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Abstract. A problem of massive parallelism is considered, where N processor
units are used for large-scale simulation or computation. Processor unit i has
its accumulated local time variable zi(t). At Poisson time moments tik, it gets
a job and chooses randomly I other units. If its local time does not exceed the
local times of the chosen I units, then zi(t

i
k) is augmented by an independent

random variable ηik. In the large N limit we obtain a deterministic nonlinear
PDE for the density of local times. Subsequent corollaries are a travelling wave
solution, the linear time growth of the mean local time etc.
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1. Origin of the problem

We consider a synchronisation problem in massive parallel computations
[1–3, 5, 6]. Assume that we have N processor units which are used simultane-
ously for some large-scale simulation or computation. Each of these processor
units simulates or/and computes some local characteristics, and during this sim-
ulation it can use data from other units which are produced in the process. This
provides the interaction between these processor units. This interaction can slow
down the process compared to when the processor units work independently.

This slowing-down is caused by the fluctuations in the time that the different
processors need to accomplish their local tasks. Thus some processors have to
stop and wait until others (from which they need the data) will finish their work.

If the arrival rate of problems to a processor unit is one and if the mean
time to solve each of them is one as well, then during a large time interval t,
approximately t problems will arrive and will be solved. In the interacting case,
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however, t problems will arrive but only m(t) of these will be solved. For some
reasonable mathematical model we will determine m(t) explicitly. It turns out
to be a linear function of t. Thus we get a speed that is less than one.

2. Mathematical model and main results

We consider a system consisting of N nodes, enumerated by i = 1, . . . , N .
The state of node i at time t, t ≥ 0, is a nonnegative random variable zN

i (t),
called the local time in this node at time t. As initial conditions we assume that
the zN

i (0), i = 1, . . . , N , are independent, identically distributed non-negative
random variables with density p0(x), such that

+∞
∫

0

x2p0(x) dx < ∞.

Let J < N be a fixed integer and v ∈ R+ a given constant. The exogenous
arrivals of customers at node i occur at the successive moments ti1 < ti2 < · · · .
These arrival streams at the different nodes are assumed to be mutually inde-
pendent Poisson streams with intensity µ. At moment tik node i chooses J other
nodes at random. Let us denote this random set by Y i

k , such that i 6∈ Y i
k , and

assume that all these random sets are also independent. If zN
j (tik) ≥ zN

i (tik) for

all j ∈ Y i
k , then the local time at node i jumps instantaneously, so that

zN
i (tik + 0) = zN

i (tik) + ξi
k,

where ξi
k are independent, exponentially distributed random variables with pa-

rameter λ. The random variables zN
i (t) are thus completely defined. We may

assume that with probability one at each node we have a left continuous piece-
wise constant nondecreasing random process on R+.

We get a more general model if for some v ≥ 0 we put for all i and for all
t 6= tik

z′i(t) =

{

−v, if zi(t) > 0,
0, if zi(t) = 0,

(here we mean the right derivative, if zi(t) = 0), so all functions zi are piecewise
linear. We call zi(t) the local time of the ith particle at time t.

In the sequel we shall investigate the behaviour of this system for large values
of N . Let us denote by #N

t [x, x+ ∆x] the number of particles zi in the interval
[x, x + dx] at time t, that is x ≤ zi(t) ≤ x + ∆x.

We will formulate the main results of this paper.

Theorem 2.1. For all x, ∆x, t the following limit

lim
N→∞

#N
t [x, x + ∆x]

N
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exists in probability, and there is a non-negative density function p̃(x, t), such

that

lim
N→∞

#N
t [x, x + ∆x]

N
= p̃(x, t)∆x + o(∆x). (2.1)

We will derive an integro-differential equation for the density p̃(x, t) and
investigate some properties of the system using this equation.

Theorem 2.2. The function p̃(x, t) defined above, is a solution to the following

integro-differential equation

∂p̃(x, t)

∂t
= −µGJ(x, t)p̃(x, t) + λµe−λx

x
∫

0

p̃(y, t)GJ (y, t)eλydy, (2.2)

where

G(x, t) =

+∞
∫

x

p̃(y, t) dy. (2.3)

Remark 2.1. If we take the lower limit of the integration in (2.2) to be equal to
−∞, then (2.2) has a travelling wave solution (see [4])

p̃(x, t) = λ
(

1 + exp
{

J
(

λx − µt

J + 1

)})

J+1

J
(

1 + exp
{

J
(

λx − µt

J + 1

)})

.

