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Abstract. Martin boundary is found for two-dimensional transient random
walks on a plane lattice with different jumps in a finite number of other points,
a half-plane and a quarter-plane. The random walks are homogeneous outside
the boundary and possibly in a finite number of other points. The approach
is based on the analysis of the elliptic curve defined by the jump generating
function. In most cases the Martin boundary is proved to be homeomorphic to
some subset of “real” points of this curve. In other cases the minimal Martin
boundary consists of one or two points.
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Introduction

There exist only a few non-trivial examples where it is possible to find the
Martin boundary for transient Markov chains. One such example is the homo-
geneous random walk on a lattice, see Ney and Spitzer [12]. Due to complete
homogeneity they succeeded to find it, using only rather elementary analytic
tools. They used a change of measure quite similar to the one used in large
deviation problems. However, in most cases probabilistic methods hardly help
in this kind of problems. For example, if we change the jumps in only one point,
the method of [12] does not work. In this paper we consider some examples with
piecewise linear homogeneities: the plane lattice with possibly different jumps
in a finite number of points, the half-plane, the quarter-plane.

Why are these problems interesting ?
Note first that random walks in unbounded domains with non-smooth boun-

daries appear naturally in many applied fields, for example in queueing networks.
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The simplest non-trivial example is a quarter plane, and for a long time it was
a laboratory for development of probabilistic and analytic methods in this field.
There are some problems that can be solved by probabilistic methods (mainly
martingales) such as classification problems, large deviations (see [5]), intrinsic
convergence rates (see [7]), Poisson boundary (see [6]). But for the Martin
boundary probabilistic methods hardly could be applied and so we use analytic
methods, in particular complex analysis on the algebraic (elliptic) curve that
is defined by the generating function of the jumps inside the quarter-plane.
Note however, that we do not use analytic methods in full extent: we do not
need explicit solution for functional equations, but only analytic continuation
properties. We show that the Martin boundary is related to real points of this
curve. This could be vaguely predicted, because real points also play a main
role in the study of large deviations. However, the connection between Martin
boundary and large deviation paths is still obscure and we hope that this work
will give rise to some hypotheses in this direction. One could speculate that the
existence of such connections is quite plausible: in homogeneous cases the paths
to the Martin boundary and the large deviation paths are linear, the change of
measure for both problems is the same in some simple situations; the intrinsic
convergence rate for an ergodic random walk is also related to boundaries and
to large deviations, etc.

The structure of the paper is the following. In Section 1 we give all necessary
definitions concerning Martin boundary, so as to render this paper self-contained
and we define the process. In Section 2 main results are formulated. This section
is split into seven subsections. In Subsection 2.1 we give the indispensable
information on the elliptic curve, that is used to present the results on the
Martin boundary. Subsections 2.2–2.7 are devoted to the Martin boundary for
the transient random walk in

• the plane Z2,

• the half-plane Z× Z+ with escape to infinity along the internal part,

• the half-plane Z× Z+ with escape to infinity along the axis,

• the quarter-plane Z2
+ with escape to infinity along the internal part,

• the quarter-plane Z2
+ with escape to infinity along one axis,

• the quarter-plane Z2
+ with escape to infinity along two axes

respectively.
Section 3 is divided into seven subsections and contains the proofs of the

results claimed. In Subsection 3.1 we describe the structure of these proofs.
The following directions of future research may be pursued.

1. For more general jumps in dimension two, one could apply analytic meth-
ods as well and obtain the localisation of Martin boundary on the corre-
sponding algebraic curve.
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2. Extend the results of this paper for exit and entrance boundaries for the
recurrent case.

The following question may be also investigated: do some general connections
between large deviations and Martin boundary exist as is the case in some
examples ?

1. Main definitions and the process

A discrete time homogeneous Markov chain L on a denumerable state space
X is defined by the stochastic matrix P =

(
pαβ

)
, α, β ∈ X , and an initial

distribution θ. Let the matrix elements of P n be pn
αβ. We denote the probability

measure on the path space X∞ = {(αn)∞n=o, αn ∈ X} by Pθ. We will denote the
probability measure in X∞ by Pα, if the initial state is α. We will only study
irreducible aperiodic Markov chains (see [3] for definitions). Let us introduce
the Green function πα

β as the mean number of visits to β starting from α:

πα
β =

∞∑

n=0

pn
αβ = Eα

∞∑

n=0

1{Xn = β}.

Definition 1.1. An irreducible aperiodic Markov chain is called transient if
πα

β < ∞ for some α, β ∈ X . A Markov chain that is not transient, is called
recurrent.

For an irreducible aperiodic transient chain, it follows that πα
β < ∞ for all

ordered pairs α, β ∈ X .

1.1. Martin boundary

In this subsection we introduce the Martin boundary and we formulate re-
lated basic results. All of them are well-known, see [2] or [13].

Let us fix a probability measure η(α) on X , such that
∑

α∈X η(α)πα
β > 0

for all β ∈ X . This will be the so-called “reference” measure. The construction
of the Martin boundary depends heavily on the choice of this measure. It may
happen that the boundaries obtained for two different reference measures are
not homeomorphic.

The Martin kernel for the transient chain L is defined as

kβ(α) =
πα

β∑
γ∈X

η(γ)πγ
β

.

Note that πα
β = p(α, β)πβ

β , where p(α, β) is the probability to reach state β
from α. In view of the inequality p(γ, β) ≥ p(γ, α)p(α, β), we have

kβ(α) =
p(α, β)∑

γ∈X

η(γ)p(γ, β)
≤ 1∑

γ∈X

η(γ)p(γ, α)

def

=
1

a(α)
.
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Next, we “enumerate” all states of the chain in arbitrary order. Let N(α) ∈ N

be the number of state α. Define the distance ρ in the state space X by

ρ(β, γ) = |2−N(β) − 2−N(γ)| +
∑

α∈X

| kβ(α) − kγ(α)|a(α)2−N(α). (1.1)

For all β, γ ∈ X , we have ρ(β, γ) ≤ 3.

Definition 1.2. The compactification X∗ of the state space X with respect to
the distance (1.1) is called the Martin compactification; ∂X = X∗/X is called
the Martin boundary.

The choice of the distance (1.1) is not compulsory, provided that a sequence
of states βn is a Cauchy sequence if and only if

1) the functions kβn
(α) converge in each point α;

2) N(βn) → ∞ or βn are constant for n ≥ n0.

We will call the topology in the space X∗ induced by the distance ρ(α, β), the
M+ topology. The following theorem holds.

Theorem 1.1. Let an arbitrary α ∈ X be an initial state of the chain. Then
Pα-almost all sequences of states βn have limits in the topology M+

lim
n→∞

βn = β∞ ∈ ∂X.

If we define the measure µ1 on the Borel subsets Γ of X∗ by

µ1(Γ) = Pη{β∞ ∈ Γ},

then for all α ∈ X , µ1(α) = 0 and the following theorem holds.

Theorem 1.2. For all Borel function f on X∗

Eα f(β∞) =

∫

∂X

kβ(α)f(β) µ1(dβ).

One of the main purposes of Martin boundary theory is to give an integral
representation of superharmonic and harmonic functions.

Definition 1.3. The function h(α) is called superharmonic if

Ph(α) =
∑

β∈X

pαβh(β) ≤ h(α).

If the equality takes place, the function h(α) is called harmonic.

We consider only non-negative superharmonic and harmonic functions.
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Theorem 1.3. For any η-integrable superharmonic function h(α) there exists
a finite measure µh on X∗ called a spectral measure of h(α), such that

h(α) =

∫

X∗

kβ(α)µh(dβ). (1.2)

Moreover, for all β ∈ X

µh(β) = (h(β) − Ph(β))
∑

γ∈X

η(γ)πγ
β . (1.3)

The representation (1.2) is called the Martin representation. In view of (1.3)
it can be written in the following form

h(α) =
∑

β∈X

(h(β) − Ph(β))πα
β +

∫

∂X

kβ(α) µh(dβ). (1.4)

The spectral measure µh in (1.4) is generally not unique. In order to get
uniqueness, we will introduce the minimal Martin boundary. Note that for
fixed β, the function πα

β is superharmonic as a function of α and so is kβ(α).
For all fixed α ∈ X , kβ(α) can be continuously extended to X∗. Indeed, if
βn → β∞, then kβn

(α) → kβ∞
(α) for all α. Thus for all β ∈ ∂X , the function

kβ(α) is superharmonic too.

Definition 1.4. A non-zero superharmonic function h is said to be minimal

if the equality h = h1 + h2 implies that h1 = c1h, h2 = c2h, where c1, c2 are
constants and h1, h2 are superharmonic.

It follows that a harmonic function h is minimal if for any other harmonic
function h1 ≤ h we have h1 = ch.

Definition 1.5. The set

B = {β ∈ ∂X : kβ(α) is minimal }
is called the minimal Martin boundary.

Lemma 1.1. The set of minimal harmonic and superharmonic functions is

{c · kβ(α) : β ∈ B ∪ X}.
Theorem 1.4. The set B is a Borel subset of ∂X . For any β ∈ B, kβ(α) is a
harmonic function.

Theorem 1.5. Every η-integrable superharmonic function h(α) has the unique
representation

h(α) =

∫

X∪B

kβ(α) µ(dβ), (1.5)

where µ is a measure on the Borel sets of X ∪ B. The measure µ is finite.
For all finite measures µ on X ∪ B the right-hand side of (1.5) defines a

superharmonic η-integrable function.
This function is harmonic if and only if µ(X) = 0.
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So, if the function h(α) can be represented in the form (1.5), then µ coin-
cides with the spectral measure µh and the representation (1.5) coincides with
the Martin representation (1.2) or (1.4). In particular, the measure µ1(Γ) =
Pη{β∞ ∈ Γ} is the spectral measure of h(α) = 1. Moreover, µh(X/B) = 0 for
all superharmonic functions h(α) and µ

kβ
= δβ for all β ∈ X ∪ B.

Theorem 1.6. Let ϕ(β∞) be a non-negative µ1-integrable Borel function on
∂X . Then the formula

h(α) =

∫

B

kβ(α)ϕ(β) µ1(dβ) (1.6)

defines a harmonic function h(α) such that

lim
n→∞

h(βn) = ϕ(β∞) Pθ -a.s. and Eα ϕ(β∞) = h(α). (1.7)

Let h(α) be a bounded harmonic function. Then there is a bounded Borel
function ϕ(β∞) on B, such that (1.6) and (1.7) hold.

1.2. The process

In this paper we consider the Markov chains L1, L2, L3, that are two-
dimensional random walks. They are characterised by the properties P1, P2,
P3 below.

P1 Their state spaces are

Z2 = {(i, j), i, j are integers},
Z+ × Z = {(i, j), i, j are integers, j ≥ 0},

Z2
+ = {(i, j), i, j are integers, i, j ≥ 0}

respectively.
P2 The random walks are maximally state homogeneous. This property

means that the state space can be represented as the union of a finite number
of non-intersecting classes

X =
⋃

r

Sr,

such that for each r and all α, β ∈ Sr

pβ,β+(i,j) = pα,α+(i,j).

The latter probabilities will be denoted by (r)pij .
The state space of the chain L1 is the union

Z2 = S
⋃ ( n⋃

m=1

Sm
)
,
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where the sets S1, S2, . . . , Sn are finite. The transition probabilities (r)pij will
be denoted by pij and (1)pij ,

(2)pij , . . . ,
(n)pij respectively.

The state space of the chain L2 is the union of two classes

Z+ × Z = S ∪ S
′

,

where {
S = {(i, j) : j > 0}
S

′

= {(i, 0)}.
The part S

′

is called the x-axis. The probabilities (r)pij are denoted by pij and

p′ij according to their respective regions S and S
′

.
The state space of the chain L3 is divided into four classes:

Z2
+ = S ∪ S

′ ∪ S
′′ ∪ {(0, 0)},

where 




S = {(i, j) : i, j > 0},
S

′

= {(i, 0) : i > 0},
S

′′

= {(0, j) : j > 0}.
The internal parts S

′

and S
′′

are called the x-axis and the y-axis. The proba-
bilities (r)pij are denoted by pij , p′ij , p′′ij , and p0

ij respectively.
P3 (Boundedness of the jumps). For any α ∈ Sr,

pα,β 6= 0 only for − 1 ≤ (β − α)i ≤ 1,

where (β − α)i is the ith coordinate of the vector (β − α), i = 1, 2.
In addition the next assumption will hold for all the chains L1, L2, L3

throughout the paper: the probabilities p10, p−10, p01, p0−1 for the class Sr = S
are non-zero and all other jump probabilities for this class equal zero.

We shall consider only irreducible aperiodic random walks. Assume addition-
ally that the classes S

′

, S
′′

can be left in one jump with non-zero probability,
i.e. p′−11 + p′01 + p′11 > 0, p′′1−1 + p′′10 + p′′11 > 0.

We will not specify the choice of the initial state, since it influences neither
transience, nor the Martin boundary.

Let us introduce the mean jump vectors





E = (Ex, Ey) =
( ∑

i,j

ipij ,
∑

i,j

jpij

)
,

E
′

= (E
′

x, E
′

y) =
( ∑

i,j

ip′ij ,
∑

i,j

jp′ij

)
,

E
′′

= (E
′′

x , E
′′

y ) =
( ∑

i,j

ip′′ij ,
∑

i,j

jp′′ij

)
.

Throughout the paper we will assume that Ex 6= 0, Ey 6= 0 for L1, L2 and L3.
This implies transience of the chain L1. We restrict our attention only to tran-
sient Markov chains. Let us formulate the conditions for transience of the chains
L2 and L3. All of these have been proved in [3].
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Theorem 1.7. Let Ex 6= 0, Ey 6= 0. The chain L2 is transient if and only if
one of the following conditions holds:

1) Ey > 0;

2) Ey < 0, Ex E
′

y −Ey E
′

x 6= 0.

Theorem 1.8. Let Ex 6= 0, Ey 6= 0. The chain L3 is transient if and only if
one of the following conditions holds:

1) Ex < 0, Ey < 0, Ex E
′

y −Ey E
′

x > 0, Ey E
′′

x −Ex E
′′

y ≤ 0;

2) Ex < 0, Ey < 0, Ex E
′

y −Ey E
′

x ≤ 0, Ey E
′′

x −Ex E
′′

y > 0;

3) Ex < 0, Ey < 0, Ex E
′

y −Ey E
′

x > 0, Ey E
′′

x −Ex E
′′

y > 0;

4) Ex > 0, Ey < 0, Ex E
′

y −Ey E
′

x > 0;

5) Ex < 0, Ey > 0, Ey E
′′

x −Ex E
′′

y > 0;

6) Ex > 0, Ey > 0.

2. Main results

2.1. Preliminaries

This subsection contains the necessary definitions and statements in order
to present our results on the Martin boundary.

Let us choose the reference measure η(α) to be the δ-measure at the origin
α = (0; 0).

We will restrict ourselves to the following cases:

(a) Ex > 0, Ey > 0;

(b) Ex < 0, Ey < 0.

Let X(y) and Y (x) be the algebraic functions determined by the equation

Q(x, y)
def

= xy
(
1 − p10x − p−10x

−1 − p01y − p0−1y
−1

)
= 0. (2.1)

Lemma 2.1. The functions Y (x) and X(y) have four branch points x1, x2, x3,
x4 and y1, y2, y3, y4. In case of (a) and (b) they satisfy the following inequalities:

0 < x1 < x2 < 1 < x3 < x4, 0 < y1 < y2 < 1 < y3 < y4.

Lemma 2.2. The Riemann surfaces of the functions Y (x) and X(y) are con-
formally equivalent and have genus 1.
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This means that the Riemann surfaces of Y (x) and X(y) are homeomorphic
to a torus. We study the Riemann surface S for both X(y) and Y (x) with two
different branched coverings:

hx : S → Px, hy : S → Py ,

where Px and Py are the complex spheres of the variables x and y respectively.
One can see S in Figure 2.1 in both cases (a) and (b). Any function f on a
domain D ⊂ Px can be lifted onto h−1

x (D) ⊂ S. This yields a new function
f ◦ hx, so that we are entitled to write

x(s)
def

= hx(s), y(s)
def

= hy(s), s ∈ S.

Clearly, Q(x(s), y(s)) ≡ 0. We will sometimes write the pair (x, y) to define a
unique point s ∈ S such that x(s) = x, y(s) = y.

Lemma 2.3. The set Sr = {s ∈ S : x(s) and y(s) are real or ∞} consists of
two non-intersecting closed analytic curves F0 and F1 homological to one of the
elements of the normal homology basis on S. This element is different from
h−1

x {x : |x| = 1}. The curves F0 and F1 have the following properties:

F0 = {s : x2 ≤ x(s) ≤ x3} = {s : y2 ≤ y(s) ≤ y3},
F1 = {s : x(s) ≤ 0 or y(s) ≤ 0} ∪ {s : x(s) = ∞ or y(s) = ∞}.

Let us mark the following points s1, s2, s3, s4 on F0:

x(s1) = x3, y(s1) =
√

p0−1/p01,

x(s2) =
√

p−10/p10, y(s2) = y3,

x(s3) = x2, y(s3) =
√

p0−1/p01,

x(s4) =
√

p−10/p10, y(s4) = y2.

Choose on F0 the direction in order of the indices si with the initial point s1.
We will consider throughout the paper the directed segments [s′, s′′] ⊂ F0,
s′ ≤ s ≤ s′′ (possible s′ = s′′) with respect to this choice, see Figure 2.1.

Next, we need to analyse the critical points of the function

χγ(s) = |x(s)ytg γ(s)|, 0 ≤ γ < π

on χ−1(0;∞) in the sense of Morse theory, see [11]. For γ = π/2, put χγ(s) =
|y(s)|.
Lemma 2.4.

1. For all fixed γ ∈ [0; π), γ 6= π/4, 3π/4, the function χγ(s) = |x(s)ytg γ(s)|
has four non-degenerate critical points si(γ), i = 1, 2, 3, 4, on χ−1

γ (0;∞). They
are such that

χγ(s1(γ)) < χγ(s2(γ)) < χγ(s3(γ)) < χγ(s4(γ)).

For γ = π/4, 3π/4 the function has two non-degenerate critical points s2 and
s3, χγ(s2) < χγ(s3).
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s4

s1 s2

s3

sE
s(γ′′)s(γ′)

F0

s4 s3

s1 s2

sE

s∗
E

s(γ′)

F0

F1
F1

Figure 2.1(a). Ex > 0, Ey > 0. Figure 2.1(b). Ex < 0, Ey < 0.

2. For all γ ∈ [0; π) we have s2(γ), s3(γ) ∈ F0, s1(γ), s4(γ) ∈ F1.
3. For γ = 0, π/2 we have x(si(0)) = xi, y(si(π/2)) = yi where xi, yi are

branch points of Y (x) and X(y) respectively, i = 1, 2, 3, 4. For γ 6= 0, π/2, the
values of xi(s(γ)), yi(s(γ)) can be found from the system of equations

tg γ =
p01y − p0−1/y

p10x − p−10/x
, (2.2)

Q(x, y) = 0.

4. For γ = 0, π/2, we have s3(0) = s1, s2(0) = s3, s3(π/2) = s2, s2(π/2) =
s4. The functions s2(γ) and s3(γ) are continuous and strictly increasing on [0; π]
with ranges [s3, s1] and [s1, s3] respectively.

Let us define the function s(γ) on the segment [0, 2π] as follows: s(2π) :=
s(0),

s(γ) =

{
s3(γ), 0 ≤ γ < π;
s2(γ − π), π ≤ γ < 2π.

(2.3)

Corollary 2.1. The function s(γ) is a homeomorphism between the segment
[0; 2π] with the identified ends and the curve F0 on the Riemann surface S.

Throughout the paper we denote for shortness x(s(γ)) by x(γ) and y(s(γ))
by y(γ).

Remark 2.1. Let γE be the angle between the mean vector (Ex, Ey) and the
positive direction of the x-axis {j = 0}. Then x(γE) = 1, y(γE) = 1 and the
associated point s(γE) lies on (s1, s2) if Ex > 0, Ey > 0 and on (s3, s4) if Ex < 0,
Ey < 0. We denote this point by sE, see Figure 2.1.

We will also write πi0j0
ij to denote the mean number of visits to state (i, j)

starting from (i0, j0). Similarly kij(i0, j0) := k(i,j)(i0, j0).
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2.2. Random walk in Z2

This subsection is devoted to the Martin boundary of the chain L1. Let

qm(x, y) =
∑

i,j

(m)pijx
iyj − 1, m = 1, . . . , n, (2.4)

f i0j0
∗ (x, y) =

n∑

m=1

qm(x, y)
∑

(i,j)∈Sm

πi0j0
ij xiyj . (2.5)

Theorem 2.1. Let (i, j) ∈ Z2. Let i = r cos(γ(r)), j = r sin(γ(r)) and let
γ(r) → γ as r → ∞, where 0 ≤ γ ≤ 2π. Then

lim
r→∞

kij(i0, j0) =
xi0 (γ)yj0(γ) + f i0j0

∗ (x(γ), y(γ))

1 + f 00
∗ (x(γ), y(γ))

. (2.6)

The Martin boundary of the chain L1 is homeomorphic to the curve F0 on
the Riemann surface S, that is the circle [0, 2π], see Figure 2.2. The homeomor-
phism I can be established by the mapping I : γ → s(γ).

The minimal Martin boundary is the same.

"!
# 6

-

Figure 2.2

Example (S1, S2, . . . , Sn are empty). If all sets S1, S2, . . . , Sn are empty,
then by the previous theorem

lim
r→∞

kij(i0, j0) = xi0 (γ)yj0(γ). (2.7)

This result was obtained by Ney and Spitzer [12]. We will briefly discuss their
approach and its relation to ours. In [12] an irreducible homogeneous random
walk on Zd is considered, d > 1, with

pα,β = p0,β−α for all α, β ∈ Zd, (2.8)

E =
∑

α∈Zd

αp0,α 6= 0.

