{l1,...,7}, &,=1if k=1 and zero otherwise. In a similar way as in (27)

and (28) we have convergence to the following contribution:

"z'{f S P(G, 50 1 7(s)

k=1 Ur =1 ((i,.V(j)Cfﬁil

—(1-8y)) i i ) P(G, s5)

=l =0 (Gisgre ) ooy (rm)

) Hay‘(S.-(O),S.‘)W(S.’-)}- O (299
{vosit

YiSi

Theorem 6. Under the l,-assumption for translation invariant initial conditions if L,
has k classes of essential states which are aperiodic and ergodic, then the limit of
correlation functions exists and is given by (28) and (29'). So for any invariant measure
of L, there exists corresponding invariant distributions for € which are given by (28)
and (29').

These are the only invariant translation invariant distributions, under the I,-
assumption.

Proof. The sum in (29') can be majorized by C- g,(0,0), where C can depend on
n as for fixed 7,, 7, we consider the product of probabilities that two particles met
at =, for the first time and that the difference of the positions of the two particles,
lies in Q at time 7,+7,. O

6. Some remarks about non conditionally independent processes

First let us give a simple probabilistic interpretation for a conditionally independent
conditionally linear process. Its evolution ¢ > t+1 is exactly the following one: first
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of all for any point x we choose randomly a point y = y(x) with probability ¢, and
then choose randomly the value &.,(x) =s with probability

a,(s, f,(x+y(X)))_

y

a,(s, &(x+y(x)))=

Both these choices are made independently for different x.

Note that a marginally closed process (even non conditionally independent) is
conditionally linear. So, using the same interpretation one can hope to get many
examples of non conditionally independent processes which are marginally closed
by making dependent choices of y(x) for different x and dependent choices of s.
We shall give now more exact description of such examples.

Let ({24, 2,, o) be a probability space where the initial random field &(x) is
defined. Let us consider for any =1 probability spaces (2,, X,, u,) which are all
copies of the same probability space ({2, %, u). Moreover assume that on ({2, X, u)
a group U, : 02— (), xeZ", of measure preserving transformations is defined. Let us
choose a function y(w), we 2, y(w)e Q, and for any ye Q, s'€ S choose some
functions s, (w) € S, w e {2. Put

y(X, w):y(U—xw), S(xayas/;w):sy,s'(UAXw)'

We want that our process &(x) be defined on the probability space

8

('le EH Ml)

=0

Il

We achieve this via the following inductive definition

8,(&(x)) = L Syixiwy Bustusion O(&r(x T y(x; @) (30)

for t=1, w, € {2,. It is clear that the process defined by (30) is marginally closed.
We shall not consider general processes of type (30). Instead we indicate some
examples which have a clear intuitive interpretation.

Let s=(i, k;) where i denotes the kind of a particle, and k; is the number of
particles of type i, k;eZ, or {0,..., N}, i€{0,..., M}. Let also be given a map
¢ : S - S which we shall call ‘chemical reaction’. In any case it is given by a stochastic
matrix d(s, s'), s'— s. Then the evolution of 5, is the following one: we choose y(x)
for any x and put the product of the reaction in the point x + y(x) at the point x,
a can depend on y.

We shall say that ¢ has conservation laws if there exists a partition S, u---U S,
of S such that a(s, s') =0 if s, s’ belong to different blocks of this partition. More
generally we can say that a process with local interaction has conservation laws if
L, has k> 1 classes of essential states. These classes will be called conservation laws.

Remark 2. In the definition of L, we did not use conditional independence. So the
definition is valid for the general case too.
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Usually (as in statistical mechanics) a conservation law has more strict ‘trajectory-
wise’ meaning. We shall say that £ has a strict conservation law, if there is a
conservation law in the above sense and the function y(x) is such that the map
x > {x+ y(x)} is one-to-one on Z* with probability one. This means that the number
of points x where £, belongs to some class S; is conserved with probability one. In
the general case only the mean number of them is conserved. A conditionally
independent process cannot have strict conservation laws.

Examples. 1. Voter model (see above).

2. Simple exclusion process. Here S ={0, 1}. There are many variants of this
model, as we can arbitrarily choose a process y(x). E.g. we can take i.i.d. random
variables n(x) with valuese,, ..., e,, —e,, ..., —e, and puty(x)=e,,y(x+e,)=—e,
iff n(x)=e,, n(x+te,)= —e,. In all other cases we put y(x)=0. We take d(s, s’)
to be the unit matrix.

3. Streaming process and both steps of stirring processes in [4] where instead of
Z" alattice Z" x N is considered where N is a finite set.

Remark 3. For general marginally closed non conditionally independent processes
one can prove similar results as for conditionally independent case if y(x) are
weakly dependent at large distances, for example if its cumulants have the following
decay

(y(x), ..., p(x, )| = Coad i), (31)

where 0<a <1 and d(x,,...,x,) is the minimal length of a connected tree with
vertices xi, ..., x,. In the dominating inverse random walk n particles move depen-
dently. If the probability of glueing is positive, then all results for conditionally
independent case are valid here as well. On the contrary, if there is a strict conserva-
tion law then the results are similar to those known for the case of simple exclusion
process (see [5]): limiting process is a Bernoulli process. We shall not formulate
the corresponding results. The proof here follows the main lines of Theorems 2-5.
The only difference is that particles cannot glue together and then with large
probability distances x,(7) — x,(7) are large for large 7.

It is of interest of course to study the cases when the process y(x) has strong
dependence. The examples of type 3 (see above) are the extreme cases of this
situation.

Remark 4. Marginally closed systems do not exhaust all ‘explicitly solvable’ pro-
cesses. E.g., there are moment closed ones (see some results in [9)).
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