As a next step we prove in Section 6 that this equation has a unique solution.

Theorem 2.3. There is a unique solution of (2.2) among the functions that

are continuous in x and continuously differentiable in t.

Define the mean coordinates

m(t) =

+∞
∫

0

xp̃(x, t) dx and m0 =

+∞
∫

0

xp0(x) dx.

In Section 7 we shall finally prove the following important proposition.

Theorem 2.4. The function m(t) is the following linear function of time

m(t) =
µt

λ(J + 1)
+ m0. (2.4)

3. Asymptotic independence

In this section we prove that any fixed number of nodes becomes indepen-
dent, if the total number of nodes N tends to infinity. First we introduce some
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notation. Clearly, the random variable z1(t) has a “positive density” p(N)(x, t),
i.e.

P{z1(t) ∈ A} =

∫

A

p(N)(x, t) dx. (3.1)

Let us write Z(t) = (z1(t), . . . , zN (t)), and let X = [0,∞)N . The process
Z(t) is a pure jump Markov process with state space X . We will write Z(t) =
x = (x1, . . . , xN ), if z1(t) = x1, . . . , zN (t) = xN .

Let us introduce some more notation. Let for t > s

P (s, x, t, B) = P{Z(t) ∈ B | Z(s) = x}.

Our assumptions imply the existence of a positive density function
p(x1, . . . , xN , t) such that for any set A ⊂ X

P (0, 0, t, A) =

∫

A

p(x1, . . . , xN , t) dx1 . . . dxN . (3.2)

For any set {i1, . . . , ik}, k < N , we introduce correlation functions

p(i1,...,ik)(x1, . . . , xk, t)

in a natural way:

p(i1,...,ik)(a1, . . . , ak, t) =

∫

B

p(x1, . . . , xN , t) dxj1 . . . dxjN−k
,

where {j1, . . . , jN−k} = {1, . . . , N} \ {i1, . . . , ik}, and

B =
{

x ∈ X
∣

∣ xi = aj , if i = ij ∈ {i1, . . . , ik}
}

.

Clearly,

p(i1,...,ik)(x1, . . . , xk, t) = p(1,...,k)(x1, . . . , xk, t) = p(x1, . . . , xk, t), (3.3)

since the random variables zi(t) are symmetrically distributed.
Let us first formulate and prove the following lemma.

Lemma 3.1. Let k ∈ Z+ be a fixed number and A1, . . . , Ak measurable sets

with Ai ⊂ R+. Then for all t (note that in fact all zi(t) depend on N)

P{z1(t) ∈ A1, . . . , zk(t) ∈ Ak} −
k

∏

i=1

P{zi(t) ∈ Ai} → 0 (3.4)

as N → ∞, uniformly in A1, . . . , Ak, i.e. any fixed number of particles are

asymptotically independent.

Next suppose that p0(x) is continuous and that there exists some K > 0
such that p0(x) < K for all x. Then the following corollary easily follows from
the lemma.
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Corollary 3.1. For the density functions p(x1, . . . , xk, t) defined above, a sim-

ilar assertion holds, namely

p(x1, . . . , xk, t) −
k

∏

i=1

p(xi, t) → 0 (3.5)

as N → ∞, uniformly in x1, . . . , xk.

Proof of Lemma 3.1. For the sake of brevity we consider the case k = 2 only.
This proof can be generalised for any fixed k ≥ 3. So, we want to prove that
for any fixed t

P{zN
1 (t) ∈ A1, zN

2 (t) ∈ A2} → P{zN
1 (t) ∈ A1}P{zN

2 (t) ∈ A2} (3.6)

as N → ∞. For the proof we need the following definition.

Definition 3.1. For any node i and any t we define a random set Di(t), which
we shall call dependency set or D-set, in the following way:

1. If t < ti1, we set Di(t) = {i}.
2. Otherwise, let 0 < ti1 < ti2 < · · · < til < t, and let Y i

1 , . . . , Y i
l be the

corresponding random sets that were introduced above. Then we set

Di(t) = {i}
⋃

(

l
⋃

j=1

⋃

m∈Y i
j

Dm(tij)
)

. (3.7)

Note, that if for two particles i and j their D-sets (Di(t) and Dj(t)) do not
intersect, then the random variables zi(t) and zj(t) are conditionally indepen-
dent, since we assumed independence of zi(0) and zj(0).