Define the real-valued function Φ on Rd by

Φ(u) =
∑

α∈Zd

p0,α exp(α · u).

Let
D = {u | Φ(u) ≤ 1}, ∂D = {u | Φ(u) = 1}.
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For a random walk with bounded jumps, the mapping

u → gradΦ(u)

| gradΦ(u)|
determines a homeomorphism between ∂D and ∂S = {u : |u| = 1}.

Theorem ( [12]). Let βn be a sequence of states in Zd such that βn/|βn| →
p, for some p ∈ ∂S. Let u be a unique solution of the equation

p =
gradΦ(u)

| gradΦ(u)| . (2.9)

Then for any α ∈ Zd

lim
n→∞

kβn
(α) = exp(u · α). (2.10)

In our case d = 2 and

Φ(u1, u2) = p10 exp(u1) + p01 exp(u2) + p−10 exp(−u1) + p0−1 exp(−u2).

If one puts
x = exp(u1), y = exp(u2), (2.11)

then the set
∂D = {(u1, u2) ∈ R2 | Φ(u) = 1}

is homeomorphic to the set

{(x, y) ∈ R2 | Q(x, y) = 0, x, y > 0},

which in turn is homeomorphic to the “real circle” F0 on our Riemann sur-
face S. Moreover, substituting (2.11) into (2.9) gives exactly equation (2.2) for
our critical points, where γ is the angle between the vector p = (p1, p2) and
the positive direction of the x-axis, i.e. tg γ = p2/p1. (There are two roots
of (2.2), for x, y > 0, i.e. two critical points on F0. We have chosen one of these
in (2.3). In equation (2.9) this has been provided for by the direction of p.)
Thus relation (2.11) connects (2.9)–(2.10) to our result (2.7).

The method suggested in [12] is the following. In case of p = E /|E |, it is
shown via the local central limit theorem that the asymptotics of the Green
function is πα

βn
∼ C n(1−d)/2. Hence, kβn

(α) → 1 for all α ∈ Zd. Clearly, in this
case the solution of equation (2.9) is given by u = 0. If p 6= E /|E |, one changes
the probability measure in such a way that p is the corresponding normed drift
vector. To this end, one should determine the solution u of (2.9) for a given p
and then put

upα,β = pα,β exp(u · (β − α)) for all α, β ∈ Zd. (2.12)

As a consequence, we have

u
E =

∑

α∈Zd

α up0,α = grad Φ(u) (2.13)
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and p = u
E /|u E |. By the above case uπα

βn
∼ C(u) n(1−d)/2. Then the following

important expression

uπα
β =

∞∑

n=0

upn
α,β =

∞∑

n=0

pn
α,β exp(u · (β − α))

= πα
β exp(u · (β − α)) (2.14)

implies that πα
βn

∼ C(u) n(1−d)/2 exp(u · (α − βn)). Thus kβn
(α) → exp(u · α).

This method relies on relation (2.14), which holds only if pα,β = p0,β−α

for all α, β ∈ Zd, i.e. S1, . . . , Sn are empty. It fails whenever the transition
probabilities are “spoiled” even at one point of the space. We propose another
method, which remains valid, even if the jump probabilities in some points of
the state space are changed.

2.3. Random walk in Z+ × Z, Ex > 0, Ey > 0

In this subsection we will formulate our results on the Martin boundary for
the chain L2 under the assumption Ex > 0, Ey > 0. Let

q(x, y) = x
( ∑

i,j

p′ijx
iyj − 1

)
. (2.15)

Lemma 2.5. The system of equations
{

Q(x, y) = 0
q(x, y) = 0

(2.16)

has a solution (x′, y′) satisfying
{

1 < x′ < x3

p0−1/p01 < y′ <
√

p0−1/p01
(2.17)

if and only if q(x3,
√

p0−1/p01) > 0.
The system (2.16) has a solution (x′′, y′′) satisfying

{
x2 < x′′ < 1

p0−1/p01 < y′′ <
√

p0−1/p01
(2.18)

if and only if q(x2,
√

p0−1/p01) > 0.

For q(x3,
√

p0−1/p01) > 0 [ q(x2,
√

p0−1/p01) > 0 ] the solution of (2.16)
satisfying (2.17) [resp. (2.18)] is unique.

For q(x3,
√

p0−1/p01) > 0 and q(x2,
√

p0−1/p01) > 0 let us define the angles γ ′,
0 < γ′ < π, and γ′′, 0 < γ′′ < π, such that

x(γ′) = x′, y(γ′) =
p0−1

p01y′
, (2.19)

x(γ′′) = x′′, y(γ′′) =
p0−1

p01y′′
. (2.20)
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By virtue of Lemma 2.4

tg γ′ =
p0−1/y′ − p01y

′

p10x′ − p−10/x′
, tg γ′′ =

p0−1/y′′ − p01/y′′

p10x′′ − p0−1/x′′
.

Moreover, we have 0 < γ ′ < γE < γ′′ < π and

s(γ′) = (x′ , p0−1/(p01y
′)) ∈ (s1; sE),

s(γ′′) = (x′′ , p0−1/(p01y
′′)) ∈ (sE; s3),

see Figure 2.1(a).

Theorem 2.2. Let (i, j) ∈ Z+ × Z. Let i = r cos(γ(r)), j = r sin(γ(r)) and
γ(r) → γ as r → ∞, where 0 ≤ γ ≤ π.

1. If q(x3,
√

p0−1/p01) < 0, q(x2,
√

p0−1/p01) < 0, then for all γ ∈ [0, π]

lim
r→∞

kij(i0, j0) =
[
xi0(γ) yj0(γ) q

(
x(γ), p0−1/(p01y(γ))

)
(2.21)

− xi0(γ)
(
p0−1/(p01y(γ))

)j0
q
(
x(γ), y(γ)

) ]

×
[
q
(
x(γ), p0−1/(p01y(γ))

)
− q

(
x(γ), y(γ)

) ]−1
.

The Martin boundary is homeomorphic to the segment [s1, s3] on F0, that
is to the arc [0, π], see Figure 2.3(a). This homeomorphism is given by the
mapping I : γ → s(γ).

The minimal Martin boundary is the same.
2. If q(x3,

√
p0−1/p01) > 0, q(x2,

√
p0−1/p01) < 0, then one can define the

pair (x′, y′) by Lemma 2.5 and the angle γ ′ by (2.19). For γ ∈ [0, γ ′]

lim
r→∞

kij(i0, j0) = (x′)i0(y′)j0 . (2.22)

For γ ∈ (γ′, π] the asymptotics of the Martin kernel is given by (2.21).
The Martin boundary is homeomorphic to the segment [s(γ ′), s3] on F0,

that is to the arc [γ′, π], see Figure 2.3(b). This homeomorphism is given by the
mapping I : γ → s(γ).

The minimal Martin boundary is the same.
3. If q(x3,

√
p0−1/p01) < 0, q(x2,

√
p0−1/p01) > 0, then one can define the

pair (x′′, y′′) by Lemma 2.5 and the angle γ ′′ by (2.20). For γ ∈ [γ ′′, π]

lim
r→∞

kij(i0, j0) = (x′′)i0(y′′)j0 . (2.23)

For γ ∈ [0, γ′′) the asymptotics of the Martin kernel is given by (2.21).
The Martin boundary is homeomorphic to the segment [s1, s(γ

′′)] on F0,
that is to the arc [0, γ ′′], see Figure 2.3(c). This homeomorphism is given by
the mapping I : γ → s(γ).

The minimal Martin boundary is the same.
4. If q(x3,

√
p0−1/p01) > 0, q(x2,

√
p0−1/p01) > 0, then one can define

the pairs (x′, y′) and (x′′, y′′) by Lemma 2.5 and the angles 0 < γ ′ < γ′′ < π
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by (2.19), (2.20). The asymptotics of the Martin kernel is given by (2.22) for
γ ∈ [0, γ′], by (2.21) for γ ∈ (γ ′, γ′′), and by (2.23) for γ ∈ [γ ′′, π].

The Martin boundary is homeomorphic to the segment [s(γ ′), s(γ′′)] on F0,
that is to the arc [γ′, γ′′], see Figure 2.3(d). This homeomorphism is given by
the mapping I : γ → s(γ).

The minimal Martin boundary is the same.

2.4. Random walk in Z+ × Z, Ex < 0, Ey < 0

In this subsection we describe the Martin boundary for the chain L2 under
the following assumptions:

• Ex < 0, Ey < 0;

• Ex E
′

y −Ey E
′

x > 0.

Let us define the angle γ∗
E
∈ (0, π) by

x(γ∗
E
) = 1, y(γ∗

E
) =

p0−1

p01
. (2.24)

Note that γ∗
E

= γE − π/2. (In fact, by virtue of Lemma 2.4, tg γ∗
E

= (p−10 −
p10)/(p01 − p0−1).) Then π/2 < γ∗

E
< π and s∗

E
:= s(γ∗

E
) = (1, p0−1/p01) ∈

(s2, s3), see Figure 2.1(b).
The function q(x, y) is defined by (2.15).

Lemma 2.6. The system of equations
{

Q(x, y) = 0
q(x, y) = 0

(2.25)

has a solution (x′, y′) satisfying

{
x2 < x′ < 1

1 < y′ <
√

p0−1/p01
(2.26)

if and only if q(x2,
√

p0−1/p01) > 0.
The solution (x′, y′) of (2.25) satisfying (2.26) is unique.
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If q(x2,
√

p0−1/p01) > 0, one can define the angle γ ′ ∈ (0, π) by

x(γ′) = x′, y(γ′) =
p0−1

p01y′
. (2.27)

By virtue of Lemma 2.4

tg γ′ =
p0−1/y′ − p01y

′

p10x′ − p0−1/x′
.

Moreover, π/2 < γ∗
E

< γ′ < π and

s(γ′) = (x′, p0−1/(p01y
′)) ∈ (s∗

E
, s3) ∈ (s2, s3),

see Figure 2.1(b).

Theorem 2.3. Let (i, j) ∈ Z × Z+. Let i = r cos(γ(r)), j = r sin(γ(r)) and
γ(r) → γ as r → ∞, where 0 ≤ γ ≤ π.

1. If q(x2,
√

p0−1/p01) < 0, then for γ ∈ [0, γ∗
E
]

lim
r→∞

kij(i0, j0) = 1 (2.28)

and for γ ∈ (γ∗
E
, π]

lim
r→∞

kij(i0, j0) =
[
xi0(γ) yj0(γ) q

(
x(γ), p0−1/(p01y(γ))

)
(2.29)

− xi0(γ)
(
p0−1/(p01y(γ))

)j0
q
(
x(γ), y(γ)

) ]

×
[
q
(
x(γ), p0−1/(p01y(γ))

)
− q

(
x(γ), y(γ)

) ]−1
.

The Martin boundary is homeomorphic to the segment [s∗
E
, s3] on F0, that

is to the arc [γ∗
E
, π], see Figure 2.4(a). This homeomorphism is given by the

mapping I : γ → s/(γ).
The minimal Martin boundary is the same.
2. If q(x2,

√
p0−1/p01) > 0, then one can define the pair (x′, y′) by Lemma

2.6 and the angle γ′ as in (2.27). For γ ∈ [0, γ∗
E
] the asymptotics of the Martin

kernel is given by (2.28) and for γ ∈ (γ∗
E
, γ′) it is given by (2.29). For γ ∈ [γ ′, π]:

lim
r→∞

kij(i0, j0) = (x′)i0(y′)j0 . (2.30)

The Martin boundary is homeomorphic to the segment [s∗
E
, s(γ′)] on F0, that

is to the arc [γ∗
E
, γ′], see Figure 2.4(b). This homeomorphism is given by the

mapping I : γ → s(γ).
The minimal Martin boundary is the same.
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2.5. Random walk in Z2
+, Ex > 0, Ey > 0

In this subsection we formulate the results on the Martin boundary for the
chain L3 under the assumption Ex > 0, Ey > 0. Let

q(x, y) = x
( ∑

i,j

p′ijx
iyj − 1

)
,

q̃(x, y) = y
(∑

i,j

p′′ijx
iyj − 1

)
, (2.31)

q0(x, y) =
∑

i,j

p0

ijx
iyj − 1.

Lemma 2.7. The system of equations
{

Q(x, y) = 0
q(x, y) = 0

(2.32)

has a solution (x′, y′) satisfying

{
1 < x′ < x3

p0−1/p01 < y′ <
√

p0−1/p01
(2.33)

if and only if q(x3,
√

p0−1/p01) > 0.
The system of equations

{
Q(x, y) = 0
q̃(x, y) = 0

(2.34)

has a solution (x′′, y′′) satisfying

{
p−10/p10 < x′′ <

√
p−10/p10

1 < y′′ < y3
(2.35)

if and only if q̃(
√

p−10/p10, y3) > 0.

For q(x3,
√

p0−1/p01) > 0 [resp. q̃(
√

p−10/p10, y3) > 0] the solution of (2.32)
[resp. (2.34)] satisfying (2.33) [resp. (2.35)] is unique.

For q(x3,
√

p0−1/p01) > 0 and q̃(
√

p−10/p10, y3) > 0 let us define the an-
gles γ′, 0 < γ′ < π/2, and γ′′ > 0, 0 < γ′′ < π/2, such that

x(γ′) = x′, y(γ′) =
p0−1

p01y′
, (2.36)

x(γ′′) =
p10

p−10x′′
, y(γ′′) = y′′. (2.37)
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By virtue of Lemma 2.4

tg γ′ =
p0−1/y′ − p01y

′

p10x′ − p−10/x′
, tg γ′′ =

p01y
′′ − p0−1/y′′

p−10/x′′ − p10x′′
.

Moreover, we have 0 < γ ′ < γE < γ′′ < π/2 and

s(γ′) = (x′ , p0−1/(p01y
′)) ∈ (s1, sE),

s(γ′′) = (p−10/(p10x
′′) , y′′) ∈ (sE, s2),

see Figure 2.1(a).
Let us introduce the generating functions

πi0j0(x) =

∞∑

i=1

πi0j0
i0 xi−1, π̃i0j0(y) =

∞∑

j=1

πi0j0
0j yj−1 (2.38)

in the discs {x : |x| < 1} and {y : |y| < 1} respectively.

Proposition 2.1. We have

∞∑

i=1

πi0j0
i0 < ∞,

∞∑

j=1

πi0j0
0j < ∞.

Theorem 2.4. Let (i, j) ∈ Z2
+. Let i = r cos(γ(r)), j = r sin(γ(r)) and let

γ(r) → γ as r → ∞, where 0 ≤ γ ≤ π/2.

1. Assume that q(x3,
√

p0−1/p01) < 0, q̃(
√

p−10/p10, y3) < 0. If γ ∈ [0, γE],

then
√

p0−1/p01 < y(γ) < 1 and

lim
r→∞

kij(i0, j0) (2.39)

=
[
q(x(γ) , p0−1/(p01y(γ)))

×
[
xi0(γ)yj0(γ) + q0(x(γ), y(γ))πi0j0

00
+ q̃(x(γ), y(γ))π̃i0j0(y(γ))

]

− q(x(γ), y(γ))

×
[
xi0(γ)

(
p0−1/(p01y(γ))

)j0
+ q0(x(γ) , p0−1/(p01y(γ)))πi0j0

00

+ q̃(x(γ) , p0−1/(p01y(γ)))π̃i0j0(p0−1/(p01y(γ)))
]]

×
[
q(x(γ) , p0−1/(p01y(γ)))

×
[
1 + q0(x(γ), y(γ))π00

00
+ q(x(γ), y(γ))π̃00(y(γ))

]

− q(x(γ), y(γ))

×
[
1 + q0(x(γ) , p0−1/(p01y(γ)))π00

00

+ q(x(γ) , p0−1/(p01y(γ)))π̃00(p0−1/(p01y(γ)))
]]−1

.
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If γ ∈ [γE, π/2], then p−10/p01 < x(γ) < 1 and

lim
r→∞

kij(i0, j0) (2.40)

=
[
q̃(p−10/(p10x(γ)) , y(γ))

×
[
xi0 (γ)yj0(γ) + q0(x(γ), y(γ))πi0j0

00
q(x(γ), y(γ))πi0j0(x(γ))

]

− q̃(x(γ), y(γ))

×
[(

p−10/(p10x(γ))
)i0

yj0(γ) + q0(p−10/(p10y(γ)) , y(γ))πi0j0
00

+ q(p−10/(p10x(γ)) , y(γ))πi0j0(p−10/(p10x(γ)))
]]

×
[
q̃(p−10/(p10x(γ)) , y(γ))

×
[
1 + q0(x(γ), y(γ))π00

00
q(x(γ), y(γ))π00(x(γ))

]

− q̃(x(γ), y(γ))

×
[
1 + +q0(p−10/(p10y(γ)) , y(γ))π00

00

+ q(p−10/(p10x(γ)) , y(γ))π00(p−10/(p10x(γ)))
]]−1

.

(If γ = γE, then limr→∞ kij(i0, j0) = 1 in agreement with (2.39) and (2.40).)
The Martin boundary is homeomorphic to the segment [s1, s2] on F0, that

is to the arc [0, π/2], see Figure 2.5(a). This homeomorphism is given by the
mapping I : γ → s(γ).

The minimal Martin boundary is the same.
2. Assume that q(x3,

√
p0−1/p01) > 0, q̃(

√
p−10/p10, y3) < 0. One can

define the pair (x′, y′) by Lemma 2.7 and the angle γ ′ by (2.36); 0 < γ′ < γE.
For γ ∈ [0, γ′]

lim
r→∞

kij(i0, j0) =
(x′)i0(y′)j0 + q0(x

′, y′)πi0j0
00 + q̃(x′, y′)π̃i0j0(y′)

1 + q0(x′, y′)π00
00

+ q̃(x′, y′)π̃00(y′)
. (2.41)

For γ ∈ (γ′, π/2] the asymptotics of the Martin kernel is given by (2.39)
whenever γ is not greater than γE and by (2.40) otherwise.

The Martin boundary is homeomorphic to the segment [s(γ ′), s2] on F0, that
is to the arc [γ′, π/2], see Figure 2.5(b). This homeomorphism is given by the
mapping I : γ → s(γ).

The minimal Martin boundary is the same.
3. Assume that q(x3,

√
p0−1/p01) < 0, q̃(

√
p−10/p10, y3) > 0. One can

define the pair (x′′, y′′) by Lemma 2.7 and the angle γ ′′ by (2.37); γE < γ′′ < π/2.
For γ ∈ [γ′′, π/2]

lim
r→∞

kij(i0, j0) =
(x′′)i0 (y′′)j0 + q0(x

′′, y′′)πi0j0
00 + q(x′′, y′′)πi0j0(x′′)

1 + q0(x′′, y′′)π00
00

+ q(x′′, y′′)π00(x′′)
. (2.42)

For γ ∈ [0, γ′′) the asymptotics of the Martin kernel is given by (2.39) if γ
is not greater than γE and by (2.40) otherwise.
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The Martin boundary is homeomorphic to the segment [s1, s(γ
′′)] on F0,

that is to the arc [0, γ ′′], see Figure 2.5(c). This homeomorphism is given by
the mapping I : γ → s(γ).

The minimal Martin boundary is the same.
4. Assume that q(x3,

√
p0−1/p01) > 0, q(

√
p−10/p10, y3) > 0. Then one

can define the pairs (x′, y′) and (x′′, y′′) by Lemma 2.7 and the angles γ ′, γ′′

by (2.36), (2.37). The asymptotics of the Martin kernel is given by (2.41) for
γ ∈ [0, γ′], by (2.39) for γ ∈ (γ ′, γE], by (2.40) for γ ∈ [γE, γ′′), and by (2.42)
for γ ∈ [γ′′, π/2].

The Martin boundary is homeomorphic to the segment [s(γ ′), s(γ′′)] on F0,
that is to the arc [γ′, γ′′], see Figure 2.5(d). This homeomorphism is given by
the mapping I : γ → s(γ).

The minimal Martin boundary is the same.

2.6. Random walk in Z2
+: Ex < 0, Ey < 0, escape to infinity along one

axis

This subsection is devoted to the Martin boundary of the chain L3 under
the following assumptions:

• Ex < 0, Ey < 0;

• Ex E
′
y −Ey E

′
x > 0;

• Ey E
′′
x −Ex E

′′
y < 0.

The functions q(x, y), q̃(x, y) and q0(x, y) are the same as in the previous
subsection.

Lemma 2.8. The system of equations
{

Q(x, y) = 0
q̃(x, y) = 0

(2.43)

has a solution (x′, y′) satisfying
{

x2 ≤ x′ < 1
1 < y′ < p0−1/p01

(2.44)

if and only if q̃(1, p0−1/p01) > 0.
This solution is unique.
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For q̃(1, p0−1/p01) > 0 let us introduce the angle γ0 ∈ (0, π/2) by

( p−10

p10x′

)ctg γ0

y′ =
p0−1

p01
. (2.45)

As in the previous subsection we have the generating functions

πi0j0(x) =

∞∑

i=1

πi0j0
i0 xi−1, π̃i0j0(y) =

∞∑

j=1

πi0j0
0j yj−1.

They are defined in the domains {x : |x| < 1} and {y : |y| < 1} respectively.

Theorem 2.5. Let (i, j) ∈ Z2
+. Let i = r cos(γ(r)), j = r sin(γ(r)) and let

γ(r) → γ as r → ∞, where 0 ≤ γ ≤ π/2.
1. Assume that q̃(1, p0−1/p01) < 0. Then for all γ ∈ [0, π/2]

lim
r→∞

kij(i0, j0) = 1. (2.46)

The Martin boundary is trivial.
2. Assume that q̃(1, p−10/p10) > 0. One can define the pair (x′, y′) by

Lemma 2.8 and the angle γ0 by (2.45). If γ ∈ [0, γ0), then the asymptotics of
the Martin kernel is given by (2.46). If γ ∈ (γ0, π/2], then

lim
r→∞

kij(i0, j0) =
C(i0, j0)

C(0, 0)
, (2.47)

where

C(i, j) = (x′)i(y′)j + q0(x
′, y′)πij

00
+ q(x′, y′)πij(x′).