Let us continue the proof. Note that z1(0) and z2(0) are independent, i.e.

P{z1(0) ∈ A1, z2(0) ∈ A2} = P{z1(0) ∈ A1}P{z2(0) ∈ A2}.

We can therefore write

P{z1(t) ∈ A1, z2(t) ∈ A2}
= P{z1(t) ∈ A1, z2(t) ∈ A2 | D1(t) ∩ D2(t) 6= ∅}P{D1(t) ∩ D2(t) 6= ∅}
+ P{z1(t) ∈ A1, z2(t) ∈ A2 | D1(t) ∩ D2(t) = ∅}P{D1(t) ∩ D2(t) = ∅}
def
= A + B.

Note, that if
P{D1(t) ∩ D2(t) 6= ∅} → 0

as N → ∞, then it easily follows that A → 0 and

B − P{z1(t) ∈ A1}P{z2(t) ∈ A2} → 0

as N → ∞, thus implying (3.6). Consequently, the proof of Lemma 3.1 is
completed by proving the following lemma.
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Lemma 3.2. We have

P{D1(t) ∩ D2(t) 6= ∅} → 0, N → ∞. (3.8)

Proof. We shall prove the stronger result that there exists C0 > 0, such that

P{D1(t) ∩ D2(t) 6= ∅} ≤ C0N
−1/3. (3.9)

It is evident, that

P{D1(t) ∩ D2(t) 6= ∅}
≤ P

{

D1(t) ∩ D2(t) 6= ∅
∣

∣ |D1(t)| ≤ M, |D2(t)| ≤ M
}

+ 2P
{

|D1(t)| > M
}

def
= F + G.

Using some elementary considerations, we can obtain

F <
CM2

N
. (3.10)

Let us estimate G. To this end, define random variables di(t) in the following
way:

1. If t < ti1, we set di(t) = 1.
2. Otherwise, let 0 < ti1 < ti2 < · · · < til < t, and let Y i

1 , . . . , Y i
l be the

corresponding random sets that were introduced above. Set

di(t) = 1 +

l
∑

j=1

∑

m∈Y i
j

dm(tj). (3.11)

Clearly, |Di(t)| ≤ di(t). Majorisation by a branching process gives the fol-
lowing estimate:

Edi(t) ≤ e(J−1)µt,

and thus, by Chebyshev’s inequality,

G = 2P{|Di(t)| > M} ≤ e(J−1)µt

M
=

C

M
. (3.12)

Combining (3.12) with (3.10) and choosing M = N1/3 we get (3.9). This com-
pletes the proof. ✷

4. Existence of the asymptotic density

In this section we shall prove the existence of a function p(x, t) satisfy-
ing (2.1), and we shall also prove that this function coincides with the limiting
density of the first particle. (The existence of this limiting density will be proved
afterwards.)

For the proof of Theorem 2.1, we have to prove the existence of a (non-
random) function p̃(x, t) satisfying (2.1) and coinciding with the limiting density
p(x, t) of the first particle.
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Proof of Theorem 2.1. We shall prove that our system obeys some law of large
numbers. Let us introduce some notation. We take the time t to be fixed, and
so we shall sometimes write zi instead of zi(t). Let ∆ = [x, x + dx],

Ik(∆) =

{

1, if zk ∈ ∆;
0, otherwise

(4.1)

and

SN =

N
∑

i=1

Ii(∆).

Clearly,

SN

N
=

1

N

N
∑

k=1

Ik(∆) =
#t[x, x + ∆x]

N
. (4.2)

Denote mN = EI1(∆) under the condition, that the system consists of N par-
ticles.

Obviously,
mN → p(x, t) dx, N → ∞. (4.3)

Indeed,

mN = P{z1 ∈ ∆ | N particles} =

x+dx
∫

x

p(N)(y, t) dy → p(x, t) dx

as N → ∞, since p(N)(x, t) → p(x, t) by virtue of Theorem 5.1 in the next
section, with p(x, t) satisfying (2.2).

Denote

cN = cov(zi, zj) = cov(z1, z2) = E(I1(∆)I2(∆)) − EI1(∆)EI2(∆)

under the condition, that the system consists of N particles.
Since any finite number of particles are asymptotically independent, cN → 0

as N → ∞.
Denote

ŜN =
N

∑

i=1

(Ii(∆) − mN ).

Hence, we have to prove that

UN =
ŜN

N

P−→ 0. (4.4)

For (4.4) it is sufficient to prove that

EU2
N → 0, N → ∞. (4.5)
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Indeed,

EU2
N =

1

N2
E

(

N
∑

i=1

(Ii(∆) − mN)
)2

=
1

N2

(

N
∑

i=1

E(Ii(∆) − mN )2 + (N2 − N)cN

)

≤ 2cN → 0, N → ∞.

Hence, (4.4) holds, thus implying the validity of (2.1) and so the proof of The-
orem 2.1 is complete. ✷

5. The main equation

We fix N and omit it in our notation until otherwise stated.
In this section we shall obtain a limiting integro-differential equation for

p(x, t) as N → ∞. In Section 4 we have shown that this function coincides with
the asymptotic density p̃(x, t) defined by (2.1).

Note, that
P (0, 0, t, A) = p(x, t) dx (5.1)

for A = [x, x + dx] × [0, +∞)N−1. Letting y ∈ X , we denote

Gi
y = P{zi(t) ≤ zjk

(t), k = 1, . . . , J | zi(t) = yi}, (5.2)

with the set Yi = {j1, . . . , jJ} chosen at random such, that i 6∈ Yi.
We will use the second Kolmogorov equation for this process to derive an

equation for p(x, t) as N → ∞ (here p(x, t) is the density of the first particle).
Let us denote

â(s, x, B) = lim
tցs

P (s, x, t, B) − I{x∈B}

t − s
(5.3)

and
a(s, x) = −â(s, x, {x}), a(s, x, B) = â(s, x, B \ {x}). (5.4)

Then the Kolmogorov equation for our process is given by

∂P (s, x, t, B)

∂t
= −

∫

B

a(t, y)P (s, x, t, dy) +

∫

X

a(t, y, B)P (s, x, t, dy). (5.5)

Let K(i)(y, B) be the probability of jumping from y to the set B under the
condition, that the local time at the ith particle changes. One easily gets, that

K(1)(y, B) = λe−λ(x−y1)dx (5.6)

for B = [x, x + dx] × [0, +∞)N−1.
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Let us now calculate a(s, x) and a(s, x, B). Using the properties of the
Poisson process we can write

a(s, x) = lim
tցs

1 − P (s, x, t, {x})
t − s

= lim
tցs

1

t − s
P{at least one jump occured during time t − s} = µ

N
∑

i=1

Gi
x.

In the same way we obtain

a(s, x, B) = lim
tցs

P (s, x, t, B \ {x})
t − s

= µ

N
∑

i=1

Gi
xK(i)(x, B).

Let us choose B = [x, x + dx]× [0, +∞)N−1. We can rewrite the right-hand
side of (5.5) as follows:

−
∫

B

a(t, y)P (s, x, t, dy) +

∫

X

a(t, y, B)P (s, x, t, dy)

= −µ

∫

B

G1
yP (0, 0, t, dy) + µ

∫

X

G1
yK(1)(y, B)P (0, 0, t, dy)

+

N
∑

i=2

(

− µ

∫

B

Gi
yP (0, 0, t, dy) + µ

∫

X

Gi
yK(i)(y, B)P (0, 0, t, dy)

)

= −µ

∫

B

G1
yP (0, 0, t, dy) + µ

∫

X

G1
yK(1)(y, B)P (0, 0, t, dy),

since K(i)(y, B) = 1B, for i ≥ 2 and for B chosen like this.
Letting N tend to infinity we will obtain the limiting equation. Let us denote

for any set S = {i1, . . . , iJ} and any y ∈ X

IS,y =

{

1, if y1 ≤ yi1 , . . . , y1 ≤ yiJ
;

0, otherwise.
(5.7)

Denote B′ = [x, x + dx] × [0, +∞)J . Using the fact that the zi(t) are symmet-
rically distributed as well as Lemma 3.1 and Corollary 3.1 we find

∫

B

G1
yP (0, 0, t, dy) =

∫

B

G1
yp(y1, . . . , yN , t) dy1 . . . dyN

=
1

CJ
N−1

∑

S={i1,...,iJ}

∫

B

IS,yp(y1, . . . , yN , t) dy1 . . . dyN

=

∫

B

I{2,...,J+1},yp(y1, . . . , yN , t) dy1 . . . dyN
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=

∫

B′

I{2,...,J+1},yp(y1, . . . , yJ+1, t) dy1 . . . dyJ+1

N→∞−→
x+dx
∫

x

p(y1, t) dy1

J+1
∏

i=2

+∞
∫

0

I{y1≤yi}p(yi, t) dyi = p(x, t)GJ (x, t) dx.