If γ = γ0, then

lim
r→∞

kij(i0j0) = lim
r→∞

C1 C(i0, j0) + C2

(
p−10/(p10x

′)
)i−j ctg γ0

C1 C(0, 0) + C2

(
p−10/(p10x′)

)i−j ctg γ0
, (2.48)

where

C1 =
q̃(p−10/(p10x

′) , y′) resy=y′ q̃−1(X(y), y)

2p−10y′/x′ + p01y′2 + p0−1 − y′
,

C2 =
q(1 , p0−1/p01) resx=1 q−1(x, Y (x))

p0−1 − p01
.

(The branch X(y) [resp. Y (x)] is such that X(y′) = x′ [resp. Y (1) = 1].)
If ctg γ0 is irrational, then the Martin boundary is homeomorphic to the set

[−∞,∞]. If ctg γ0 is rational, then the Martin boundary is homeomorphic to
the set Z ∪ {∞} ∪ {−∞}. This homeomorphism is given by lim

r→∞
(i − j ctg γ0).

The minimal Martin boundary is homeomorphic to a two-points set. These
points are determined by (2.46) and (2.47).
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2.7. Random walk in Z2
+, Ex < 0, Ey < 0, escape to infinity along two

axes

In this subsection we find the Martin boundary of the chain L3 under the
following assumptions:

• Ex < 0, Ey < 0;

• Ex E
′
y −Ey E

′
x > 0;

• Ey E
′′
x −Ex E

′′
y > 0.

The functions q(x, y), q̃(x, y), q0(x, y), πi0j0(x), π̃i0j0(y) are the same as in
Subsection 2.5.

Lemma 2.9. There exist constants C(i0, j0) and C̃(i0, j0) such that

πi0j0
i0 → C(i0, j0) as i → ∞, (2.49)

πi0j0
0j → C̃(i0, j0) as j → ∞. (2.50)

Let us define the angle γ0 ∈ (0, π/2) by

( p10

p−10

)ctg γ0

=
p01

p0−1
. (2.51)

Theorem 2.6. Let (i, j) ∈ Z2
+ be given by i = r cos(γ(r)), j = r sin(γ(r))

where γ(r) → γ and r → ∞, where 0 ≤ γ ≤ π/2. The angle γ0 is defined
by (2.51). If γ ∈ [0, γ0), then

lim
r→∞

kij(i0, j0) =
C(i0, j0)

C(0, 0)
. (2.52)

If γ ∈ (γ0, π/2], then

lim
r→∞

kij(i0, j0) =
C̃(i0, j0)

C̃(0, 0)
, (2.53)

where the constants C(i0, j0) and C̃(i0, j0) are defined by Lemma 2.9.
If γ = γ0, then

lim
r→∞

kij(i0, j0) = lim
r→∞

C1 C(i0, j0) + C2 C̃(i0, j0)(p10/p−10)
i−j ctg γ0

C1 C(0, 0) + C2 C̃(0, 0)(p10/p−10)i−j ctg γ0

, (2.54)

where

C1 = q(p−10/p10, 1)/(p−10 − p10), C2 = q̃(1, p0−1/p01)/(p0−1 − p01).

If ctg γ0 is irrational, then the Martin boundary is homeomorphic to the set
[−∞, +∞]. If ctg γ0 is rational, then the Martin boundary is homeomorphic to
the set Z ∪ {∞} ∪ {−∞}. The homeomorphism is given by lim

r→∞
(i − j ctg γ0).

The minimal Martin boundary is homeomorphic to a two-points set. These
points are determined by (2.52) and (2.53).
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3. Proofs

3.1. Preliminaries

In this subsection we give the general structure of the proofs of Theorems 2.1–
2.6. We also prove all necessary results on the algebraic functions X(y) and Y (x)
determined by equation (2.1) and their Riemann surface S. Some of these have
already been stated in Subsection 2.1.

The structure of the proofs of Theorems 2.1–2.6 is similar. We need some
additional lemmas to describe it.

Let
D = {x : |x| < 1}, Γ = ∂D = {x : |x| = 1},

D ⊂ C, Γ ⊂ C, where C is the complex plane.

Lemma 3.1. The algebraic function Y (x) has two branches on Γ, denoted by
Y0(x) and Y1(x), Y0(1) < Y1(1).

1. If Ey > 0, then |Y0(x)| < 1 and |Y1(x)| ≥ 1. Only at the point x = 1 we
have |Y1(x)| = 1, in particular Y1(1) = 1. Moreover, Y0(x) [resp. Y1(x)]
is a real analytic curve on Γ contained in [resp. out] the unit circle Γ for
x 6= 1.

2. If Ey < 0, then |Y0(x)| ≤ 1 and |Y1(x)| > 1. Only at the point x = 1 we
have |Y0(x)| = 1, in particular Y0(1) = 1. Moreover, Y0(x) [resp. Y1(x)]
is a real analytic curve on Γ contained in [resp. out] the unit circle Γ for
x 6= 1.

Similar properties hold for the algebraic function X(y), which has two branches
X0(y) and X1(y).

Proof. See [9]. 2

Define the following sets on the Riemann surface S:

Γ0 = h−1
x (Γ) ∩ {s : |y(s)| ≤ 1}, Γ1 = h−1

x (Γ) ∩ {s : |y(s)| ≥ 1};
Γ̃0 = h−1

y (Γ) ∩ {s : |x(s)| ≤ 1}, Γ̃1 = h−1
y (Γ) ∩ {s : |x(s)| ≥ 1}. (3.1)

Lemma 3.2. The sets Γ0, Γ1, Γ̃0, Γ̃1 are closed analytic curves without self-in-
tersections. They belong to the same homology class, which is one of the normal
homology bases on the torus.

1. If Ex > 0, Ey > 0, then Γ0 ⊂ h−1
y (D), Γ̃0 ⊂ h−1

x (D), Γ1 ∩ h−1
y (D) = sE,

Γ̃1 ∩ h−1
x (D) = sE and h−1

x (Γ) ∩ h−1
y (Γ) = Γ1 ∩ Γ̃1 = sE, where x(sE) =

y(sE) = 1, see Figure 3.1(a).

2. If Ex < 0, Ey < 0, then Γ0 ⊂ h−1
y (D), Γ̃0 ⊂ h−1

x (D), Γ1 ∩ h−1
y (D) = ∅,

Γ̃1 ∩ h−1
x (D) = ∅ and h−1

x (Γ) ∩ h−1
y (Γ) = Γ0 ∩ Γ̃0 = sE, where x(sE) =

y(sE) = 1, see Figure 3.1(b).
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Proof. See [9]. 2

In particular,

• if Ex > 0, Ey > 0, then Γ1 ∩ F0 = Γ̃1 ∩ F0 = (1, 1) = sE, Γ0 ∩ F0 =

(1, p0−1/p01) and Γ̃0 ∩ F0 = (p−10/p10, 1);

• if Ex < 0, Ey < 0, then Γ0 ∩ F0 = G̃0 ∩ F0 = (1, 1) = sE, Γ1 ∩ F0 =

(1, p0−1/p01) = s∗
E

and Γ̃1 ∩ F0 = (p−10/p10, 1) := s̃∗
E
.

s4

s1 s2

s3

sE

s4 s3

s1 s2

sE

s∗
E

Figure 3.1(a). Ex > 0, Ey > 0. Figure 3.1(b). Ex < 0, Ey < 0.

Γ0

Γ̃1 Γ1

Γ̃0

Γ1

Γ0 Γ̃0

Γ̃1

s̃∗
E

We orient Γ0 in such a way, that rotation along Γ0 implies positive rotation
along Γ = {x : |x| = 1} on C. The curves Γ1, Γ̃0, Γ̃1 are oriented homologically
to Γ0. It follows that rotation along Γ1 implies negative rotation along Γ on C.

Introduce also the following differential form on S:

dω =
dx

2a(x)y + b(x)
= − dy

2ã(y)x + b̃(y)
, (3.2)

where
Q(x, y) = a(x)y2 + b(x)y + c(x) = ã(y)x2 + b̃(x)y + c̃(x). (3.3)

Structure of the proofs of Theorems 2.1–2.6.

To find the Martin boundary, it is sufficient to find the asymptotics of the
Green function πi0j0

ij for i = r cos(γ(r)), j = r sin(γ(r)) as r → ∞, γ(r) → γ.

Then it remains to use the definition of the Martin kernel kij(i0, j0) = πi0j0
ij /π00

ij

(so that the reference measure is the Dirac measure at the point (0, 0)).
First of all, we derive a functional equation for the generating functions

of πi0j0
ij , see (3.7), (3.35), (3.75). In the quarter plane, the functional equation is

quite similar to the equation for the stationary probabilities in case of ergodicity.
This has been thoroughly analysed in [8].
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Using Cauchy’s theorem, πi0j0
ij can be represented as a double integral,

cf. (3.15), (3.40) or (3.100). Using two-dimensional residues, this double in-
tegral is transformed into a one-dimensional integral over a Riemann surface of
genus 1. Some space is required for gathering the necessary information on the
corresponding elliptic curve and especially on the real points of this curve.

The integrand contains the unknown functions πi0j0(s) and π̃i0j0(s). All we
need from these functions, is their singularities. A priori, these functions are
defined in some domains on S as πi0j0(s) := πi0j0(x(s)), π̃i0j0(s) := πi0j0(y(s)).
The crucial property is that they can be meromorphically continued on S. This
is carefully described in each case.

The integrals on S are typical examples for applying the saddle-point method,
and moreover, nice analyticity properties allow us to deform the integration con-
tour along the Riemann surface.

When deforming this contour, we may encounter the poles of the functions
in the integrand πi0j0(s), π̃i0j0(s). If this is the case, the asymptotics of πi0j0

ij is
determined by the “lowest” of these poles, which will be always on F0; otherwise
the asymptotics of πi0j0

ij will be determined by the contribution of the saddle-
point s(γ).

Note also that the poles of the integrands occur at the points s, such that
q(x(s), p0−1/(p01y(s))) = 0 or q̃(p−10/(p10x(s)), y(s)) = 0. (In particular the
points s(γ′), s(γ′′), s(γ∗

E
), where γ′, γ′′, γ∗

E
are defined in Subsections 2.3, 2.4

and 2.5, are exactly the poles.)
The main contribution to the Martin boundary comes from the saddle-

points: taking different γ in such a way that the asymptotics of πi0j0
ij is de-

termined by the saddle-point, we will obtain different points of the Martin
boundary as e.g. in (2.6), (2.21), (2.29), (2.39), (2.40). On the contrary, the
poles do not contribute much: the angles γ such that the asymptotics of πi0j0

ij

is determined by a given pole, will add only one point to this boundary, as e.g.
in (2.22), (2.23), (2.28), (2.30), (2.41), (2.42).

Next, we prove our statements on the Riemann surface S. We will need all
of them, when showing Theorems 2.1–2.6.

Proof of Lemma 2.1. The equation Q(x, y) = 0 can be represented in the form

Q(x, y) = a(x)y2 + b(x)y + c(x) = 0

with the discriminant

D(x) = b2(x) − 4(x)c(x)

= p2
10x

4 − 2p10x
3 + (1 + 2p10p0−1 − 4p01p−10)x

2 − 2p0−1x + p2
0−1.

The branch points of Y (x) are the zeros of D(x). (The analogous arguments
are true for X(y).) Then these branch points can be found explicitly:

x1,2 =
(
1 ± 2

√
p01p0−1 −

√
1 ± 4

√
p01p0−1 + 4p01p0−1 − 4p10p−10

)
/2p10,
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x3,4 =
(
1 ± 2

√
p01p0−1 +

√
1 ± 4

√
p01p0−1 + 4p01p0−1 − 4p10p−10

)
/2p10,

y1,2 =
(
1 ± 2

√
p10p−10 −

√
1 ± 4

√
p10p−10 + 4p10p−10 − 4p01p0−1

)
/2p01,

y3,4 =
(
1 ± 2

√
p10p−10 +

√
1 ± 4

√
p10p−10 + 4p10p−10 − 4p01p0−1

)
/2p01.

2

Proof of Lemma 2.2. This is a corollary of the previous lemma. The discrimi-
nant D(x) being a polynomial of degree four without multiple zeros, the Rie-
mann surface of X(y) is homeomorphic to the torus. The same holds for X(y).

2

Proof of Lemma 2.3. In the neighbourhood of any s ∈ S, one of the functions
x, y, 1/x, 1/y will act as the uniformisation variable. Assume that it is e.g. x,
and that s ∈ Sr. Then in a small neighbourhood of s, the set of the points
of Sr forms an analytic arc. It follows that Sr is an analytic curve without self-
intersections. Moreover, Sr being a closed set, all its components are closed.

Let us recall now that the values of Y (x) are real for x2 ≤ x ≤ x3, since
Y (1) is real. But Y (x1) and Y (x4) are also real. Thus Y (x) is not real for
x1 < x < x2 and x3 < x < x4 and real for x < x1, x > x4. So, there are two
components of Sr by construction of the Riemann surface.

We denote by F0 the component of Sr, where x2 ≤ x(s) ≤ x3, and by F1

the other one. Let us note that for s ∈ F0 also y2 ≤ y(s) ≤ y3. If s ∈ F1

and 0 < y(s) ≤ y1 or y(s) ≥ y4, then x(s) < 0; if s ∈ F1 and y(s) < 0, then
0 < x(s) ≤ x1 or y(s) ≥ y4. If y(s) = 0 then x(s) = 0 or ∞; and if x(s) = 0,
then y(s) = 0 or ∞. 2

Proof of Lemma 2.4. We prove this lemma for Ex < 0, Ey < 0. The other case
is similar.

Let γ = 0. Then χ0(s) = |x(s)| has four critical points si(0), i = 1, 2, 3, 4,
such that

xi(0) = xi for i = 1, 2, 3, 4;

yi(0) =
√

p0−1/p01 for i = 2, 3; yi(0) = −
√

p0−1/p01 for i = 1, 4;

χ0(s1(0)) < χ0(s2(0)) < χ0(s3(0)) < χ0(s4(0)),

s2(0) = s3, s3(0) = s1.

Let now 0 < γ < π/2. Alternative equations for determining the critical
points are:

(
xytg γ

)′
x

= ytg γ−1
(
y + tg γ x

dy

dx

)
= 0,

(
xytg γ

)′
y

= ytg γ−1
(
y
dy

dx
+ tg γ x

)
= 0.
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They are reduced to

y

tg γ x
= −dy

dx
=

p10 − p−10/x2

p01 − p0−1/y2
. (3.4)

This equation together with Q(x, y) = 0 gives the system





p10(1 + tg γ)x +

p−10

x
(1 − tg γ) − 1 = −2p0−1

y

p10(1 − tg γ)x +
p−10

x
(1 + tg γ) − 1 = −2p0−1y.

(3.5)

If γ 6= π/4, this system has four roots (xi(γ), yi(γ)), i = 1, 2, 3, 4. They depend
continuously on γ. So, we have four critical points si(γ) on S. Moreover,
s2(γ), s3(γ) ∈ F0, s1(γ), s4(γ) ∈ F1 since this holds for γ = 0. If γ = π/4, the
system (3.5) has two roots. The corresponding critical points s2(π/4), s3(π/4)
are on F0. (One can also obtain from (3.4) and Q(x, y) = 0 two points s1(π/4) =
(0, 0), s4(π/4) = (∞,∞) on F1, but they are not on χ−1

π/4(0,∞).)

Let us show that s2(γ) ∈ [s3, s4) for 0 ≤ γ < π/2. Note that y2(γ) =√
p0−1/p01 only for γ = 0. In fact, substituting y =

√
p0−1/p01 into (3.4), we

get x = ±
√

p−10/p10 for γ 6= 0. But because of the equation Q(x, y) = 0 it is

impossible that simultaneously x = ±
√

p−10/p10, y = ±
√

p−10/p10. Thus, s3

is a critical point only for γ = 0. Similarly x2(γ) 6=
√

p0−1/p01, so s2, s4 can
not be critical points for any 0 ≤ γ < π/2. Since s2(γ) depends continuously on
γ and taking into account the above, we conclude that only one of the following
cases can occur: s2(γ) ∈ [s3, s4) or s2(γ) ∈ [s2, s3) for all 0 ≤ γ < π/2. To
reject the second case, it is sufficient to show that y2(γ) < y2(0) =

√
p0−1/p01.

This is easily seen from (3.4). The left-hand side in (3.4) is positive. The
numerator in the right-hand side is negative, since x(s) < x(s2) = x(s4) =√

p−10/p10 for all s ∈ (s2, s4). Then the denominator should be negative too,
thus p01 − p0−1/y2(γ) < 0.

One can prove by the same way that s3(γ) ∈ [s1, s2) for all 0 ≤ γ < π/2.
The above implies that for all 0 < γ < π/2

x2(0) < x2(γ) < x(s4) = x(s2) < x3(γ) < x3(0),

y2(γ) < y2(0) = y(s1) = y(s3) < y3(γ),

hence χ2(γ) < χ3(γ). In the same way, one can study the “real circle” F1 and
deduce that χ1(γ) < χ2(γ), χ3(γ) < χ4(γ). These last facts imply in particular,
that s2(γ) 6= s3(γ) and s1(γ) 6= s4(γ) can not occur for any 0 ≤ γ < π/2.
Non-degeneracy follows.

Next, we will show that s2(γ1) 6= s2(γ2) and s3(γ1) 6= s3(γ2) for all 0 < γ1 <
γ2 < π/2. Let us suppose e.g. that x2(γ1) = x2(γ2) for some γ1, γ2. Recall that
0 < x2(γ1) <

√
p−10/p10 for s(γ1) ∈ (s3, s4). Then by (3.5)

−2p01y2(γ1) = p10(1 − tg γ1)x2(γ1) +
p−10

x2(γ1)
(1 + tg γ1) − 1
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= p10(1 − tg γ1)x2(γ2) +
p−10

x2(γ2)
(1 + tg γ1) − 1

< p10(1 − tg γ1)x2(γ1) +
p−10

x2(γ1)
(1 + tg γ1) − 1

= −2p01y2(γ2).

Let γ = π/2. The function χγ(s) = |y(s)| has four critical points si(π/2),
s2(π/2) = s4, s3(π/2) = s2; yi(π/2) = yi, i = 1, 2, 3, 4.

It remains to prove, that limγ→π/2 si(γ) = si(π/2). To this end introduce
the function χ′

γ(s) = |xctg γ(s)y(s)|, where 0 < γ ≤ π/2. It has the critical
points s′i(γ), i = 1, 2, 3, 4. One can study these similarly si(γ) for χγ(s) and
deduce that limγ→π/2 s′i(γ) = s′i(π/2), since limγ→0 si(γ) = si(0). Moreover,
si(γ) = s′i(γ) for γ < 0 ≤ π/2 by the definition of the critical points. Then

lim
γ→π/2

si(γ) = lim
γ→π/2

s′i(γ) = s′i(π/2) = si(π/2).

The case γ ∈ (π/2, π] is quite similar. 2

Remark 3.1. The function χ′
γ(s) = |xctg γ(s)y(s)|, 0 ≤ γ < π (for γ = 0, put

χ′
0(s) = |x(s)|), has the critical points s′i(γ), i = 1, 2, 3, 4, with the same prop-

erties as si(γ) for χγ(s). Moreover, s′i(γ) = si(γ) for all 0 ≤ γ < π.

Remark 3.2. By the maximum modulus principle all these critical points have
index 1 in the sense of Morse theory [11]. Then the level curves {s : χγ(s) =
χγ(si)} are orthogonal in these points and they subdivide their sufficiently small
neighbourhoods into four sections.

Next, we have to analyse the level curves {s : χγ(s) = c} of the func-
tion χγ(s). When γ = 0, we have χ0(s) = |x(s)|, and the way they look like, is
easily seen from the construction of the Riemann surface. The following lemma
shows that for γ > 0 there are no bifurcations. This property is usually called
structural stability of level curves.

Lemma 3.3. For any γ1, γ2, 0 ≤ γ1, γ2 < π, γ1, γ2 6= π/4, 3π/4 there exist
homeomorphisms fγ1γ2

: S → S and gγ1,γ2
: [0,∞] → [0,∞), such that the

diagram

S
χγ1−→ [0,∞]

fγ1,γ2
↓ ↓ gγ1,γ2

S
χγ2−→ [0,∞]

is commutative.

Proof. The proof is similar to the proof of Theorem 1 from [1] if we take into
account Lemma 2.4. The difference is the following. Instead of the function
χγ(s), it is convenient to consider the function χ̃γ(s) = 2π−1 Arctg χγ(s) : S →
[0, 1]. It is not differentiable in the points χ̃−1({0, 1}), but this can be corrected
by smoothing. We get new critical points that are conserved w.r.t. perturbation.
This establishes the proof. 2
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Corollary 3.1. For any γ, 0 ≤ γ < π, the set Dχ = {s : χγ(s) < χ} is
homeomorphic to h−1

x (D) = {s : |x(s)| < 1}, where χ = χγ(s3(γ)) − ε for all
sufficiently small ε > 0. The set Dχ is homeomorphic to h−1

x (D) after identifying
the points (1, 1) and (1, p0−1/p01). Moreover, under this isomorphism these
identified points are mapped to the point s3(γ).

We will also use the construction of the Galois automorphisms on S:

ξ : S → S, η : S → S.

It is given in detail in [9]. We will only mention that

s′ = ξs if x(s′) = x(s);
s′′ = ηs if y(s′′) = y(s).

(3.6)

This implies the assertions:

x(ξs) = x(s), y(ξs) =
p0−1

p01x(s)
;

y(ηs) = y(s), x(ηs) =
p−10

p10y(s)
.