In a similar way we obtain that the second term in the right-hand side of (5.5)
is (asymptotically) equal to

λµe−λxdx

x
∫

0

p(y, t)GJ (y, t)eλydy.

Using this, together with the fact that P (0, 0, t, B) = p(x, t) dx, we see that the
equation for p(N)(x, t) is asymptotically equal to (2.2). In the next section we
shall prove the existence of a unique solution of (2.2). The following proposition
then holds by virtue of Lemma 6.2 of the next section. To avoid confusion we
will append index N whenever necessary.

Theorem 5.1. We have

p(N)(x, t) → p(x, t), N → ∞, (5.8)

with p(N)(x, t) defined by (3.1), and p(x, t) the solution of (2.2).

6. Existence and uniqueness of the solution of the main equation

Now we shall prove the existence and uniqueness of the solution of equa-
tion (2.2), which describes the evolution of the system. We consider the follow-
ing problem:























∂p(x, t)

∂t
= −µGJ(x, t)p(x, t) + λµe−λx

x
∫

0

p(y, t)GJ (y, t)eλydy,

G(x, t) =
+∞
∫

x

p(y, t) dy,

p(x, 0) = p0(x),

(6.1)

where p0(x) is a density and supp p0(x) ⊂ [0, +∞).

Proof of Theorem 2.3. Let us first rewrite (6.1) in an equivalent form. Note,
that

+∞
∫

0

p(x, t) dx = 1 (6.2)

for all t ≥ 0, provided a solution exists. Indeed, taking the integral
∫ ∞

0 dx on
both sides of our equation we get

d

dt

+∞
∫

0

p(x, t) dx = 0. (6.3)
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Since p0(x) is a density, we immediately get (6.2). It is not difficult to show
that p(x, t) ≥ 0. So, provided it exists, p(x, t) is a density for all t ≥ 0. Thus

G(x, t) = 1 −
x

∫

0

p(y, t) dy,

and we have the following equivalent formulation of our problem:






















∂p(x, t)

∂t
= −µGJ(x, t)p(x, t) + λµe−λx

x
∫

0

p(y, t)GJ(y, t)eλydy,

G(x, t) = 1 −
x
∫

0

p(y, t) dy,

p(x, 0) = p0(x).

(6.4)

Integrating (6.4) from 0 to t, we get

p(x, t) = µ

t
∫

0

(

− GJ (x, τ)p(x, τ) + λe−λx

x
∫

0

p(y, τ)GJ (y, τ)eλydy
)

dτ. (6.5)

Note, that the value of p(x, t) depends only on p0(y), 0 ≤ y ≤ x. So in order
to prove the existence and uniqueness of the solution of (6.1), it is sufficient to
prove the following lemma.

Lemma 6.1. The following problem has a unique solution for any x0 > 0.


































∂p(x, t)

∂t
= −µGJ(x, t)p(x, t) + λµe−λx

x
∫

0

p(y, t)GJ(y, t)eλydy,

G(x, t) =
+∞
∫

x

p(y, t) dy,

p(x, 0) = p0(x),

0 ≤ x ≤ x0, t ≥ 0.

(6.6)

Proof. First we shall prove that (6.6) has a unique solution in the rectangle

R = {(x, t) : 0 ≤ x ≤ x0, 0 ≤ t ≤ t0},

for some t0 > 0.
Let us consider the metric space X of consisting of continuous functions

p(x, t), (x, t) ∈ R, and the distance function

ρ(p, q) = sup
0≤x≤x0
0≤t≤t0

|p(x, t) − q(x, t)|.

Consider the operator A defined by

A(p)(x, t) = p0(x)+ µ

t
∫

0

(

−GJ(x, τ)p(x, τ)+ λe−λx

x
∫

0

p(y, τ)GJ (y, τ)eλydy
)

dτ.
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We shall show that A is a contraction operator on X for some t0 > 0. As
in Section 3, let us assume the existence of a positive constant K such that
p0(x) ≤ K for all x. Using (6.1), it is then not difficult to see that

∂p(x, t)

∂t
≤ λµ ,

and so
p(x, t) ≤ K + λµt. (6.7)

Denote

H(x, t) = 1 −
x

∫

0

q(y, t) dy.

Then we have

ρ(A(p), A(q)) = µ sup
0≤x≤x0
0≤t≤t0

∣

∣

∣

∣

t
∫

0

(

HJ(x, τ)q(x, τ) − GJ(x, τ)p(x, τ)

+ λ

x
∫

0

e−λ(x−u)
(

GJ (u, τ)p(u, τ) − HJ (u, τ)q(u, τ)
)

du
)

dτ

∣

∣

∣

∣

≤ µt0(1 + λx0)((K + λµt0)(J + 1)x0 + 1)ρ(p, q),

where we have used the estimate
∣

∣HJ(x, t)q(x, t) − GJ(x, t)p(x, t)
∣

∣

≤
∣

∣HJ(x, t) − GJ (x, t)
∣

∣ q(x, t) + GJ (x, t) |q(x, t) − p(x, t)|
≤ ((K + λµt0)(J + 1)x0 + 1) |p(x, t) − q(x, t)| ,

which follows from (6.7) and

|HJ+1(x, t) − GJ+1(x, t)| ≤ (J + 1)|H(x, t) − G(x, t)|.
Choosing t0 such that

µt0(1 + λx0)((K + λµt0)(J + 1)x0 + 1) < 1,

we obtain that ρ(A(p), A(q)) ≤ θρ(p, q), for some constant θ < 1. Hence, the
operator A has a unique fixed point, and this is precisely the solution of the
problem on the set R. Note that our choice of t0 does not depend on the initial
condition p0(x). So, taking p(x, t0) as a new initial condition and choosing t1
in the same way, we can extend our solution to the set {(x, t) : 0 ≤ x ≤ x0, 0 ≤
t ≤ t0 + t1}, and so on. As it is not difficult to show that

+∞
∑

i=0

ti = +∞,

the existence and uniqueness of the solution of (6.1) immediately follow. ✷

Next we formulate and prove a supplementary assertion.
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Lemma 6.2. Suppose that we have a sequence of functions pN (x, t) with

pN(x, 0) = p0(x) and

∣

∣

∣

∣

∂p(x, t)

∂t
− µ

(

− GJ(x, t)p(x, t) + λ

x
∫

0

GJ(u, t)p(u, t)e−λ(x−u)du
)

∣

∣

∣

∣

≤ ϕN (6.8)

for some ϕN ≡ ϕN (x, t) > 0 with the following property: for any x0 there exists

t0 > 0 such that

ρN = sup
0≤x≤x0
0≤t≤t0

|ϕN (x, t)| → 0, N → ∞

Let p(x, t) be the unique solution of (6.1). Then

pN(x, t) → p(x, t), N → ∞, (6.9)

uniformly on any compact set.

Proof. Fix arbitrary x0 and t0. Denote

rN (t) = sup
0≤x≤x0

|pN (x, t) − p(x, t)|.

Clearly, rN (0) = 0. It is not difficult to prove (by integrating (6.1) and (6.8)
from 0 to t) that there exist positive constants C1 and C2, not depending on N,
such that

rN (t) ≤ C1ρN + C2

t
∫

0

rN (τ) dτ.

Using Gronwall’s inequality, we get

rN (t) ≤ C1ρNeC2t

and letting N → ∞, we obtain (6.9). ✷

Remark 6.1. In the general situation, i.e. when the density p(x, t) may be sin-
gular, propositions resembling Theorem 2.3 and Lemma 6.2 can be proved for
the function

G(x, t) = 1 −
x

∫

0

p(y, t) dy.

The proof is analogous to the proofs of Theorem 2.3 and Lemma 6.2, except for
some non-important details.
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7. Some properties of the system

Consider the random variable ηt with density p(x, t). In this section we shall
calculate the expectation of ηt, and we will obtain bounds on the variance D(t)
and the second moment b(t) of ηt.

Clearly, for the proof of Theorem 2.4 it is sufficient to prove the following
lemma.

Lemma 7.1. The following equality holds

dm(t)

dt
=

µ

λ(J + 1)
, (7.1)

where

m(t) = Eηt =

+∞
∫

0

xp(x, t) dx (7.2)

is the expectation of ηt.