Obviously, the points s1, s3 [resp. s2, s4] are the fixed points of ξ [resp. η] and

ξs2 = s4, ηs1 = s3;

ξ2 = Id , η2 = Id .

Finally, let us give some ubiquitous notations and definitions. We denote
by P i0j0

ij (t) the probability of being at point (i, j) at time t, when the initial
state is (i0, j0). Introduce the generating functions

πi0j0
ij (z) =

∞∑

t=0

P i0j0
ij (t)zt.

Note that πi0j0
ij (1) is finite, since it is the mean number of visits to state (i, j)

starting at (i0, j0). So πi0j0
ij (z) < ∞, for |z| ≤ 1. In the notation of Section 2,

πi0j0
ij (1) = πi0j0

ij .
The following functions on the Riemann surface are defined as

f i0j0
∗ (s) := f i0j0

∗ (x(s), y(s)),

q(s) := q(x(s), y(s)),

q̃(s) := q̃(x(s), y(s)),

q0(s) := q0(x(s), y(s)), s ∈ S.
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3.2. Random walk in Z2: proofs

We restrict ourselves to the case Ex > 0, Ey > 0. The proof is similar for
the other cases.

Lemma 3.4. If |x| = 1, |y| = 1, |z| < 1, the following equation holds

Q(x, y, z)
∑

(i,j)∈S

πi0j0
ij (z)xi−1yj−1 = xi0yj0 + f i0j0

∗ (x, y, z), (3.7)

where

Q(x, y, z) = xy
(
1 − z

∑

i,j

pijx
iyj

)
,

f i0j0
∗ (x, y, z) =

n∑

m=1

qm(x, y, z)
∑

(i,j)∈Sm

πi0j0
ij (z)xiyj ,

qm(x, y, z) = z
∑

i,j

(m)pijx
iyj − 1, m = 1, . . . , n.

Proof. We have

P i0j0
ij (t + 1) =

∑

(k,l)∈S

pi−k,j−lP
i0j0
kl (t)

+
n∑

m=1

∑

(k,l)∈Sm

(m)pi−k,j−lP
i0j0
kl (t). (3.8)

This yields

πi0j0
ij (z) − πi0j0

ij (0) (3.9)

= z
( ∑

(k,l)∈S

pi−k,j−lπ
i0j0
kl (z) +

n∑

m=1

∑

(k,l)∈Sm

(m)pi−k,j−lπ
i0j0
kl (z)

)
.

If z = 0, then πi0j0
i0j0

(0) = 1 and πi0j0
ij (0) = 0 for (i, j) 6= (i0, j0). Let |z| < 1.

Multiplying equation (3.9) by xiyj , where |x|, |y| = 1, taking the summation
over i, j, and changing the order of summation, we get

∑

(i,j)∈S

πi0j0
ij (z)xiyj +

n∑

m=1

∑

(i,j)∈Sm

πi0j0
ij (z)xiyj − xi0yj0 (3.10)

= zp(x, y)
∑

(i,j)∈S

πi0j0
ij (z)xiyj + z

n∑

m=1

pm(x, y)
∑

(i,j)∈Sm

πi0j0
ij (z)xiyj ,

where

p(x, y) =
∑

i,j

pijx
iyj ,

pm(x, y) =
∑

i,j

(m)pijx
iyj , m = 1, . . . , n.
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The sum over {(i, j) ∈ S} in the left-hand side of (3.10) is finite:

∑

(i,j)

πi0j0
ij (z)|x|i|y|j =

∞∑

t=0

∑

(i,j)

P i0j0
ij (t)|z|t =

∞∑

t=0

|z|t < ∞.

Thus equation (3.7) holds. 2

Recall that we are interested in the asymptotics of πi0j0
ij = πi0,j0

ij (1). For
z = 1 in accordance with notation (2.1), (2.4), (2.5) we have

Q(x, y, 1) = Q(x, y),

qm(x, y, 1) = qm(x, y), m = 1, . . . , n,

f i0j0
∗ (x, y, 1) = f i0j0

∗ (x, y).

Introduce also the functions a(x, z), b(x, z), c(x, z), ã(x, z), b̃(x, z), c̃(x, z)
by

Q(x, y, z) = a(x, z)y2 + b(x, z)y + c(x, z) = ã(y, z)x2 + b̃(y, z)x + c̃(x, z).

In accordance with (3.3) for z = 1, we have

a(x, 1) = a(x), b(x, 1) = b(x), c(x, 1) = c(x),

ã(x, 1) = ã(x), b̃(x, 1) = b̃(x), c̃(x, 1) = c̃(x).

Lemma 3.5. For all sufficiently large j > 0 and all i ∈ Z

πi0j0
ij =

1

2πi

∫

Γ1

xi0(s)yj0 (s) + f i0j0
∗ (s)

xi(s)yj(s)
dω; (3.11)

for all sufficiently large j < 0 and all i ∈ Z

πi0j0
ij =

1

2πi

∫

Γ0

xi0(s)yj0 (s) + f i0j0
∗ (s)

xi(s)yj(s)
dω; (3.12)

for all sufficiently large i > 0 and all j ∈ Z

πi0j0
ij =

1

2πi

∫

Γ̃1

xi0(s)yj0 (s) + f i0j0
∗ (s)

xi(s)yj(s)
dω; (3.13)

for all sufficiently large i < 0 and all j ∈ Z

πi0j0
ij =

1

2πi

∫

Γ̃0

xi0(s)yj0 (s) + f i0j0
∗ (s)

xi(s)yj(s)
dω; (3.14)

where the differential form dω and the curves Γ0, Γ1, Γ̃0, Γ̃1 are defined by (3.1)
and (3.2).
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Proof. For any z = 1 − ε (ε > 0) fixed, equation (3.7) implies

πi0j0
ij (1 − ε) =

1

(2πi)2

∫

|x|=1

∫

|y|=1

xi0yj0 + f i0j0
∗ (x, y, 1 − ε)

xiyjQ(x, y, 1 − ε)
dy dx. (3.15)

We will show (3.11) and (3.12).
Let us fix x with |x| = 1. The inner integral in (3.15)

1

2πi

∫

|y|=1

xi0yj0 + f i0j0
∗ (x, y, 1 − ε)

xiyjQ(x, y, 1 − ε)
dy (3.16)

equals the sum of the residues at the poles of the integrand inside or outside
the circle |y| = 1 with “+” or “−” signs respectively. Whenever |x| = 1, the
function Q(x, y, 1−ε) of y has two zeros Y0(x, 1−ε), Y1(x, 1−ε), which are such,
that |Y0(x, 1−ε)| < 1, |Y1(x, 1+ε)| > 1. (If x 6= 1 this is ensured by Lemma 3.1,
if x = 1 this is easily shown explicitly.) Then the poles of the integrand

xi0yj0 + f i0j0
∗ (x, y, 1 − ε)

xiyjQ(x, y, 1 − ε)

can occur only at the points y = Y0(x, 1 − ε), Y1(x, 1 − ε), 0,∞. The residue at
y = 0 is zero for all sufficiently large j < 0, since S1, . . . , Sn are finite. It can
be non-zero for all j > 0. The residue at y = ∞ is zero for all sufficiently large
j > 0 and can be non-zero for j < 0. Thus the integral (3.16) equals the residue
of the integrand at Y1(x, 1−ε) with “−” sign for j > 0 and it equals the residue
at Y0(x, 1 − ε) for j < 0. Hence, for sufficiently large j > 0

πi0j0
ij (z) = − 1

2πi

∫

|x|=1

xi0Y j0
1 (x, z) + f i0j0

∗ (x, Y1(x, z), z)

xiY j
1 (x, z)

(
2a(x, z)Y1(x, z) + b(x, z)

) dx

and for sufficiently large j < 0

πi0j0
ij (z) =

1

2πi

∫

|x|=1

xi0Y j0
0 (x, z) + f i0j0

∗ (x, Y0(x, z), z)

xiY j
0 (x, z)

(
2a(x, z)Y0(x, z) + b(x, z)

) dx,

where z = 1 − ε. Finally, let z → 1 and recall the definitions of the curves Γ0,
Γ1 (3.1), and of the form dω (3.2). The representations (3.13) and (3.14) are
obtained similarly by exchanging the roles of x and y. 2

Lemma 3.6. Let i = r cos(γ(r)), j = r sin(γ(r)), and let (γ(r)) → γ as r → ∞,
where 0 ≤ γ < 2π. If

xi0(γ)yj0(γ) + f i0j0
∗ (x(γ), y(γ)) 6= 0, (3.17)



Martin boundary and elliptic curves 235

then

πi0j0
ij ∼ C(γ, i0, j0)√

j xi(γ(r))yj (γ(r))
, for γ 6= 0, π; (3.18)

πi0j0
ij ∼ C̃(γ, i0, j0)√

i xi(γ(r))yj(γ(r))
, for γ 6= π/2, 3π/2. (3.19)

Here

C(γ, i0, j0) =
[
xi0(γ)yj0(γ) + f i0j0

∗ (x(γ), y(γ))
]

×
∣∣xctg γ(γ)y(γ)

∣∣1/2 [
2a(x(γ))y(γ) + b(x(γ))

]−1
∣∣∣
d2 xctg γ(γ)Y (x(γ))

dx2

∣∣∣
−1/2

;

C̃(γ, i0, j0) =
[
xi0(γ)yj0(γ) + f i0j0

∗ (x(γ), y(γ))
]

×
∣∣x(γ)y(γ)tg γ

∣∣1/2 [
2ã(y(γ))x(γ) + b̃(y(γ))

]−1
∣∣∣
d2 X(y(γ))ytg γ(γ)

dy2

∣∣∣
−1/2

and

√
ctg γ C(γ, i0, j0) = C̃(γ, i0, j0) for γ 6= 0, π/2, π, 3π/2. (3.20)

Proof. By virtue of Lemma 3.5 the mean number of visits to state (i, j) can be

written as an integral along one of the curves Γ1, Γ0, Γ̃1, Γ̃0. These integrals
are typical for applying the saddle-point method, see [4].

Let us first look for the asymptotics of the integral

1

2πi

∫

Γ1

xi0 (s)yj0(s) + f i0j0
∗ (x(s), y(s))

(
xctg γ(s)y(s)

)j
dω, (3.21)

as j → ∞, where γ ∈ (0, π). The point s(γ) is a saddle-point. Our goal is to
shift the integral contour to this point, avoiding singularities of the integrand
and then use the saddle-point method.

If γ < γE, then s(γ) ∈ (s1, sE); if γ > γE, then s(γ) ∈ (sE, s3), where

sE = Γ1∩ Γ̃1. (Clearly, when γ = γE, there is no need to shift the contour.) The
level curves {s : χ′

γ(s) = χ′
γ(s(γ))} of the function χ′

γ(s) = |xctg γ(s)y(s)| at s(γ)
are orthogonal and subdivide the neighbourhood of s(γ) into four sectors. By
structural stability (Theorem 3.3) they are homological to Γ1 and intersect only
at s(γ), since this occurs for γ = 0.

In a sufficiently small neighbourhood U of s(γ), the curves of steepest descent
{s : Im ln xctg γ(s)y(s) = Im ln x(γ)ctg γy(γ) = 0} are orthogonal, see Lemma 1.3
Chapter IV in [4]. One of these is contained in F0. Let the other be denoted by
Γu. Introduce the closed curve Γγ in D+

γ = {s : χγ(s) > χγ(s(γ))} homological
to Γ1 and such that Γγ ∩U = Γu. Let Eγ be a domain on S bounded by Γ1, Γγ

and containing the interval (s(γ), sE) if γ < γE, and the interval (sE, s(γ)) if
γ > γE. The curve Γγ can be chosen in such a way, that there are no poles of
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the integrand in Eγ , i.e. no points s, where x(s) or y(s) are zero or infinite. Due
to Cauchy’s theorem we may shift the integral contour to Γγ :

1

2πi

∫

Γ1

xi0(s)yj0(s) + f i0j0
∗ (x(s), y(s))

(
xctg γ(s)y(s)

)j
dω

=
1

2πi

∫

Γγ

xi0 (s)yj0(s) + f i0j0
∗ (x(s), y(s))

(
xctg γ(s)y(s)

)j dω

=
1

2πi

∫

hx(Γγ)

xi0 (s)Y j0(x) + f i0j0
∗ (x(s), Y (x))

(
xctg γY (x)

)j(
2a(x)Y (x) + b(x)

) dx. (3.22)

By virtue of Theorem 1.7 in [4, Chapter IV], there exists a neighbourhood
of γ, such that the asymptotics of the integral (3.22) is

1
(
xctg γ(γ)y(γ)

)j

( n∑

k=0

ck(γ)j−k−1/2 + o(j−k−1/2)
)
, (3.23)

as j → ∞ uniformly in this neighbourhood. Moreover, c0(γ) = C(γ, i0, j0).
Hence

1

2πi

∫

Γ1

xi0(s)yj0 (s) + f i0j0
∗ (x(s), y(s))

(
xctg γ(s)y(s)

)j dω ∼ C(γ, i0, j0)√
j
(
xctg γ(γ)y(γ)

)j

as j → ∞ uniformly in the neighbourhood of γ. Then Lemma 3.5 together with
the continuity of C(γ, i0, j0) on γ entails (3.18). To get (3.18) for π < γ < 2π,
and (3.19) for −π/2 < γ < π/2 and π/2 < γ < 3π/2, we use (3.12), (3.13) and
(3.14) respectively.

Note also that
√

ctg γ C(γ, i0, j0)

=
√

ctg γ
[
xi0 (γ)yj0(γ) + f i0j0

∗ (x(γ), y(γ))
]∣∣x(γ)ctg γy(γ)

∣∣1/2

×
[
2ã(y(γ))X(y(γ)) + b̃(y(γ))

]−1
∣∣∣
d2 xctg γ(γ)Y (x(γ))

dy2

∣∣∣
−1/2

= C̃(γ, i0, j0).

2

Proposition 3.1. For all (i0, j0) and all γ ∈ [0, 2π)

xi0(γ)yj0(γ) + f i0j0
∗ (x(γ), y(γ)) 6= 0. (3.24)

Proof. For all γ ∈ [0, 2π) there exists at least one pair (i′0, j
′
0) satisfying (3.24).

In fact, the function f i0,j0
∗ (x(γ), y(γ)) is bounded on Z2 × [0, 2π], since

πi0j0
ij ≤ πi0j0

i0j0
≤ sup

(i0,j0)∈S1∪···∪Sn

πi0j0
i0j0

,
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while xi0 (γ)yj0(γ) can be made infinitely large by the choice of (i0, j0), provided
that (x(γ), y(γ)) 6= (1, 1). (If x(γ) = 1, y(γ) = 1 the left-hand side of (3.24) is
always 1.)

Suppose that for some (i′′0 , j′′0 ) inequality (3.24) does not hold. Denote the
mean number of visits to (i, j) by π′

ij and π′′
ij , whenever the initial state of the

chain is (i′0, j
′
0) and (i′′0 , j′′0 ) respectively.

Let ε1 and ε2 be the probabilities of reaching (i′′0 , j′′0 ) and (i′0, j
′
0) starting

from (i′0, j
′
0) and (i′′0 , j′′0 ) along some fixed path in Z2. Then for all sufficiently

large i, j

ε1 <
π′

ij

π
′′

ij

< ε2. (3.25)

If i = r cos(γ(r)), j = r sin(γ(r)) and γ(r) → γ, then by (3.23)

xi(γ(r))yj(γ(r))π′
ij ∼ C(γ, i0, j0)j

−1/2,

xi(γ(r))yj(γ(r))π′′
ij = o(j−1/2).

Thus

lim
r→∞

π
′′

ij

π′
ij

= 0,

which contradicts (3.25). 2

Proof of Theorem 2.1. It follows immediately from Proposition 3.1, Lemma 3.6
and the definition of the Martin kernel that

lim
r→∞

kij(i0, j0) = lim
r→∞

πi0j0
ij

π00

ij

=
C(γ, i0, j0)

C(γ, 0, 0)

=
xi0 (γ)yj0(γ) + f i0j0

∗ (x(γ), y(γ))

1 + f 00
∗ (x(γ), y(γ))

. (3.26)

By taking different γ ∈ [0, 2π) in the right-hand side of (3.26), we get dif-
ferent non-negative harmonic functions of (i0, j0). All of them are minimal. In
fact, if this were not true, then one of these could be represented as an integral
of the others by some finite measure. But this is not possible because of their
asymptotics, whenever i0, j0 → ∞. The proof of the theorem is concluded. 2

3.3. Random walk in Z+ × Z, Ex > 0, Ey > 0: proofs

Proof of Lemma 2.5. The following statement is equivalent to our lemma: the
function q(s) has a zero on the interval ((1, p0−1/p01) , s1) ⊂ F0 if and only if
q(s1) > 0. The function q(s) has a zero on the interval (s3 , (1, p0−1/p01)) ⊂ F0

if and only if q(s3) > 0. If q(s1) > 0 [resp. q(s3) > 0] this zero is unique.
Moreover, we will show that on the corresponding interval the function q(s) can
not have zeros of multiplicity more than 1 for any parameters {p′

ij}.
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Let us consider the system of equations:




q(x(s), y(s)) = 0

qx(s) =
dY

dx
(x(s))(p′11x

2(s) + p′01x(s) + p′−11)

+ (p′01 + 2p′11x(s))y(s) + 2p′10x(s) − 1 = 0.

(3.27)

For given {p′ij} it determines the points, where q(s) has zeros of multiplicity
more than 1. Let us add to this system the equation

∑

i,j

p′ij = 1. (3.28)

For any s ∈ ((1, p0−1/p01) , s1) [resp. s ∈ (s3 , (1, p0−1/p01))], one can interpret
(3.27)–(3.28) as a system of three linear equations with unknowns p′

ij . Suppose
that for some s belonging to the corresponding interval it has a solution p′

ij ≥ 0.

Let us move the point in question to s1 [resp. to s3]. Then
dY

dx
(s) → ∞, since

x(s1) = x3 [resp. x(s3) = x2] is a branch point for Y (x). Hence, in view of
the inequalities 0 < x2 ≤ x(s) ≤ x3, 0 < y2 ≤ y(s) ≤ y3, it follows from the
second equation in (3.27) that there exists a “last” point s0 where the system
(3.27)–(3.28) has a solution p′ij ≥ 0. By dimensional considerations only two
parameters of this solution may be different from zero. Indeed, suppose that at
this point e.g. p′−11(s0) > 0, p′01(s0) > 0, p′11(s0) > 0, p′−10(s0) ≥ 0, p′10(s0) ≥ 0.
One can put p′−10 = p′−10(s0), p′10 = p′10(s0) in any point of the interval and get
a system of three equations with three unknown variables p′

−11, p′01, p′11, which
has a strongly positive solution in s0. Since its coefficients depend continuously
on s, so does the solution. Thus for sufficiently small ε > 0 there exists a
solution p′−11(s0 + ε) > 0, p′01(s0 + ε) > 0, p′11(s0 + ε) > 0. This contradicts the
fact that s0 is the “last” point.

Thus, the problem is reduced to the case, when at most two probabilities
are different from zero. Its verification is purely computational and so we omit
it.

Note that q(1, p0−1/p01) < 0, as Ey > 0. So the number of zeros of the
function q(s) for all parameters in the set {p′

ij ≥ 0 :
∑

i,j p′ij = 1, q(s1) > 0}
[resp. {p′ij ≥ 0 :

∑
i,j p′′ij = 1, q(s3) > 0}] should be the same. Otherwise q(s)

would have had a zero of higher order than the zeros for some p′
ij . This is

impossible because of the statement just proved. Similarly, the number of zeros
in {p′ij ≥ 0 :

∑
i,j p′ij = 1, q(s1) < 0} [resp. {p′ij ≥ 0 :

∑
i,j p′′ij = 1, q(s3) > 0}]

is constant. Therefore, checking some special case (e.g. p′
11 = p′01 = p′−11 = 0),

one proves the lemma. 2

Proposition 3.2. There exist constants C > 0 and h = h(i0, j0) > 0, such
that

∞∑

j=0

πi0,j0
ij ≤ C for all i ≥ 0; (3.29)
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∞∑

j=0

πi0j0
ij ≤ exp(hi) for all i < 0. (3.30)

Proof. The first inequality is a simple corollary of state homogeneity.
Let us turn to the second. Let (Xn, Yn) be the position of the chain at

time n, X0 = i0, Y0 = j0. It suffices to show that for some h = h(i0, j0) > 0

P

{ ∞⋃

n=0

(Xn = i)
}
≤ exp(hi), for all i < 0. (3.31)

Since Ex, Ey > 0, one can find k0 > 0 such that E(Xn+k0
| Yn = 0) ≥ ε > 0.

Let us construct the sequence of stopping times N0 := 0,

Nk =

{
Nk−1 + 1, if YNk−1

6= 0;
Nk−1 + k0, if YNk−1

= 0.

The sequence XNk
satisfies the conditions of Theorem 2.1.8 in [3] with reverse

inequality. Then for some δ1, δ2 > 0

P{Xn = i} ≤ P{Xn < δ1n} ≤ exp(−δ2n), (3.32)

which entails

P

{ ∞⋃

n=0

(Xn = i)
}

= P

{ ∞⋃

n=−i+i0

(Xn = i)
}

≤
∞∑

n=−i+i0

P{Xn = i} ≤ exp(hi).

2

Lemma 3.7. If exp(−h) < |x| < 1, |y| < 1, |z| ≤ 1, the following equation
holds:

Q(x, y, z)

∞∑

i=−∞

j=1

πi0j0
ij (z)xi−1yj−1 = q(x, y, z)πi0j0(x, z) + xi0yj0 , (3.33)

where

Q(x, y, z) = xy
(
1 − z(p10x + p01y + p−10x

−1 + p0−1y
−1)

)
,

q(x, y, z) = x
(
z

∑

i,j

p′ijx
iyj − 1

)
,

πi0j0(x, z) =

∞∑

i=−∞

πi0j0
i0 (z)xi−1.
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Proof. We have

P i0j0
ij (t + 1) =

∞∑

k=−∞

∞∑

l=1

pi−k,j−lP
i0j0
kl (t) +

∞∑

k=−∞

p′i−k,jP
i0j0
k0 (t). (3.34)

Equation (3.34) together with the definition of πi0j0
ij (z) yields

πi0j0
ij (z) − πi0j0

ij (0) = z
( ∞∑

k=−∞

∞∑

l=1

pi−k,j−lπ
i0j0
kl (z) +

∞∑

k=−∞

p′i−k,jπ
i0j0
kl (z)

)

for j ≥ 1 and

πi0j0
i0 (z) − πi0j0

i0 (0) = z
( ∞∑

k=−∞

∞∑

l=1

pi−k,−lπ
i0j0
kl (z) +

∞∑

k=−∞

p′i−k,0π
i0j0
kl (z)

)
,

where |z| ≤ 1. Let us multiply these equations by xiyj , where |y| < 1,
exp(−h) < |x| < 1. Taking the summation over i, j and changing the order
of the summation, we get:

∞∑

i=−∞

∞∑

j=1

πi0j0
ij (z)xiyj +

∞∑

i=−∞

πi0j0
i0 (z)xi − xi0yj0

= z
∑

i,j

pijx
iyj

∞∑

i=−∞

∞∑

j=1

πi0j0
ij (z)xiyj + z

∑

i,j

p′ijx
iyj

∞∑

i=−∞

πi0j0
i0 (z)xi.

The sums in the last equation are finite. In fact, due to Proposition 3.2

∞∑

i=0

∞∑

j=1

πi0j0
ij (1)|y|j |x|i ≤

∞∑

i=0

C|x|i < ∞;

0∑

i=−∞

∞∑

j=1

πi0j0
ij (1)|y|j |x|i ≤

0∑

i=−∞

exp(hi)|x|i < ∞.

Thus we obtain (3.33). 2

Corollary 3.2. For |x| < 1, |y| < 1 the following equation holds:

Q(x, y)
∞∑

i=−∞

j=1

πi0j0
ij xi−1yj−1 = q(x, y)πi0 ,j0(x) + xi0yj0 , (3.35)

where

πi0j0(x) =

∞∑

i=−∞

πi0j0
i0 xi−1.
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Proof. This is equation (3.33) with z = 1. In accordance with notation (2.1),
(2.15)

Q(x, y, 1) = Q(x, y), q(x, y, 1) = q(x, y).

2

Let us project (3.35) on the Riemann surface S. Since Q(x(s), y(s)) = 0, we
have

q(x(s), y(s))π(x(s)) + xi0(s)yj0 (s) = 0 (3.36)

in the domain ∆ = {s : e−h < |x(s)| < 1, |y(s)| < 1}.
We put

πi0j0(s) := πi0j0(x(s))

in the points s ∈ S, where exp(−h) < |x(s)| < 1. Our next step is to extend the
definition of the function πi0j0(s) to the whole S.

Definition of πi0j0(s) on S.

The Riemann surface is divided by the curves {s : x1 ≤ x(s) ≤ x2} and
{s : x3 ≤ x(s) ≤ x4} into two domains D1 and D2, such that ∆ ⊂ D1. (In
particular the interval (s3, s1) ⊂ F0 belongs to D1 and (s1, s3) ⊂ F0 to D2.)
For all s ∈ D1 there exists a unique s′ ∈ D2, such that x(s′) = x(s) and if that,
then y(s′) = p0−1/(p01y(s)). This amounts to saying that D1 = ξD2, where ξ
is the Galois automorphism (3.6). Let us put

πi0j0(s) := − xi0 (s)yj0(s)

q(x(s), y(s))
for s ∈ D1,

π(s) := π(ξs) for s ∈ D2. (3.37)

This means that

πi0j0(s) = −xi0(s)
(
p0−1/(p01y(s))

)j0

q
(
x(s), p0−1/(p01y(s))

) for s ∈ D2. (3.38)

The function πi0j0(s) is meromorphic in D1 and D2. Equation (3.36) holds
in D1 but in general not in D2.

Meromorphic continuation of πi0j0(x) on C.

The function πi0j0(x) =
∑∞

i=−∞ πi0j0
i0 (x) is holomorphic in {x : exp(−h) <

|x| < 1}. Setting
πi0j0(x) := πi0j0(s),

where s ∈ S is such that x(s) = x, provides its meromorphic continuation on
the whole complex plane cut along the segments [x1, x2], [x3, x4].

Remark 3.3. The function πi0j0(s) has no pole at sE, since

πi0j0(sE) = − (p0−1/p01)
j0

q(1, p0−1/p01)
< ∞.
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Consequently, the function πi0j0(x) is holomorphic in the domain exp(−h) <
|x| < 1 + ε for sufficiently small ε > 0. In other words,

∑∞
i=−∞ πi0j0

i0 < ∞.
(This last fact can be also deduced by purely probabilistic techniques, namely
martingales.)

Lemma 3.8. For all j > j0 and all i ∈ Z

πi0j0
ij =

1

2πi

∫

Γ1

q(s)πi0j0(s)

xi(s)yj(s)
dω +

1

2πi

∫

Γ1

xi0 (s)yj0(s)

xi(s)yj(s)
dω. (3.39)

If j ≤ j0, then (3.39) holds with the contour Γ̃1 in the second integral whenever

i > i0, and Γ̃0 whenever i < i0.

Proof. Let us find πi0j0
ij from equation (3.35) as the coefficients of a Laurent

series:

πi0j0
ij =

( 1

2πi

)2
∫

|x|=1−ε

∫

|y|=1−ε

q(x, y)πi0j0(x) + xi0yj0

xiyjQ(x, y)
dy dx. (3.40)

Given x with |x| = 1 − ε, the inner integral

1

2πi

∫

|y|=1−ε

q(x, y)πi0j0(x) + xi0yj0

xiyjQ(x, y)
dy (3.41)

equals the sum of the residues at the poles of the integrand

q(x, y)πi0j0(x) + xi0yj0

xiyjQ(x, y)
(3.42)

outside the circle |y| = 1 − ε with “−” sign. Whenever x is fixed, the function
Q(x, y) has two zeros Y0(x) and Y1(x), Y0(1− ε) < Y1(1− ε). Let us show that

|Y0(x)| < 1 − ε and |Y1(x)| > 1 − ε for all x : |x| = 1 − ε. (3.43)

For |x| = 1, x 6= 1, these inequalities are stated in Lemma 3.1. Thus, it suffices
to prove that on the complex plane the smooth closed curve {Y0(x) : |x| = 1−ε}
is inside hy(Γ0) = {Y0(x) : |x| = 1} and that {Y1(x) : |x| = 1 − ε} is outside
hy(Γ1). Indeed, these curves do not intersect. Otherwise for some pair x, x̃,
|x| = 1, |x̃| = 1 − ε, we would have Y (x) = Y (x̃), and so xx̃ = p−10/p10. This
is impossible for ε sufficiently small. It is also easily checked explicitly that
Y0(1−ε) < Y0(1) = p0−1/p01 and Y1(1−ε) > Y1(1) = 1. So, continuity of Y0(x)
and Y1(x) on x gives (3.43).

The poles of the function (3.42) as a function of y can only occur for x =
Y0(x), Y1(x), 0, ∞; |Y0(x)| < 1 − ε, |Y1(x)| > 1 − ε. If j > j0, the residue
at infinity is always zero. Then the integral (3.41) equals the residue of the
function (3.42) at Y1(x) with “−” sign. Therefore

πi0j0
ij = − 1

2πi

∫

|x|=1−ε

q(x, Y1(x))πi0j0(x) + xi0Y j0
1 (x)

xiY j
1 (x)[2a(x)Y1(x) + b(x)]

dx. (3.44)
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In view of Remark 3.3 the integrand in (3.44) is holomorphic in 1−ε < |x| < 1+ε
and thus we can shift the contour to |x| = 1. To complete the proof, we take
into account the definition of the form dω (3.2) and of the curve Γ1 (3.1).

When j ≤ j0, we split (3.40) into two terms and exchange the roles of x and
y in the second term. The proof of the lemma is terminated. 2

Lemma 3.9. Let i = r cos(γ(r)), j = r sin(γ(r)), γ(r) → γ as r → ∞, where
γ ∈ (0, π) and let

q(x(γ), y(γ))πi0j0(s(γ)) + xi0 (γ)yj0(γ) 6= 0.

• If 0 < γ ≤ γE, i.e. s(γ) ∈ (s1, sE], assume that the function πi0j0(s) has no
poles on the segment [s(γ), sE]. Then

πi0j0
ij ∼ C(γ, i0, j0)√

j xi(γ(r))yj (γ(r))
as r → ∞. (3.45)

Here,

C(γ, i0, j0) =
[
q(x(γ), y(γ))πi0j0(x(γ)) + xi0(γ)yj0(γ)

]
(3.46)

×
∣∣xctg γ(γ)y(γ)

∣∣1/2 [
2a(x(γ))y(γ) + b(x(γ))

]−1
∣∣∣
d2 xctg γ(γ)Y (x(γ))

dx2

∣∣∣
−1/2

.

• If π > γ ≥ γE, i.e. s(γ) ∈ [sE, s3), assume that the function πi0j0(s) has no
poles on the segment [sE, s(γ)]. Then the asymptotics of πi0j0

ij is given by (3.45)
with the constant (3.46).

Proof. We start by analysing of the asymptotics of the integral

1

2πi

∫

Γ1

q(x(s), y(s))πi0j0(s) + xi0 (s)yj0(s)
(
xctg γ(s)y(s)

)j
dω, (3.47)

as j → ∞ and then use the previous lemma.
To apply the saddle-point method, let us shift the contour Γ1 to the curve

Γγ as in the proof of Lemma 3.6. (In a sufficiently small neighbourhood of
the saddle-point this is the curve of steepest descent for ln(x(s)yctg γ(s)). It is
homological to Γ1 and belongs to D+

γ = {s : |xctg γ(s)y(s)| > x(γ)ctg γy(γ)}.)
Let Eγ be a domain on the Riemann surface bounded by Γ1, Γγ and containing
the interval (s(γ), sE) ⊂ F0 if s(γ) ∈ (s1, sE) and the interval (sE, s(γ)) if
s(γ) ∈ (sE, s3), as in Lemma 3.6. Denote by s1, s2, . . . , sn the poles of the
integrand in Eγ , if they exist. They can only occur at the poles of πi0j0(s).
Then, due to Cauchy’s theorem

1

2πi

∫

Γ1

q(x(s), y(s))πi0j0(s) + xi0(s)yj0(s)
(
xctg γ(s)y(s)

)j dω
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=
1

2πi

∫

Γγ

q(x(s), y(s))πi0j0(s) + xi0(s)yj0 (s)
(
xctg γ(s)y(s)

)j
dω (3.48)

+

n∑

k=1

q(x(sk), y(sk)) resx(sk) πi0j0(x)
(
x(sk)ctg γy(sk)

)j
[2(a(x(sk))y(sk) + b(x(sk))]

.

The saddle-point method allows to find the asymptotics of the integral along Γγ

in (3.48)

1
(
xctg γ(γ)y(γ)

)j

( n∑

k=0

ck(γ)j−k−1/2 + o(j−k−1/2)
)

(3.49)

as j → ∞, uniformly in a neighbourhood of γ (see Theorem 1.7 in [4, Chap-
ter IV]).

Let us turn now to the sum over the poles in (3.48). We call the level curve
{s : |xctg γ(s)y(s)| = c1} “higher” [resp. “lower”] than {s : |xctg γ(s)y(s)| = c2}
if c1 > c2 [resp. c1 < c2]. We will also call the point s “higher” [resp. “lower”]
than s̃ if |xctg γ(s)y(s)| > |xctg γ(s̃)y(s)| [resp. “<”]. Hence, by (3.49) all poles of
πi0j0(s) among s1, s2, . . . , sn “higher” than the saddle-point do not contribute
to the asymptotics of (3.48), as j → ∞. Let us prove the following proposition.

Proposition 3.3. Assume that there are poles of the function πi0j0(s) in Eγ

“lower” than the saddle-point or at the same level. Then the “lowest” of them
is on F0 and there are no other poles at the same level.

Proof. Let first s(γ) ∈ (s1, sE). We reduce the statement to the corresponding
one on the complex plane Cx. If exp(−h) < |x| < 1 + ε, then

hxπi0j0(s) =
0∑

i=−∞

πi0j0
i0 xi +

∞∑

i=0

πi0j0
i0 xi,

where the first sum is holomorphic in |x| > exp(−h) and the second one in
|x| < 1 + ε. The domain hxEγ being outside the circle |x| = 1, the poles of
hxπ(s) are at the poles of the second sum.

It follows from structural stability, that all level curves

Γ(s∗, γ) = {s : |xctg γ(s)y(s)| = xctg γ(s∗)y(s∗), s∗ ∈ F0},

“lower” than the saddle-point and passing through Eγ are homological to Γ1

and intersect with F0 at exactly one point. Moreover, if s(γ) ≤ s∗ < s∗∗ ≤ sE,
i.e. x(s∗) > x(s∗∗), then s∗ is “higher” than s∗∗. We will show that the images
hxΓ(γ, s∗) of the level curves in question lie inside the circle |x| = x(s∗), except
for the point x(s∗) itself. (In other words, for all s ∈ Γ(s∗, γ), s 6= s∗, |x(s)| <
x(s∗). If s∗ = s(γ), we prove this property only for the component of the level
curve which is in Eγ .) Then the result follows immediately from structural
stability and the Hadamard –Pringsheim theorem. This theorem states that
the first singularity of the function

∑∞
i=0 aix

i, ai ≥ 0, occurs at a real point
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r > 0 and it is a pole. (Hence, the minimal x∗ > 1 + ε on the real axis, where
there is a pole of

∑∞
i=0 πi0j0

ij xi is exactly the projection on Cx of the “lowest”

pole of πi0j0(s) in Eγ .)
Let us show that hx(Γ(γ, s∗)) and the circle |x| = x(s∗) intersect only at

x = x(s∗). Suppose that there exists another point s ∈ Γ(γ, s∗), not on
F0, such that |x(s)| = x(s∗). Then |y(s)| = y(s∗) and

∑
i,j pijx(s)iy(s)j =∑

i,j pijx(s∗)iy(s∗)j = 1. By simple considerations of sums of complex num-
bers, this can only occur if x(s) = x(s∗), y(s) = y(s∗).

The set hx(Γ(γ, s∗)) being a smooth closed curve, it suffices now to find one
point s ∈ Γ(γ, s∗), such that |x(s)| < x(s∗). Let us take the point s̃(γ), where
Γ(γ, s∗) intersects with F1. Then x̃(γ) := x(s̃(γ)) < 0, ỹ(γ) := y(s̃(γ)) > 0, and
−x̃(γ)ỹ(γ)tg γ = x(s∗)y(s∗)tg γ . Consequently,

dx̃

dγ
(0) = −x̃(0) ln ỹ(0) − x(s∗) ln y(s∗) > 0.

In fact, it is easy to see that ỹ(0) > 1 and x̃(0) < 0, y(s∗) > 1, x∗ > 0. Then
x̃(γ) is inside the circle for sufficiently small γ > 0. Since x̃(γ) depends on γ
continuously and never coincides with −x(s∗), we may extend the proposition
to all γ.

Let now assume s(γ) ∈ (sE , s3). The image hxEγ of the domain Eγ being
inside the circle |x| = 1 in this case, the poles of hxπi0j0(s) are the poles of∑0

i=−∞ πi0j0
ij x−is. By structural stability the point s∗ is “lower” than s∗∗ if

sE ≤ s∗ < s∗∗ ≤ s(γ), i.e. if x(s∗) < x(s∗∗). Proceeding along the same lines as
in the case above, one can deduce that the images of the level curves hxΓγ(γ, s∗),
when s∗ ∈ [sE, s(γ)], are outside the circles |x| = x(s∗). Then the result follows
again from structural stability and the Hadamard– Pringsheim theorem. 2

Let us continue the proof of Lemma 3.9. By assumption, there are no poles of
πi0j0(s) on the segment [s(γ), sE] [resp. [sE , s(γ)]]. Then due to this proposition
there are no poles in Eγ “lower” than the saddle-point or at its level. Then
the asymptotics of (3.48) is (3.49). Moreover c0(γ) = C(γ, i0, j0). Taking into
account Lemma 3.8 and the uniformity in (3.49) we obtain (3.45). The proof of
the lemma is concluded. 2

Remark 3.4. It is worthwhile to note that if γ = γE the asymptotics of πi0j0
ij is

Cj−1/2.

Proposition 3.4. Assume that the function πi0j0(s) has no poles on [s(γ), sE],
if 0 < γ < γE and that it has no poles on [sE, s(γ)], if γE < γ < π. Then for all
pairs (i0, j0)

q(x(γ), y(γ))πi0j0(s(γ)) + xi0 (γ)yj0(γ) 6= 0. (3.50)

Proof. For a given γ, let us construct a pair (i0, j0) such that (3.50) holds. The
point s(γ) belongs to the domain D2 for γ ∈ (0, π), which domain has been
introduced to continue πi0j0(s) to all of S. In view of the definition (3.38) of
πi0j0(s):
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πi0j0(s(γ)) = πi0j0(ξs(γ)) = −xi0(s(γ))yj0(ξs(γ))

q(ξs(γ)))

= −xi0(γ)
(
p0−1/(p01y(γ)

)j0

q
(
x(γ), p0−1/(p01y(γ)

) . (3.51)

Then

q(x(γ), y(γ))πi0j0(s(γ)) + xi0 (γ)yj0(γ)

= xi0 (γ)yj0(γ)
(
1 − q(s(γ))

q(ξs(γ))

( p0−1

p01y2(γ)

)j0)
.

For all γ ∈ (0, π), y(γ) <
√

p0−1/p01. Then for j0 sufficiently large we get (3.50).
To derive (3.50) for all pairs (i0, j0), the reasoning is completely the same as

in Proposition 3.1 and we skip it. 2

By virtue of Proposition 3.4 condition (3.50) has become superfluous for
the result of Lemma 3.9 to hold. This Lemma deals with the case γ ∈ (0, π).
However, if γ = 0 or π, inequality (3.50) does not hold for any pair (i0, j0). The
following proposition is devoted to these two particular cases.

Proposition 3.5. Let i = r cos(γ(r)), j = r sin(γ(r)), γ(r) → γ as r → ∞.
• Assume that γ = 0. If q(s1) 6= 0 and the function πi0j0(s) has no poles on

the interval (s1, sE), then

πi0j0
ij ∼ 1

xi(γ(r))yj(γ(r))

( C̃(γ(r), i0, j0)√
|i|

+
C2(γ(r), i0, j0)

|i|
√
|i|

)
, (3.52)

where

C̃(γ, i0, j0) =
[
xi0 (γ)yj0(γ) + q(x(γ), y(γ))πi0j0(x(γ))

]

×
∣∣x(γ)ytg γ(γ)

∣∣1/2 [
2ã(y(γ))x(γ) + b̃(y(γ))

]−1
∣∣∣
d2 X(y(γ))ytg γ(γ)

dy2

∣∣∣
−1/2

.

Moreover,

lim
r→∞

kij(i0, j0) = lim
γ→0

C(γ, i0, j0)

C(γ, 0, 0)
(3.53)

=
x

i0
3

(
√

p0−1/p01)j0

(
j0
√

p0−1/p01 q(x3,
√

p0−1/p01)−p′

11x2
3−p′

01x3−p′

0−1

)

p′

11
x2
3
+p′

01
x3+p′

0−1

,

where C(γ, i0, j0) is defined by Lemma 3.9.
• Assume that γ = π. If q(s3) 6= 0 and the function πi0j0(s) has no poles on

the interval (sE, s3), then the asymptotics of πi0j0
ij is given by (3.52) and (3.53)

holds, where x3 is replaced by x2.
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Proof. The crucial idea is again to shift the contour to Γγ in the integral (3.47)
and apply the saddle-point method. Let us outline some details.

First, the integral (3.47) should be split into two terms, where the contour in

the second term is Γ̃1 or Γ̃0 according to Lemma 3.8. After shifting the contour
in each term we sum the results and get one integral along Γγ . Second, the
saddle-points s(0) = s1, s(π) = s3 are branch points for x(s). Then we should
consider hy(Γγ) on the complex plane Cy. Third, the integrand equals zero at

the saddle-point, thus C̃(0, i0, j0) = 0, C̃(π, i0, j0) = 0 and we should take into
account the second term of the asymptotics as in (3.52). The other details are
similar to Lemma 3.9.

Finally, using the L’Hôpital’s rule we have

lim
γ→0

C̃(γ, i0, j0)

C̃(γ, 0, 0)
=

C2(0, i0, j0)

C2(0, 0, 0)
.

Then for γ = 0

lim
r→∞

kij(i0, j0) = lim
r→∞

C̃(γ(r), i0, j0)i + C2(γ(r), i0, j0)

C̃(γ(r), 0, 0)i + C2(γ(r), 0, 0)

= lim
γ→0

C̃(γ, i0, j0)

C̃(γ, 0, 0)
= lim

γ→0

C(γ, i0, j0)

C(γ, 0, 0)
.

The same is true for γ = π. 2

Let us now study the case, when πi0j0(s) has poles on (s1, s3).

Lemma 3.10. Let i = r cos(γ(r)), j = r sin(γ(r)) and γ(r) → γ as r → ∞;
where γ ∈ [0, π].

• If 0 ≤ γ < γE, i.e. s(γ) ∈ [s1, sE), and the function πi0j0(s) has exactly
one pole s′ on the interval (s(γ), sE) ⊂ F0, q(s′) 6= 0 and resx(s′) πi0j0(x) 6= 0,
then

πi0j0
ij ∼ q(x(s′), y(s′)) resx(s′) π(x)

xi(s′)yj(s′)[2a(x(s′))y(s′) + b(x(s′))]
. (3.54)

• If γE < γ ≤ π, i.e. s(γ) ∈ (sE, s3], and the function πi0j0(s) has exactly
one pole s′′ on the interval (sE, s(γ)) ⊂ F0, q(s′′) 6= 0, resx(s′′) πi0j0(x) 6= 0, then

πi0j0
ij ∼ q(x(s′′), y(s′′)) resx(s′′) π(x)

xi(s′′)yj(s′′)[2a(x(s′′))y(s′′) + b(x(s′′))]
. (3.55)

Proof. Proceeding exactly as in Lemma 3.9 we obtain (3.48). By structural
stability the pole s′ [resp. s′′] is “lower” than the saddle-point. Since there
are no other poles on [s(γ), sE ] [resp. [sE, s(γ)]], Proposition 3.3 ensures that
s′ [resp. s′′] is the “lowest” pole in Eγ . Then the asymptotics of (3.48) is
determined by this and uniform in a neighbourhood of γ. Using Lemma 3.8, we
have the result. 2
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Lemma 3.11. The function πi0j0(s) has a pole in s′ ∈ (s1, sE) if and only if
q(ξs′) = 0. This holds if and only if q(s1) > 0. This pole on the interval (s1, sE)
is unique.

The function πi0j0(s) has a pole in s′′ ∈ (sE, s3) if and only if q(ξs′) = 0.
This holds if and only if q(s3) > 0. This pole on the interval (sE, s3) is unique.

Moreover, q(s′) 6= 0, q(s′′) 6= 0, resx(s′) πi0j0(x) 6= 0, resx(s′′) πi0j0(x) 6= 0.

Proof. In accordance with the definition of the function πi0j0 (s) on these inter-
vals:

πi0j0(s) = π(ξs) = −xi0 (s)yj0(ξs)

q(ξs)

= −xi0 (s)
(
p0−1/(p01y(s))

)j0

q
(
x(s), p0−1/(p01y(s))

) .

Then s′ ∈ (s1, sE) [resp. s′′ ∈ (sE, s3)] is a pole of πi0j0(s) if and only if ξs ∈
((1, p0−1/p01) , s1) [resp. ξs′′ ∈ ((p−10/p01, 1) , s3)] is a zero of q(s). Therefore
the result is implied by Lemma 2.5. In addition, it is shown in the proof of
this lemma that the zeros are of the first order. Hence, resx(s′) πi0j0 (x) 6= 0 and
resx(s′′) πi0j0(x) 6= 0.

Moreover,

q(s) − q(ξs) = (y(s) − p0−1/(p01y(s))
∑

i

p′i1x
i.

Consequently, if q(ξs) = 0, s 6= s1, s3, p′−11 + p′01 + p′11 6= 0, then q(s) 6= 0. 2

Proposition 3.6. Let i = r cos(γ(r)), j = r sin(γ(r)), γ(r) → γ as r → ∞.
Assume that the function πi0j0(s) has a pole in s(γ) ∈ (s1, sE) and no poles

on (s(γ), sE). Then

lim
r→∞

kij(i0, j0) = x(γ)i0
(
p0−1/p01y(γ)

)j0
. (3.56)

The same is true if the function πi0j0(s) has a pole in s(γ) ∈ (sE, s3) and no
poles on (sE, s(γ)).

Proof. Note that q(x(γ), ξy(γ)) = 0 by the previous lemma. Let us shift the
contour in (3.47) to γ(r) as in Lemma 3.9. Consider the integrand in the neigh-
bourhood of s(γ) and its projection onto the complex plane Cx. It can be split
into two terms:

hx

(q(s)πi0j0(s) + xi0(s)yj0(s)

xi(s)yj(s)

)

=
[
− q(x, Y1(x))xi0Y j0

0 (x) + q(x, Y0(x))xi0Y j0
1 (x)

] 1

xiY j
1 (x)q(x, Y0(x))

=
[
− q(x(γ), y(γ))x(γ)i0 (ξy(γ))j0

] resx(γ) q−1(x, Y0(x))

xiY j
1 (x)(x − x(γ))

+
f(x, i0, j0)

xiY j
1 (x)

,
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where the branches Y0(x) and Y1(x) are such that Y1(x(γ)) = y(γ), Y0(x(γ)) =
ξy(γ) and the function f(x, i0, j0) has no pole at x(γ). Then the asymptotics
of the integral (3.47) is determined by the asymptotics of the integral over the
first term. The result comes from the definition of the Martin kernel. 2

Proof of Theorem 2.2. We rely on the definition of the Martin kernel and all
previous lemmas and propositions.

1. If q(s1) = q(x3,
√

p0−1/p01) < 0 and q(s3) = q(x2,
√

p0−1/p01) < 0,
then by Lemma 3.11 the function πi0j0(s) has no poles on the segment (s1, s3).
Hence, inequality (3.50) holds for all γ ∈ (0, π) and Lemma 3.9 applies. Thus,

lim
r→∞

kij(i0, j0) = lim
r→∞

πi0j0
ij

π00

ij

=
C(γ, i0, j0)

C(γ, 0, 0)

=
q(x(γ), y(γ))πi0j0(s(γ)) + xi0 (γ)yj0(γ)

q(x(γ), y(γ))π00(s(γ)) + 1
.

Next, recall the definition (3.38) of the function πi0j0(s) in s(γ) ∈ (s1, s3) ⊂ D2.
Then (2.21) is fulfilled. For γ = 0, π Proposition 3.5 is applicable.

2. If q(s1) = q(x3,
√

p0−1/p01) > 0 and q(s3) = q(x2,
√

p0−1/p01) < 0, then
by Lemma 3.11 there is exactly one pole s′ on (s1, sE), q(ξs′) = 0, and no poles
on (sE, s3). In accordance with notations of Subsection 2.3 we have x′ = x(ξs′),
y′ = y(ξs′) and the angle γ′ ∈ (0, γE) such that s(γ′) = s′, i.e. x(γ′) = x′,
y(γ′) = p0−1/p01y

′. For γ ∈ [0, γ′) Lemma 3.10 is applicable. Therefore, by the
definition of πi0j0(x) on the complex plane we have

lim
r→∞

kij(i0, j0) = lim
r→∞

πi0j0
ij

π00
ij

=
resx(s′ ) πi0j0(x)

resx(s′ ) π00(x)

=
(x′)i0(y′)j0 resx′ q−1(x, Y (x))

resx′ q−1(x, Y (x))
= (x′)i0(y′)j0 .

To find the asymptotics of the Martin kernel when γ = γ ′, γ ∈ (γ′, π) or γ = π,
we use Proposition 3.6, Lemma 3.9 and Proposition 3.5 respectively.

3. If q(s1) = q(x3,
√

p0−1/p01) < 0 and q(s3) = q(x2,
√

p0−1/p01) > 0, then
by Lemma 3.11 there is exactly one pole on s′′ on (sE, s3), q(ξs′′) = 0, and no
poles on (s1, sE). Define the angle γ′′ such that s(γ′′) = s′′, as in the above
case. For γ ∈ [0, γ′′) Lemma 3.10 and Proposition 3.5 apply and for γ ∈ [γ ′′; π]
Lemma 3.9 and Proposition 3.6.

4. If q(s1) = q(x3,
√

p0−1/p01) > 0 and q(s3) = q(x2,
√

p0−1/p01) > 0, then
by Lemma 3.11 there is exactly one pole s′ on (s1, sE) and exactly one pole s′′ on
(sE, s3). Define the angles γ′, γ′′ as in the previous cases. Then for γ ∈ (γ ′, γ′′)
Lemma 3.9 and for γ ∈ [0, γ ′), γ ∈ (γ′′, π] Lemma 3.10 apply. For γ = γ ′, γ′′ we
use Proposition 3.6.

To show that the Martin boundary is minimal, the arguments are the same
as in the case of the plane. (The necessary remarks on the asymptotics of the
harmonic functions obtained, have already been made in the proof of Proposi-
tion 3.4.) 2
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3.4. Random walk in Z+ × Z, Ex < 0, Ey < 0: proofs

Proof of Lemma 2.6. One can rephrase this lemma as follows: The function q(s)
has a zero on the interval (s3 , (1, 1)) if and only if q(s3) > 0. This zero is unique.
Moreover, this zero is of the first order.

First of all, we show that the zero of the function q(s) on the interval
(s3, (1, 1)), if it exists at all, should be of the first order for all parameters
{p′ij}. One can do this by proceeding along the same lines as in the proof of
Lemma 2.5.

Note that q(1, 1) = 0, q′x(1, 1) = E
−1
y (Ey E

′
x −E

′
y Ex) > 0. Then the number

of zeros of q(s) on the interval in question should be the same for all param-
eters from the set {p′ij :

∑
i,j p′ij = 1, q(s3) > 0} and for all parameters from

{p′ij :
∑

i,j p′ij = 1, q(s3) < 0}. (Otherwise, for some {p′ij} there is a zero of
multiplicity more than one.) Checking some simple case (e.g. when only two
parameters p′ij are non-zero), we have the lemma. 2

Proposition 3.2 remains valid in this case.

Proof of Proposition 3.2. We show again (3.32) to get (3.31). Let N0 := 0,
Nk = min{n > Nk−1 : Yn = 0}. The well-known estimates of sums of i.i.d.
random variables with exponentional tails yield that Nk < ∞ a.s. Moreover,

Nk+1 − Nk, k ≥ 1, are i.i.d. random variables with mean −E
′

y / Ey and

P{N2 − N1 > n} ≤ exp(−δ1n) for some δ1 > 0. (3.57)

Then by the general Kolmogorov inequality

P

{ k⋃

l=0

|Nl + l(E
′

y / Ey)| > kε
}
≤ exp(−δ2k) for some δ2 > 0. (3.58)

The sequence XNk
consists again of sums of i.i.d. random variables XNk

−XNk−1

with exponentional tails. Then

P
{
|XNk

− (E
′

x −Ex(E
′

y / Ey))| > kε
}
≤ exp(−δ3k) for some δ3 > 0. (3.59)

For a fixed n, let us define τn = max{Nk : Nk ≤ n}, i.e. τn = Nk if

Nk ≤ n < Nk+1. Let k0 = [n/(−E
′

y / Ey −ε) − 1]. Then for i < 0

P{Xn = i} ≤ P{τn = Nk for k < k0}

+
∞∑

k=k0

P{(τn = Nk) ∩ (XNk
> ck) ∩ (n − τn > ck)}

+

∞∑

k=k0

P{(τn = Nk) ∩ (XNk
< ck)}

≤ P{Nk+1 > n for some k < k0} (3.60)
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+

∞∑

k=k0

P{Nk+1 − Nk > ck} +

∞∑

k=k0

P{XNk
< ck},

where c = E
′

x −Ex E
′

y / Ey −ε > 0. We estimate the first term in (3.60) by (3.58)
the second one by (3.57) and the third one by (3.59). Whence (3.32) holds. 2

Lemma 3.7 is true as well. Its proof is completely the same as in the previous
subsection, provided by Proposition 3.2. Then equation (3.35) holds.

On the Riemann surface Q(x(s), y(s)) = 0. Thus

q(x(s), y(s))π(x(s)) + xi0(s)yj0 (s) = 0 (3.61)

in the domain ∆ = {s : e−h < |x(s)| < 1, |y(s)| < 1}. Let us put

πi0j0(s) := πi0j0(x(s))

at the points s ∈ S, where exp(−h) < |x(s)| < 1.

Definition of πi0j0(s) on S.

This procedure is the same as in the case Ex > 0, Ey > 0. Let us divide the
Riemann surface by the curves {s : x1 ≤ x(s) ≤ x2} and {s : x3 ≤ x(s) ≤ x4}
into two domains D1 and D2, such that ∆ ⊂ D1. We have again D1 = ξD2,
where ξ is the Galois automorphism (3.6). Let us put

πi0j0(s) := − xi0(s)yj0(s)

q(x(s), y(s))
for s ∈ D1,

π(s) := π(ξs) for s ∈ D2. (3.62)

This means that

πi0j0(s) = −xi0(s)
(
p0−1/(p01y(s))

)j0

q
(
x(s), p0−1/(p01y(s))

) for s ∈ D2. (3.63)

The function πi0j0(s) is meromorphic in D1 and D2. Equation (3.61) holds
in D1 but generally does not hold in D2.

Meromorphic continuation of πi0j0(x) on Cx.

The function πi0j0(x) is defined and holomorphic on the domain exp(−h) <
|x| < 1. Setting

πi0j0(x) := πi0j0(s), where s ∈ S is such that x(s) = x,

we meromorphically continue it on the whole complex plane cut along the seg-
ments [x1, x2], [x3, x4].

Remark 3.5. It is important to emphasize that the function πi0j0(s) has a pole
at the point s∗

E
= (1, p0−1/p01) = Γ1 ∩ F0. In fact, s∗

E
∈ D2, then πi0j0(s∗

E
) =

−q−1(1, 1) = ∞, since q(1, 1) = 0. Consequently, on the complex plane Cx the
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function πi0j0(x) has a pole in x = 1, i.e.
∑∞

i=−∞ πi0j0
i0 = ∞. This is a crucial

difference from the case Ex, Ey > 0.
One can get this last fact by purely probabilistic techniques. Moreover, there

exists a constant C such that πi0j0
i0 → C, as i → +∞.

Our next step is to represent πi0j0
ij as an integral on the Riemann surface

along a curve, which we denote by Γ1−ε. Let us define it.
The algebraic function Y (x) has two branches Y0(x) and Y1(x), Y0(1) <

Y1(1), on the circle |x| = 1 − ε, ε > 0. For all x, such that |x| = 1 − ε,
|Y1(x)| > 1 since this holds for |x| = 1. However, if Ex < 0, Ey < 0, (3.43) is not
true: |Y0(x)| may be both greater and less than 1 on |x| = 1 − ε. Nevertheless,
there exists δ > 0 such that |Y0(x)| ≤ 1 + δ, |Y1(x)| > 1 + δ if |x| = 1 − ε for
all sufficiently small ε. (This is a corollary of Lemma 3.1 and simple continuity
arguments.) Let us define

Γ1−ε = h−1
x {|x| = 1 − ε} ∩ {s : |y(s)| > 1 + δ}.

Lemma 3.12. For all j > j0 and all i ∈ Z

πi0j0
ij =

1

2πi

∫

Γ1−ε

q(s)πi0j0 (s)

xi0 (s)yj0(s)
dω +

1

2πi

∫

Γ1−ε

xi0 (s)yj0(s)

xi(s)yj(s)
dω. (3.64)

If j ≤ j0, (3.64) holds with G̃1 the contour in the second integral whenever

i > i0, and G̃0 whenever i < i0.

Proof. It is similar to the proof of Lemma 3.8. We will emphasize the details,
that are different.

Let j > j0. Equation (3.35) allows to represent πi0j0
ij as the double inte-

gral (3.40). Our goal is to find the inner integral (3.41) as a sum of the residues
of the integrand (3.42) at the poles outside the circle |y| = 1− ε with “−” sign.
The poles in question can occur at Y0(x), Y1(x). (The residue at infinity is
zero.) If x with |x| = 1−ε, is such that |Y0(x)| < 1−ε, we have only the residue
at Y1(x).

Let us fix now x with |x| = 1− ε, such that |Y0(x)| ≥ 1− ε. The numerator
of (3.42) in a neighbourhood of Y0(x) is a holomorphic function of y, more-
over q(x, Y0(x))πi0j0(x) + xi0Y j0

0 (x) = 0. In fact, the point s ∈ S, such that
x(s) = x, y(s) = Y0(x), belongs to the domain D1 on S, where (3.61) holds and
πi0j0(x(s)) = πi0j0(s). Then the residue at Y0(x) is always zero.

Therefore the inner integral (3.41) equals the residue at Y1(x) with “−” sign
for all x with |x| = 1− ε. Hence, we get (3.44) and recall the definitions of Γ1−ε

and dω. 2

Lemma 3.13. Let i = r cos(γ(r)), j = sin(γ(r)) and let γ(r) → γ, as r → ∞,
where γ ∈ [0, γ∗

E
). Then

πi0j0
ij ∼ q(1, p0−1/p01) resx=1 q−1(x, Y0(x))

p0−1 − p01

( p01

p0−1

)j

. (3.65)
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Proof. It is carried out analogously to the proof of Lemma 3.10. First, we state
that the integral

πi0j0
ij =

1

2πi

∫

Γ1−ε

q(s)πi0j0(s) + xi0 (s)yj0(s)
(
xctg γ(s)y(s)

)j
dω, (3.66)

equals the integral along the shifted contour Γγ summed over the residues of
the integrand at the poles in Eγ as in (3.48).

Let us choose ε > 0, such that there are no poles of πi0j0(x) in 1−ε < |x| < 1.
Next, Proposition 3.3 is proved in this case exactly as in Lemma 3.9. (The
domain hxEγ being outside |x| = 1− ε on Cx, the poles of hxπi0j0(s) are at the

poles of
∑∞

i=0 πi0j0
i0 xi. We show that the images of the level curves hxΓ(γ, s∗)

are outside the circles |x| = x(s∗) for s∗ ∈ [s1, s
∗
E
−ε] and apply the Hadamard–

Pringsheim theorem.) This implies that the asymptotics of (3.48) is determined
by the “lowest” pole on (s(γ), s∗

E
− ε), whenever it exists, and by the saddle-

point (3.49) otherwise.
Remark 3.5 ensures that πi0j0(s) has a pole at s∗

E
= (1, p0−1/p01). By

structural stability and Proposition 3.3, it is the “lowest” one for all given
γ ∈ [0, γ∗

E
). Therefore, the asymptotics of the integral (3.66) is determined by

it and is uniform in a neighbourhood of γ. Thus by Lemma 3.12, we have

πi0j0
ij ∼ q(1, p0−1/p01) resx=1 πi0j0(x)

2a(1)p0−1/p01 + b(1)

( p01

p0−1

)j

.

It remains to notice that πi0j0(x) = −xi0Y j0
0 (x)q−1(x, Y0(x)) in a neigbourhood

of x = 1, where Y0(1) = 1. 2

Lemma 3.14. Let i = r cos(γ(r)), j = sin(γ(r)), and let γ(r) → γ, as r → ∞,
where γ ∈ (γ∗

E
, π].

(a) Assume that the function πi0j0 (s) has no poles on the interval (s∗
E
, s(γ)),

γ 6= π. Then

πi0j0
ij ∼ C(γ, i0, j0)√

j xi(γ(r))yj (γ(r))
as r → ∞, (3.67)

where

C(γ, i0, j0) =
[
q(x(γ), y(γ))πi0j0(x(γ)) + xi0 (γ)yj0(γ)

]∣∣xctg γ(γ)y(γ)
∣∣1/2

×
[
2a(x(γ))y(γ) + b(x(γ))

]−1
∣∣∣
d2 xctg γ(γ)Y (x(γ))

dx2

∣∣∣
−1/2

. (3.68)

If γ = π, q(s3) 6= 0 and the function πi0j0(s) has no poles on the interval
(s∗

E
, s3), then

πi0j0
ij ∼ 1

xi(γ(r))yj(γ(r))

( C̃(γ(r), i0, j0)√
|i|

+
C2(γ(r), i0j0)

|i|
√
|i|

)
, (3.69)
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and

lim
r→∞

kij(i0, j0) = lim
γ→π

C(γ, i0, j0)

C(γ, 0, 0)
. (3.70)

(b) Assume that the function πi0j0(s) has exactly one pole s′ on (s∗
E
, s(γ)),

q(s′) 6= 0, resx(s′) πi0j0(x) 6= 0. Then

πi0j0
ij ∼ q(x(s′), y(s′)) resx(s′) πi0j0(x)

xi(s′)yj(s′)[2a(x(s′))y(s′) + b(x(s′))]
. (3.71)

Proof. As usual we begin by finding the asymptotics of the integral (3.66). To
get (3.48), we shift the contour to the saddle-point s(γ), as in Lemma 3.9. Next,
one can prove Proposition 3.3. (The domain hxEγ lies inside |x| = 1 − ε, the

poles of hxπi0j0(s)xi are at the poles of
∑0

i=−∞ πi0j0
i0 xi. One can show that the

level curves hxΓ(γ, s∗) are outside the circle |x| = x(s∗).)
It follows from this proposition that in case (a) of the theorem there are no

poles of πi0j0(s) in Eγ “lower” than the saddle-point or at its level. Then the
asymptotics of (3.66) is determined by the contribution of the saddle-point. If
(i0, j0) is such that C(γ, i0, j0) 6= 0, then similarly to Lemma 3.9 we have (3.68).
As in Proposition 3.4 one can get that in fact C(γ, i0, j0) 6= 0 for all pairs (i0, j0),
γ 6= π. The case γ = π is treated analogously to Proposition 3.5.

In case (b), the pole s′ is the “lowest” pole in Eγ and the asymptotics
of (3.48) is determined by it. Similarly to Lemma 3.10 we obtain (3.71). 2

Lemma 3.15. The function πi0j0(s) has a pole in s′ ∈ (s∗
E
, s3) if and only if

q(ξs′) = 0. This holds if and only if q(s3) > 0. This pole on the interval (s∗
E
, s3)

is unique. Moreover q(s′) 6= 0, resx(s′) πi0j0(x) 6= 0.

Proof. In accordance with the definition of the function πi0j0(s) on the interval
(s∗

E
, s3) belonging to D2, we have

πi0j0(s) = π(ξs) = −xi0 (s)yj0(ξs)

q(ξs)

= −xi0 (s)
(
p0−1/(p01y(s))

)j0

q
(
x(s), p0−1/(p01y(s))

) .

Thus s′ ∈ (s∗
E
, s3) is a pole of πi0j0(s) if and only if ξs ∈ (s3 , (1, 1)) is a zero

of q(s). Then the result follows from Lemma 2.6. It is shown in the proof of this
lemma that the zero is of the first order and so resx(s′) πi0j0(x) 6= 0. Moreover
if q(ξs) = 0, s 6= s1, s3, p′−11 + p′01 + p′11 6= 0, then q(s) 6= 0 as in Lemma 3.11.

2

Proposition 3.7. Let i = r cos(γ(r)), j = r sin(γ(r)), γ(r) → γ as r → ∞.
Assume that the function πi0j0(s) has a pole in s(γ) ∈ (s∗

E
, s3) and no poles

on (s∗
E
, s(γ)). Then
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lim
r→∞

kij(i0, j0) = xi0 (γ)
(
p0−1/p01y(γ)

)j0
. (3.72)

If γ = γ∗
E
, then

lim
r→∞

kij(i0, j0) = 1. (3.73)

Proof. It is similar to the proof of Proposition 3.6. 2

Proof of Theorem 2.3. If γ ∈ [0, γ∗
E
), Lemma 3.13 applies. By the definition of

the Martin kernel (2.28) holds.
Assume that q(s3) < 0. By Lemma 3.15 πi0j0(s) has no poles on (s∗

E
, s3).

Then for all γ ∈ (γ∗
E
, π] we can substitute the asymptotics of πi0j0

ij found in case
(a) of Lemma 3.14 into the definition of the Martin kernel. The definition (3.63)
of the function πi0j0 (s) entails (2.29).

Assume that q(s3) > 0. By Lemma 3.15 there is exactly one pole s′ on
(s∗

E
, s3), q(ξs′) = 0. According to the notations of Subsection 2.4 the angle γ ′

is such that s′ = s(γ′); x′ = x(s′), y′ = y(ξs′) = p0−1/(p01y(s′)), q(x′, y′) = 0.
To find the asymptotics of the Martin kernel we are entitled to use the case (a)
of Lemma 3.14 for γ ∈ (γ∗

E
, γ′) and case (b) for γ ∈ (γ ′, π). This gives (2.29)

and (2.30) respectively. For γ = γ∗
E
, γ′ we apply Proposition 3.7. The proof of

the theorem is established. 2

3.5. Random walk in Z2
+, Ex > 0, Ey > 0: proofs

Proof of Lemma 2.7. This lemma is equivalent to the following statement: The
function q(s) [resp. q̃(s)] has a zero on the interval ((1, p0−1/p01) s1) [resp.
(s2 , (p−10/p01, 1))] if and only if q(s1) > 0 [resp. q̃(s2) > 0]. This zero on the
corresponding segment is unique. Moreover we show that this zero is of the first
order.

This statement for the function q(s) has already been proved in Lemma 2.5.
The proof is completely the same for the function q̃(s) if one exchanges the roles
of x and y. 2

Lemma 3.16. If |x| < 1, |y| < 1, |z| ≤ 1, the following equation holds

Q(x, y, z)
∞∑

i,j=1

πi0j0
ij (z)xi−1yj−1 (3.74)

= q(x, y, z)πi0j0(x, z) + q̃(x, y, z)π̃i0j0(y, z) + q0(x, y, z)πi0j0
00

(z) + xi0yj0 ,

where
Q(x, y, z) = xy

(
1 − z(p10x + p01y + p−10x

−1 + p0−1y
−1)

)
,

q(x, y, z) = x
(
z

∑

i,j

p′ijx
iyj − 1

)
, q̃(x, y, z) = y

(
z

∑

i,j

p′′ijx
iyj − 1

)
,

q0(x, y, z) = z
∑

i,j

p0

ijx
iyj − 1,
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πi0j0(x, z) =

∞∑

i=1

πi0j0
i0 (z)xi−1, πi0j0(x, z) =

∞∑

j=1

πi0j0
0j (z)yi−1.

Proof. We have

P i0j0
ij (t + 1)

=
∞∑

k,l=1

pi−kj−lP
i0j0
kl (t) +

∞∑

k=1

p′i−kjP
i0j0
k0 (t) +

∞∑

l=1

p′′ij−lP
i0j0
0l (t) + p0

ijP
i0j0
00

(t).

This equation together with the definition of πi0j0
ij (z) implies

πi0j0
ij (z) − πi0j0

ij (0)

= z
( ∞∑

k,l=1

pi−kj−lπ
i0j0
kl (z) +

∞∑

k=1

p′i−kjπ
i0j0
k0 (z)

+

∞∑

l=1

p′′ij−lπ
i0j0
0l (z) + p0

ijP
i0j0
00 (z)

)
for all i, j ≥ 0,

where |z| ≤ 1. Let us multiply this equation by xiyj , |y| < 1, |x| < 1. Taking
the summation over i, j, and changing the order of the summation, we have

∞∑

i,j=1

πi0j0
ij (z)xiyj +

∞∑

i=1

πi0j0
i0 (z)xi +

∞∑

j=1

πi0j0
0j (z)yj + πi0j0

00
(z) − xi0yj0

= z
∑

i,j

pijx
iyj

∞∑

i,j=1

πi0j0
ij (z)xiyj + z

∑

i,j

p′ijx
iyj

∞∑

i=1

πi0j0
i0 (z)xi

+ z
∑

i,j

p′′ijx
iyj

∞∑

j=1

πi0j0
0j (z)yj + z

∑

i,j

p0

ijx
iyjπi0j0

00
(z).

By simple probabilistic arguments πi0j0
ij (1) ≤ C, then the sums in the last

equation are finite and we get (3.74). 2

Corollary 3.3. If |x| < 1, |y| < 1 the following equation holds

Q(x, y)

∞∑

i,j=1

πi0j0
ij xi−1yj−1 (3.75)

= q(x, y)πi0j0(x) + q̃(x, y)π̃i0j0(y) + q0(x, y)πi0j0
00

+ xi0yj0 ,

where

πi0j0(x) =
∞∑

i=1

πi0j0
i0 xi−1, π̃i0j0(y) =

∞∑

j=1

πi0j0
0j xj−1.
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Proof. This is equation (3.74) with z = 1. In agreement with the notations (2.1)
and (2.31) we have Q(x, y, 1) = Q(x, y), q(x, y, 1) = q(x, y), q̃(x, y, 1) = q̃(x, y),
q0(x, y, 1) = q0(x, y). 2

In the domain ∆0 = {s : |x(s)| < 1, |y(s)| < 1} of the Riemann surface S we
have

q(s)πi0j0(x(s)) + q̃(s)π̃i0j0(y(s)) + q0(s)π
i0j0
00

+ xi0 (s)yj0(s) = 0. (3.76)

We will define now the functions πi0j0(s) and π̃i0j0(s) on S relying using this
equation.

Definition of the functions πi0j0(s) and π̃i0j0(s) on S.

Let us divide the Riemann surface into four domains: ∆0, ∆1, ∆2, ∆3. The
domain ∆1 [resp. ∆2] is bounded by Γ0 [resp. Γ̃0] and the curve {s : x3 ≤ x(s) ≤
x4} [resp. {s : y3 ≤ y(s) ≤ y4}] and it contains the interval ((1, p0−1/p01) , s1)
[resp. (s2 , (p−10/p01, 1))] of F0. The domain ∆3 is bounded by the curves
{s : x3 ≤ x(s) ≤ x4}, {s : y3 ≤ y(s) ≤ y4} and it contains the interval
(s1, s2) ⊂ F0.

On ∆0 we put:

πi0j0(s) := πi0j0(x(s)) =

∞∑

i=1

πi0j0
i0 xi−1(s), s ∈ ∆0,

π̃i0j0(s) := π̃i0j0(y(s)) =

∞∑

j=1

πi0j0
0j yj−1(s).

(3.77)

In the domain ∆1 we have |y(s)| < 1 and we put

π̃i0j0(s) := π̃i0j0(y(s)) =

∞∑

j=0

πi0j0
0j yj−1(s), s ∈ ∆1,

πi0j0(s) := − q̃(s)π̃i0j0(s) + q0(s)π
i0j0
00 + xi0(s)yj0(s)

q(s)
.

(3.78)

In the domain ∆2 we have |x(s)| < 1 and we put

πi0j0(s) := πi0j0(x(s)) =
∞∑

i=0

πi0j0
i0 xi−1(s), s ∈ ∆2,

π̃i0j0(s) := −q(s)πi0j0(s) + q0(s)π
i0j0
00 + xi0 (s)yj0(s)

q̃(s)
.

(3.79)

In order to define these functions in ∆3, we find for all s ∈ ∆3 the points
ξs ∈ ∆0 ∪ ∆1 and ηs ∈ ∆0 ∪ ∆2, where ξ and η are the Galois automorphisms
(3.6). Let us put

πi0j0(s) := πi0j0(ξs), π̃i0j0(s) := π̃i0j0(ηs), s ∈ ∆3. (3.80)

Thus the functions πi0j0(s) and π̃i0j0(s) are defined on all of S. Equa-
tion (3.76) holds in ∆0 ∪ ∆1 ∪ ∆2, but generally does not hold in ∆3.

It is worthwhile to make some remarks.
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Remark 3.6. The function πi0j0(s) is meromorphic on S cut along {s : x3 ≤
x(s) ≤ x4}. The function π̃i0j0(s) is meromorphic on S cut along {s : y3 ≤
y(s) ≤ y4}.

Remark 3.7. For all s ∈ S, πi0j0(s) = πi0j0(ξs) and π̃i0j0(s) = π̃i0j0(ηs).

Remark 3.8. Consider the subdomain of ∆3, where |y(s)| < 1. It is bounded by

{s : x3 ≤ x(s) ≤ x4} and Γ̃1. Namely, it contains the interval (s1, sE). For all s
of this subdomain, ηs ∈ ∆0 and ξs ∈ ∆1, thus

π̃i0j0(s) = π̃i0j0(ηs) = π̃i0j0(y(ηs)) =

∞∑

j=0

πi0j0
0j yj−1(s), (3.81)

πi0j0(s) = πi0j0(ξs) = − q̃(ξs)π̃i0j0(ξs) + q0(ξs)π
i0j0
00 + xi0 (s)yj0(ξs)

q(ξs)
,

where y(ξs) = p0−1/(p01y(s)) < 1.
Consider the subdomain of ∆3, where |x(s)| < 1. It is bounded by {s : y3 ≤

x(s) ≤ y4} and Γ1. In particular, it contains the interval (sE, s2). For all s of
this subdomain, ξs ∈ ∆0 and ηs ∈ ∆2, thus

πi0j0(s) = πi0j0(ξs) = πi0j0(x(ξs)) =

∞∑

i=0

πi0j0
i0 xi−1(s), (3.82)

π̃i0j0(s) = π̃i0j0(ηs) = −q(ηs)πi0j0(ηs) + q0(ηs)πi0j0
00 + xi0 (ηs)yj0(s)

q(ηs)
,

where x(ηs) = p−10/(p10x(s)) < 1.

Remark 3.9. The functions πi0j0(s) and π̃i0j0(s) have no pole in sE = (1, 1),
since q(1, p0−1/p01) < ∞, q̃(p−10/p01, 1) < ∞.

Meromorphic continuation of the functions πi0j0(x) and π̃i0j0(y) on C.

The functions πi0j0(x) and πi0j0(y) are defined and holomorphic in the do-
mains |x| < 1 of Cx and |y| < 1 of Cy respectively. Setting

πi0j0(x) := πi0j0(s), where s is such that x(s) = x,

π̃i0j0(y) := πi0j0(s), where s is such that y(s) = y, (3.83)

we obtain their meromorphic continuation on Cx cut along [x3, x4] and on Cy

cut along [y3, y4] respectively. Since the functions πi0j0(s) and π̃i0j0(s) have no
pole in sE = (1, 1), the functions πi0j0(x) and π̃i0j0(y) have no pole in x = 1
and y = 1 respectively. Proposition 2.1 is thus proved. (It can be also proved
by purely probabilistic arguments.)
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Lemma 3.17. For all j > j0 and all i0 ≥ 0

πi0j0
ij =

1

2πi

∫

Γ1

q(s)πi0j0(s)

xi(s)yj(s)
dω +

1

2πi

∫

Γ1

q0(s)π
i0j0
00

xi(s)yj(s)
dω

+
1

2πi

∫

Γ̃1

q̃(s)π̃i0j0(s)

xi(s)yj(s)
dω +

1

2πi

∫

Γ1

xi0 (s)yj0(s)

xi(s)yj(s)
dω. (3.84)

For all i ≥ i0 and j0 ≥ 0 (3.84) holds as well with G̃1 the contour in the last
integral.

Proof. The proof is similar to the proof of Lemma 3.8 taking into account equa-
tion (3.75). To get the integral along Γ̃1, one should exchange the roles of x
and y. 2

Lemma 3.18. Let i = r cos(γ(r)), j = r sin(γ(r)) and let γ(r) → γ as r → ∞,
where γ ∈ (0, π/2) and

q(x(γ), y(γ))πi0j0(s(γ)) + q̃(x(γ), y(γ))π̃i0j0(s(γ))

+ q0(x(γ), y(γ))πi0j0
00

+ xi0 (γ)yj0(γ) 6= 0.

• If 0 < γ ≤ γE, i.e. s(γ) ∈ (s1, sE], assume that the function πi0j0(s) has no
poles on the segment [s(γ), sE]. Then

πi0j0
ij ∼ C(γ, i0, j0)√

j xi(γ(r))yj (γ(r))
as r → ∞, (3.85)

where

C(γ, i0, j0) =
[
q(x(γ), y(γ))πi0j0(x(γ)) + q̃(x(γ), y(γ))π̃i0j0(y(γ))

+ q0(x(γ), y(γ))πi0j0
00 + xi0 (γ)yj0(γ)

]
(3.86)

×
∣∣xctg γ(γ)y(γ)

∣∣1/2 [
2a(x(γ))y(γ) + b(x(γ))

]−1
∣∣∣
d2 xctg γ(γ)Y (x(γ))

dx2

∣∣∣
−1/2

.

• If π > γ ≥ γE, i.e. s(γ) ∈ [sE, s2), assume that the function π̃i0j0(s) has no
poles on the segment [sE, s(γ)]. Then the asymptotics of πi0j0

ij is given by (3.85)
with the constant (3.86).

Proof. The function π̃i0j0(s) [resp. πi0j0 (s)] has no poles on [s(γ), sE] [resp.
[sE, s(γ)]] if γ < γE [resp. γ > γE ] by its definition (3.81) [resp. (3.82)]. Thus,
under the assumptions of the theorem, all integrands in (3.84) have no poles on
[s(γ), sE] [resp. [sE, s(γ)]]. Taking into account the previous lemma, this proof
can be carried out via the saddle-point method. It is quite similar to the one of
Lemma 3.9 and details are omitted. 2
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Proposition 3.8. If 0 < γ ≤ γE, i.e. s(γ) ∈ (s1, sE], assume that the function
πi0j0(s) has no poles on the segment [s(γ), sE). If π > γ ≥ γE , i.e. s(γ) ∈ [sE, s3),
assume that the function π̃i0j0(s) has no poles on the segment (sE, s(γ)]. Then
for all pairs (i0, j0)

q(x(γ), y(γ))πi0j0(s(γ)) + q̃(x(γ), y(γ))π̃i0j0(s(γ))

+ q0(x(γ), y(γ))πi0j0
00

+ xi0 (γ)yj0(γ) 6= 0. (3.87)

Proof. Let us find a pair (i0, j0) satisfying (3.87). Let e.g. 0 < γ < γE, then
x(γ) > 1, y(γ) < 1. Substitute into the left-hand side of (3.87) definition (3.81)
of πi0j0(s). It appears in this formula that the term

xi0yj0
(
1 − q(x(γ)y(γ))

q(x(γ), ξy(γ))

( p0−1

p01y2(γ)

)j0)
,

where y(γ) >
√

p0−1/p01, can be made infinitely large by the choice of (i0, j0),
while the other terms are bounded, when i0, j0 → ∞. Thus the required in-
equality holds.

To show (3.87) for all pairs (i0, j0), one proceeds exactly as in Proposition 3.1.
2

Proposition 3.9. Let i = r cos(γ(r)), j = r sin(γ(r)), γ(r) → γ as r → ∞.
• Assume that γ = 0. If q(s1) 6= 0 and the function πi0j0(s) has no poles on

the interval (s1, sE), then

πi0j0
ij ∼ 1

x(γ(r))iy(γ(r))j

( C̃(γ(r), i0, j0)√
|i|

+
C2(γ(r), i0j0)

|i|
√
|i|

)
(3.88)

and

lim
r→∞

kij(i0, j0) = lim
γ→0

C(γ, i0, j0)

C(γ, 0, 0)
.

• Assume that γ = π/2. If q(s2) 6= 0 and the function πi0j0(s) has no poles
on the interval (sE , s2). Then the asymptotics of πi0j0

ij is (3.88) and

lim
r→∞

kij(i0, j0) = lim
γ→π/2

C(γ, i0, j0)

C(γ, 0, 0)
.

The constant C(γ, i0, j0) is defined by Lemma 3.18.

Proof. All the arguments are analogous to Proposition 3.5 and we skip them.
2

Lemma 3.19. Let i = r cos(γ(r)), j = r sin(γ(r)) and let γ(r) → γ as r → ∞;
where γ ∈ [0, π/2].

• Assume that γ < γE , i.e. s(γ) ∈ [s1, sE), and the function πi0j0(s) has ex-
actly one pole s′ on the interval (s(γ), sE) ⊂ F0, q(s′) 6= 0 and resx(s′) πi0j0(x) 6=
0. Then

πi0j0
ij ∼ q(x(s′), y(s′)) resx(s′) πi0j0(x)

xi(s′)yj(s′)[2a(x(s′))y(s′) + b(x(s′))]
. (3.89)



Martin boundary and elliptic curves 261

• Assume that γ > γE , i.e. s(γ) ∈ (sE, s2], and the function π̃i0j0(s) has
exactly one pole s′′ on the interval (sE, s(γ)) ⊂ F0, q(s′′) 6= 0, resx(s′′) π̃i0j0(y) 6=
0. Then

πi0j0
ij ∼ q̃(x(s′′), y(s′′)) resy(s′′) π̃i0j0(y)

xi(s′′)yj(s′′)[2ã(y(s′′))x(s′′) + b̃(y(s′′))]
. (3.90)

Proof. Let γ < γE [resp. γ > γE]. The function π̃i0j0(s) [resp. πi0j0(s)] has
no poles in [s(γ), sE] [resp. [sE, s(γ)]] by its definition (3.81) [resp. (3.82)].
Then the asymptotics of all integrals in (3.84) except for the one of q(s)πi0j0(s)
[resp. q̃(s)π̃i0j0(s)] is determined by the contribution of the saddle-point. The
asymptotics of the integral of q(s)πi0j0(s) [resp. q̃(s)πi0j0(s)] is determined by
the “lowest” pole. This pole is s′ [resp. s′′]. Hence, proceeding along the same
lines as in Lemma 3.10 we get the result. 2

Lemma 3.20. The function πi0j0(s) has a pole in s′ ∈ (s1, sE) if and only if
q(ξs′) = 0. This holds if and only if q(s1) > 0. This pole on the interval (s1, sE)
is unique.

The function π̃i0j0(s) has a pole in s′′ ∈ (sE, s2) if and only if q̃(ηs′) = 0.
This holds if and only if q̃(s2) > 0. This pole on the interval (sE , s2) is unique.

Moreover q(s′) 6= 0, q̃(s′′) 6= 0, resx(s′) πi0j0(x) 6= 0, resy(s′′) π̃i0j0(y) 6= 0.

Proof. If s′ ∈ (s1, sE) [resp. s′′ ∈ (sE, s2)] is a pole of πi0j0(s) [resp. π̃i0j0(s)] it
follows from definition (3.81) [resp. (3.82)] that q(ξs′) = 0, [resp. q̃(ηs2) = 0] and
by Lemma 2.7 q(s1) > 0 [resp. q̃(s2) > 0]. To get the inverse, one should show
that in definition (3.81) [resp. (3.82)] the numerator is non-zero in s′ [resp. s′′]
for all pairs (i0, j0). This is true with (i0, j0) sufficiently large in view of the term
xi0(s′)yj0(ξs′). If for some pair (i′′0 , j′′0 ) it is not true, the function πi0j0(s) has
no poles on (s1, sE) and the asymptotics of the mean number of visits to (i, j)
starting from (i′′0 , j′′0 ) is determined by the saddle-point as in Lemma 3.18. The
same arguments as in Proposition 3.1 make this impossible. All other details of
the proof are similar to Lemma 3.11 and we omit them. 2

Proposition 3.10. Let i = r cos(γ(r)), j = r sin(γ(r)), γ(r) → γ as r → ∞.
Assume that the function πi0j0(s) has a pole in s(γ) ∈ (s1, sE) and no poles

on (s(γ), sE). Then

lim
r→∞

kij(i0, j0) = xi0 (γ)
(
p0−1/p01y(γ)

)j0
. (3.91)

The same is true if s(γ) ∈ (sE, s2) and the function π̃i0j0(s) has no poles on
(sE, s(γ)).

Proof. It is similar to Proposition 3.6. 2

Proof of Theorem 2.4. 1. If q(s1) < 0 and q̃(s2) < 0, then by Lemma 3.20 there
are no poles of πi0j0(s) on (s1, sE] and of π̃i0,j0(s) on [sE, s2). For all γ ∈ (0, π/2)
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Lemma 3.18 applies. Then

lim
r→∞

kij(i0, j0)

=
[
q(x(γ), y(γ))πi0j0(s(γ)) + q̃(x(γ), y(γ))π̃i0j0(s(γ))

+ q0(x(γ), y(γ))πi0j0
00

+ xi0 (γ)yj0(γ)
]

×
[
q(x(γ), y(γ))π00(s(γ)) + q̃(x(γ), y(γ))π̃00(s(γ))

+ q0(x(γ), y(γ))π00

00
+ 1

]−1
.

If γ ≤ γE one should substitute here definition (3.81) of πi0j0(s) on (s1, sE]; if
γ ≥ γE one should substitute here definition (3.82) of π̃i0j0(s) on [sE, s2). Then
(2.39) and (2.40) hold. For γ = 0, π/2 Proposition 3.9 applies.

2. If q(s1) > 0 and q(s2) < 0, by Lemma 3.20 there is exactly one pole s′ of
the function πi0j0(s) on (s1, sE), q(ξs′) = 0. The angle γ′ is such that s(γ′) =
s′. Then for γ ∈ [0, s(γ′)) Lemma 3.19 applies. In view of definition (3.83),
πi0j0(x) = πi0j0(s) = πi0j0(ξs), where x(s) = x. If s′ ∈ (s1, sE), then πi0j0(ξs′)
can be found by (3.81). Hence

lim
r→∞

kij(i0, j0) =
resx(s′) πi0j0(x)

resx(s′) π00(x)

=
(x′)i0(y′)j0 + q0(x

′, y′)πi0j0
00 + q̃(x′, y′)π̃i0j0(y′)

1 + q0(x′, y′)π00
00

+ q̃(x′, y′)π̃00(y′)
,

where x′ = x(s′), y′ = y(ξs′) = p0−1/(p01y(s′)).
The other details of the proof are similar to Theorem 2.2 taking into account

the lemmas and propositions just proved. 2

3.6. Random walk in Z2
+, Ex < 0, Ey < 0, escape to infinity along one

axis: proofs

Let us mark some points on the Riemann surface. We have already in-
troduced sE = (1, 1) = Γ0 ∩ Γ̃0 and s∗

E
= (1, p0−1/p01) = Γ1 ∩ F0. Let also

s̃∗
E

= (p−10/p10, 1) = Γ̃1 ∩ F0 and s−
E

= (p−10/p10, p0−1/p01) ⊂ (s1, s2) ∈ F0.

Proof of Lemma 2.8. It can be reformulated as follows: the function q̃(s) has a
zero on the interval (s∗

E
, sE) ⊂ F0 if and only if q̃(s∗

E
) > 0. Note that q̃y(sE) =

E
−1
x (Ex E

′′
y −Ey E

′′
x) < 0. The other details are similar to Lemmas 2.5 or 2.6.

One shows in the proof that this zero is of the first order. 2

Equation (3.75) remains valid, provided that |x|, |y| < 1.
We also need the following proposition.

Proposition 3.11. We have

∞∑

j=0

πi0j0
0j < ∞.
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Proof. We should prove the fact that the mean number of visits to the y-axis S ′′

is finite.
First, we show that the probability of reaching the x-axis S ′ starting from S′′

is 1. For this purpose, we construct the Lyapounov function as in case (ai)

of Theorem 3.3.1 in [3] given by f1(x, y) =
√

ux2 + vy2 + wxy, i.e. satisfying
Theorem 2.2.3 (Foster’s criterion) in [3] but where the set A = S ′ is not finite
(see also Figure 3.3.1 in [3]). Proceeding along the same lines as in the proof
of this theorem, we derive the finiteness of the mean time to reach S ′, starting
from S ∪ S′′.

The next step is to show that the probability to never reach S ′′ starting
from any point of S′ is greater than some δ > 0. This is done by means of a
Lyapounov function as in the case a(i) of Theorem 3.3.2 in [3], that is f2(x, y) =

x − y/ε, where Ey / Ex < ε < E
′

y / E
′

x (see also Figure 3.3.3 in [3]). Thus we
have the assumptions of Theorem 2.1.9 in [3] with Ni = i, Sn = f(Xn, Yn),
S0 > 1. In view of this theorem the probability to never reach the set of states
{(i, j) : f(i, j) < 1}, which contains S ′′, is strictly positive.

These two steps give the result. 2

Definition of the functions πi0j0(s) and π̃i0j0(s) on S.

Let us divide the Riemann surface into five domains: ∆x = {s : |x(s)| < 1},
∆y = {s : |y(s)| < 1}, ∆1, ∆2, ∆3. The domain ∆1 is bounded by Γ1 and the
curve {s : y3 ≤ y(s) ≤ y4} and contains the interval (s2, s

∗
E
); the domain ∆2 is

bounded by Γ̃1 and the curve {s : x3 ≤ x(s) ≤ x4} and contains the interval
(s̃∗

E
, s1). The domain ∆3 is bounded by {s : x3 ≤ x(s) ≤ x4}, {s : y3 ≤ y(s) ≤

y4} and contains (s1, s2). Only ∆x∩∆y 6= ∅ and in ∆x∩∆y the equation (3.76)
holds. Let us put for s ∈ ∆x

πi0j0(s) :=

∞∑

i=0

πi0j0
i0 xi−1(s),

π̃i0j0(s) := −q(s)πi0j0(s) + q0(s)π
i0j0
00 + xi0(s)yj0(s)

q̃(s)
,

(3.92)

and for s ∈ ∆y

π̃i0j0(s) :=

∞∑

j=0

πi0j0
0j yj−1(s),

πi0j0(s) := − q̃(s)π̃i0j0(s) + q0(s)π
i0j0
00 + xi0(s)yj0(s)

q(s)
.

(3.93)

If s ∈ ∆1, then ξs ∈ ∆y, where ξ is the Galois (3.6) automorphism. The function
πi0j0(s) has already been defined on ∆y by (3.93). Then let us put for s ∈ ∆1

πi0j0(s) := πi0j0(ξs),

π̃i0j0(s) := −q(s)πi0j0(s) + q0(s)π
i0j0
00 + xi0(s)yj0(s)

q̃(s)
.

(3.94)
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If s ∈ ∆2, then ηs ∈ ∆x, where η is the Galois (3.6) automorphism. The
function π̃i0j0(s) has already been defined on ∆x by (3.92). Then let us put for
s ∈ ∆2

π̃i0j0(s) := π̃i0j0(ηs),

πi0j0(s) := − q̃(s)π̃i0j0(s) + q0(s)π
i0j0
00 + xi0(s)yj0 (s)

q(s)
.

(3.95)

If s ∈ ∆3, then ξs ∈ ∆y ∪ ∆2, ηs ∈ ∆x ∪ ∆1, where πi0j0(s) and π̃i0j0(s) have
already been defined. Let us put for s ∈ ∆3

πi0j0(s) := π̃i0j0(ξs),
π̃i0j0(s) := π̃i0j0(ηs).

(3.96)

It is worthwhile to make some remarks.

• The function πi0j0(s) is meromorphic on S cut along {s : x3 ≤ x(s) ≤ x4}.
The function π̃i0j0(s) is meromorphic on S cut along {s : y3 ≤ y(s) ≤ y4}.

• For all s ∈ S πi0j0(s) = πi0j0(ξs) and π̃i0j0(s) = π̃i0j0(ηs).

• Equation (3.76) holds on ∆x ∪∆y ∪∆1 ∪∆2, but generally does not hold
on ∆3.

• If s ∈ (s̃∗
E
, s−

E
) ⊂ F0, then ηs ∈ ∆x and by the definition of π̃i0j0(s)

π̃i0j0(s) = π̃i0j0(ηs) (3.97)

= −q(ηs)πi0j0(ηs) + q0(ηs)πi0j0
00 + xi0(ηs)yj0 (s)

q̃(ηs)
.

• By Proposition 3.11 and definition (3.93), the function π̃i0j0(s) has no
pole at the point sE = (1, 1). Consequently, in view of equation (3.76) the
function πi0j0(s) has a pole in sE, since q(1, 1) = 0. Thus π̃i0j0(s) has no
pole at s̃∗

E
and πi0j0(s) has a pole in s∗

E
.

Meromorphic continuation of the functions πi0j0(x) and π̃i0j0(y) on C.

The functions πi0j0(x) and π̃i0j0(y) are defined and holomorphic in the do-
mains |x| < 1 of Cx and |y| < 1 of Cy respectively. Setting

πi0j0(x) := πi0j0(s), where s is such that x(s) = x,

π̃i0j0(y) := πi0j0(s), where s is such that y(s) = y, (3.98)

we obtain their meromorphic continuation on the complex plane Cx cut along
[x3, x4] and on Cy cut along [y3, y4] respectively. Since the function πi0j0(s) has
a pole in sE = (1, 1), the function πi0j0(x) has a pole in x = 1. (Clearly, the
function π̃i0j0(y) is holomorphic in |y| < 1+ε, ε > 0, in view of Proposition 3.11.)
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Lemma 3.21. For all j > j0 and all i ≥ 0

πi0j0
ij =

1

2πi

∫

Γ1−ε

q(s)πi0j0(s)

xi(s)yj(s)
dω +

1

2πi

∫

Γ1

q0(s)π
i0j0
00

xi(s)yj(s)
dω

+
1

2πi

∫

Γ1

xi0(s)yj0 (s)

xi(s)yj(s)
dω +

1

2πi

∫

Γ̃1

q̃(s)π̃i0j0(s)

xi(s)yj(s)
dω. (3.99)

If i > i0, j ≥ 0, then (3.99) holds as well, where the integral of xi0 (s)yj0(s) is

along Γ̃1.

The contour Γ1−ε has been already defined in Subsection 3.4.

Proof. The proof of this Lemma is similar to the proofs of Lemmas 3.5, 3.8 and
3.12. Let us outline the differences.

Equation (3.75) implies

πi0j0
ij =

∫

|x|=1−ε1

∫

|y|=1−ε2

qπi0j0 + q̃πi0j0 + q0π
i0j0
00 + xi0yj0

xiyj Q(x, y)
dy dx. (3.100)

Whenever x, |x| = 1 − ε1, is fixed, the integrand of (3.100) is holomorphic in
1 − ε2 < |y| < 1 + ε2. In fact, π̃i0j0(y) is holomorphic by Proposition 3.11 and
a zero of Q(x, y) in this domain, if it exsits, can not be a pole of the integrand
due to equation (3.76) in ∆x ∪ ∆y. Thus one can shift the contour in (3.100)
to |y| = 1 + ε2. Next, we split this integral into the sum of integrals of qπi0j0 ,
q̃π̃i0j0 etc. To consider the first term, ε1 is taken such that the zeros of Q(x, y),
where |x| = 1− ε, satisfy the inequalities |Y0(x)| < 1 + ε2 and |Y1(x)| > 1 + ε2.
To treat the second one, we show that for all fixed y, |y| = 1 + ε2, Q(x, y) has
two zeros |X0(y)| < 1 and |X1(y)| > 1 + ε2. (This is done in the same way
as (3.43) in Lemma 3.8.) The other details of the proof come from Lemmas 3.5,
3.8 or 3.12. 2

Lemma 3.22. Let i = r cos(γ(r)), j = r sin(γ(r)) and γ(r) → γ as r → ∞,
where γ ∈ [0, π/2].

Assume that the function π̃i0j0(s) has no poles on the interval (s̃∗
E
, s−

E
). Then

for γ 6= π/2

πi0j0
ij ∼ q(1, p0−1/p01) resx=1 q−1(x, Y0(x))

p0−1 − p01

( p01

p0−1

)j

. (3.101)

If q̃(p−10/p10, p0−1/p01) 6= 0, γ = π/2, then

πi0j0
ij ∼ q(1, p0−1/p01) resx=1 q−1(x, Y0(x))

p0−1 − p01

( p01

p0−1

)j

+ C
( p10

p−10

)i( p01

p0−1

)j

,

(3.102)
where

C =
q̃(p−10/p10, p0−1/p01)q(1, p0−1/p01) resy=1 q−1(X(y), y)

q̃(1, p0−1/p01)[2ã(p0−1/p01)p−10/p10 + b̃(p0−1/p01)]
.
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Proof. Let 0 ≤ γ < π/2. The asymptotics of the integral of qπi0j0 along Γ1

in (3.100) is exactly (3.101). This is proved by means of the saddle-point method
and taking into account the fact that s∗

E
= (1, p0−1/p01) is a pole of πi0j0(s).

Let us show that we can neglect the other terms of (3.100). The asymptotics

of the integral of q̃π̃i0j0 along Γ̃1 is determined by the saddle-point or by the
“lowest” pole of this function on (s̃∗

E
, s2

)
, if it exists. By assumption, this pole

can only lie on
[
s−

E
, s2

)
. Being on this interval, it is “higher” than s∗

E
: since

x(s) > 1, y(s) ≥ p0−1/p01, then xctg γ(s)y(s) > p0−1/p01 for all 0 < γ < π/2.
Obviously, the asymptotics of the integrals of q0(s) and xi0 (s)yj0(s) in (3.100)
is determined by the saddle-point, which is always “higher” than s∗

E
as well.

If γ = π/2 and q̃(p−10/p10, p0−1/p01) 6= 0, we should take into account the
pole of the function πi0j0(s) at s−

E
. 2

Lemma 3.23. Let i = r cos(γ(r)), j = r sin(γ(r)) and γ(r) → γ as r → ∞,
where γ ∈ [0, π/2].

Assume that the function πi0j0(s) has exactly one pole s′ on the interval
(s̃∗

E
, s−

E
), q(s′) 6= 0, resy(s′) π̃i0j0(y) 6= 0. Let an angle γ0 be such that

x(s′)ctg γ0y(s′) =
p0−1

p01
. (3.103)

Then for γ < γ0

πi0j0
ij ∼ q(1, p0−1/p01) resx=1 q−1(x, Y0(x))

p0−1 − p01

( p01

p0−1

)j

; (3.104)

for γ > γ0

πi0j0
ij ∼ q̃(x(s′), y(s′)) resy=1 π̃i0j0(y′)

[2ã(y(s′))x′ + b̃(y(s′))]xi(s′)yj(s′)
; (3.105)

for γ = γ0

πi0j0
ij ∼ q(1, p0−1/p01) resx=1 q−1(x, Y0(x)

p0−1 − p01

(p0−1

p01

)j

+
q̃(x(s′), y(s′)) resy=1 π̃i0j0(y′)

[2ã(y(s′))x′ + b̃(y(s′))]xi(s′)yj(s′)
. (3.106)

Proof. The asymptotics of the integral of qπi0j0 in (3.99) is determined by the
pole at s∗

E
as in (3.101). The asymptotics of the integral of q̃π̃i0j0 is determined

either by the saddle-point s(γ) or by the pole s′. The angle γ0 is such that s∗
E

and s′ are at the same level, i.e. these poles both contribute to the asymptotics
of πi0j0

ij . Whenever γ < γ0 [resp. γ > γ0], s∗
E

is “lower” [resp. “higher”] than s′.
The result follows. 2

Lemma 3.24. The function π̃i0j0(s) has a pole s′ on the interval (s̃∗
E
, s−

E
) if

and only if q̃(ηs) = 0. This holds if and only if q̃(1, p0−1/p01) > 0. This pole is
unique and q̃(s′) 6= 0, resy(s′) π̃i0j0(y) 6= 0.
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Proof. The statement of the lemma follows from the definition (3.97) of π̃i0j0(s)
on the corresponding interval and Lemma 2.8. 2

Proof of Theorem 2.5. 1. If q̃(1, p0−1/p01) < 0, then by Lemma 3.24 there are
no poles of π̃i0j0(s) on the interval (s̃∗

E
, s−

E
). Lemma 3.22 applies.

2. If q̃(1, p0−1/p01) > 0, then there is exactly one pole s′ on (s̃∗
E
, s−

E
).

In accordance with notation of Lemma 2.8 x(ηs′) = x′, y(ηs′) = y′ and by
Lemma 3.24 q(x′, y′) = 0. Lemma 3.23 applies. For γ < γ0 the asymptotics
of πi0j0

ij is given by (3.104), which entails (2.46). For γ = γ0, γ > γ0 we
have (3.106) and (3.105) respectively with x(s′) = p−10/(p10x

′), y(s′) = y′.
By (3.97) and (3.98) the asymptotics of the Martin kernel is given by (2.47)
and (2.48).

Whenever ctg γ0 is irrational, for all p ∈ {−∞} ∪ R ∪ {+∞} we can find
sequences of integers in, jn, such that: in, jn → +∞ and in − jn ctg γ0 → p.
Whenever ctg γ0 = q1/q2 is rational, (q1, q2 ∈ N), the same is true for p ∈
{−∞}∪ Z̃∪ {+∞}, where Z̃ = {m/q2 : m ∈ Z}. Taking different p we will get
different harmonic functions in the right-hand side of (2.48). In particular, in
the cases p = −∞ and p = +∞ the result is the same as in (2.46) and (2.47)
respectively.

If p 6= ±∞, the harmonic functions in the right-hand side of (2.48) are linear
combinations of harmonic functions in the right-hand side of (2.46) and (2.47).
Thus, all of them should be excluded from the minimal Martin boundary. 2

3.7. Random walk in Z2
+, Ex < 0, Ey < 0, escape to infinity along two

axes: proofs

Proof of Lemma 2.9. It is left to the reader. 2

Equation (3.75) holds, provided that |x| < 1, |y| < 1. The definition of the
functions πi0j0

ij (s) and π̃i0j0
ij (s) on the Riemann surface are the same as in the

previous subsection. The crucial difference is that these functions both have a
pole at the point sE = (1, 1). Then πi0j0(s) [resp. π̃i0j0(s)] has a pole at s∗

E

[resp. s̃∗
E
]. The function πi0j0(x) [resp. πi0j0(y)] is meromorphic on the complex

plane cut along [x3, x4] [resp. [y3, y4]] and has a pole at x = 1 [resp. y = 1].

Lemma 3.25. For all j > j0 and all i ≥ 0

πi0j0
ij =

1

2πi

∫

Γ1−ε

q(s)πi0j0(s)

xi(s)yj(s)
dω +

1

2πi

∫

Γ1

q0(s)π
i0j0
00

xi(s)yj(s)
dω

+
1

2πi

∫

Γ1

xi0(s)yj0(s)

xi(s)yj(s)
dω +

1

2πi

∫

Γ̃1+ε

q̃(s)π̃i0j0(s)

xi(s)yj(s)
dω

+
q̃(p−10/p10, 1)C̃(i0, j0)

p−10 − p10

( p10

p−10

)i

. (3.107)

For all i > i0 and j ≥ 0 (3.107) holds, where the integral of xi0 (s)yj0(s) is along

Γ̃1. The constant C̃(i0, j0) is defined by Lemma 2.9.



268 I.A. Kurkova and V.A. Malyshev

Proof. The proof is almost the same as of Lemma 3.21. The difference is that
upon shifting the contour from |y| = 1 − ε to |y| = 1 + ε in (3.100), one should
take into account the pole of the function π̃i0j0(y) in y = 1. The residue at this

pole equals −C̃(i0, j0). Thus we will have

−C(i0, j0)

2πi

∫

|x|=1−ε

q̃(x, 1)

xiQ(x, 1)
dx =

q̃(p−10/p10, 1)C̃(i0, j0)

p−10 − p10

( p10

p−10

)i

.

The other details are similar to Lemma 3.21. 2

Lemma 3.26. Let i = r cos(γ(r)), j = r sin(γ(r)) and γ(r) → γ as r → ∞,
where γ ∈ [0, π/2]. Let us define an angle γ0 such that

(p0−1/p01)
ctg γ0 = (p0−1/p01).

Then for γ < γ0

πi0j0
ij ∼ q(p0−1/p01, 1)C(i0, j0)

p0−1 − p01

( p01

p0−1

)j

;

for γ = γ0

πi0j0
ij ∼ q̃(p−10/p10, 1)C̃(i0, j0)

p−10 − p10

( p10

p−10

)i

+
q(p0−1/p01, 1)C(i0, j0)

p0−1 − p01

( p01

p0−1

)j

;

and for γ > γ0

πi0j0
ij ∼ q̃(p−10/p10, 1)C̃(i0, j0)

p−10 − p10

( p10

p−10

)i

.

Proof. The proof is as usual carried out via the saddle-point method in view of
Lemma 3.25. Details are skipped. Note that only the pole s∗

E
of πi0j0(s) and the

last term in (3.107) have a significant contribution to the asymptotics of πi0j0
ij .

2

Proof of Theorem 2.6. It follows from Lemma 3.26 and the definition of the
Martin kernel. 2

References

[1] V.I. Arnold (1968) Singularities of smooth mappings. Usp. Mat. Nauk 23 (1),
3–44.

[2] E.B. Dynkin (1969) Boundary theory of Markov processes (the discrete case).
Russian Math. Surveys 24 (7), 1–42.

[3] G. Fayolle, V.A. Malyshev and M.V. Menshikov (1995) Topics in Con-

structive Theory of Countable Markov Chains. Cambridge University Press.

[4] M.V. Fedoryuk (1977) Saddle-point Method. Nauka, Moscow.



Martin boundary and elliptic curves 269

[5] I.A. Ignatyuk, V.A. Malyshev and V.V. Scherbakov (1994) Boundary
effects in large deviation problems. Usp. Mat. Nauk 49 (2), 43–102.

[6] I.A. Kurkova Poisson boundary for random walks in the orthants. In prepara-
tion.

[7] V.A. Malyshev and F.M. Spieksma (1995) Intrinsic convergence rate of count-
able Markov chains. Markov Processes Relat. Fields 1 (2), 203–266.

[8] V.A. Malyshev (1970) Random Walks. The Wiener –Hopf Equations in Quad-

rant of the Plane. Galois Automorophisms. Moscow University Press.

[9] V.A. Malyshev (1972) Analytic method in the theory of two-dimensional ran-
dom walks. Sib. Math. J. 13 (6), 1314–1327.

[10] V.A. Malyshev (1973) Asymptotic behaviour of stationary probabilities for
two-dimensional positive random walks. Sib. Math. J. 14 (1), 156–169.

[11] G. Milnor (1965) Morse Theory. Mir, Moscow.

[12] P. Ney and F. Spitzer (1966) The Martin boundary for random walk. Trans.

Amer. Math. Soc. 121, 116–132.

[13] D. Revuz (1975) Markov Chains. North Holland.