Proof. Multiplying (2.2) by x and taking the integral from 0 to +∞, we get

dm(t)

dt
= −µ

+∞
∫

0

xGJp dx + λµ

+∞
∫

0

xe−λxdx

x
∫

0

pGJeλydy. (7.3)

Changing the integration order in the second term in the right-hand side of (7.3)
we obtain

dm(t)

dt
= −µ

+∞
∫

0

xGJp dx + λµ

+∞
∫

0

p(y, t)GJ(y, t)eλydy

+∞
∫

y

xe−λxdx

= −µ

+∞
∫

0

xGJp dx + µ

+∞
∫

0

yGJp dy +
µ

λ

+∞
∫

0

pGJdx

=
µ

λ(J + 1)

+∞
∫

0

d(−GJ+1) =
µ

λ(J + 1)
,

so that (7.1) holds. This proves Theorem 2.4. ✷

Next we shall derive bounds for the second moment and the variance of ηt.
Let us write

b(t) = E(ηt)2 =

+∞
∫

0

x2p(x, t)dx

and D(t) = b(t) − m2(t). Let ηt
1, . . . , ηt

J+1 be independent, identically dis-
tributed random variables with density p(x, t), and let

ρ(t) = Emin{ηt
1, . . . , η

t
J+1}. (7.4)

We will prove the following lemma.
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Lemma 7.2. Under the above conditions b(t) satisfies the following differential

equation
db(t)

dt
=

2µ

λ2(J + 1)
+

2µ

λ(J + 1)
ρ(t). (7.5)

Proof. Similarly to the proof of Theorem 7.1 we can write

db(t)

dt
= −µ

+∞
∫

0

x2GJp dx + λµ

+∞
∫

0

p(y, t)GJ(y, t)eλydy

+∞
∫

y

x2e−λxdx

= −µ

+∞
∫

0

x2GJp dx + µ

+∞
∫

0

y2GJp dy +
2µ

λ

+∞
∫

0

yGJp dy +
2µ

λ2

+∞
∫

0

GJp dy

=
2µ

λ

+∞
∫

0

yGJp dy +
2µ

λ2(J + 1)
.

However,

+∞
∫

0

yGJp dy =
1

J + 1

+∞
∫

0

y d(1 − GJ+1)

=
1

J + 1

+∞
∫

0

y dP
{

min{ηt
1, . . . , η

t
J+1} < y

}

=
1

J + 1
Emin{ηt

1, . . . , η
t
J+1}.

Hence,
db(t)

dt
=

2µ

λ2(J + 1)
+

2µ

λ(J + 1)
ρ(t),

thus proving Lemma 7.2. ✷

Theorem 7.1. The variance D(t) satisfies the following inequality

D(t) ≤ 2µt

λ2(J + 1)
. (7.6)

Proof. Evidently Emin{ηt
1, . . . , η

t
J+1} ≤ Eηt. Hence

db(t)

dt
≤ 2µ

λ2(J + 1)
+

2µ

λ(J + 1)
m(t) =

2µ

λ2(J + 1)
+

2µ2t

λ2(J + 1)2
,

and consequently

b(t) ≤ 2µt

λ2(J + 1)
+

µ2t2

λ2(J + 1)2
.

Then (7.6) follows, since D(t) = b(t)− m2(t), and so Theorem 7.1 is proved. ✷

As a consequence, the deviation of ηt from its mean value is not larger than
O(

√
t).
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8. The case v 6= 0

Here we briefly consider the case that v 6= 0. Assume that λ, µ, J are fixed,
and let N tend to infinity. Let us denote by p(x, t) the density of the first
particle and let p̃(x, t) be defined by

p̃(x, t) dx = lim
N→∞

#t[x, x + dx]

N
. (8.1)

In this case p(x, t) can be shown to satisfy

p(x, t) = αtδ(x) + (1 − αt)p0(x, t), (8.2)

where p0(x, t) is a regular density.
Similarly to the case v = 0, we can prove that p(x, t) = p̃(x, t) as N → ∞,

and that the following equation holds

−dαt

dt
p0(x, t) − v(1 − αt)

∂p0(x, t)

∂x
+ (1 − αt)

∂p0(x, t)

∂t

= −µ(1 − αt)
J+1GJ (x, t)p0(x, t) (8.3)

+ µλe−λx(1 − αt)
J+1

x
∫

0

GJ(y, t)p0(y, t)eλydy + λµαte
−λx,

where

G(x, t) =

+∞
∫

x

p0(x, t) dx.

An immediate consequence of this is the following corollary.

Corollary 8.1. The function αt satisfies the following differential equation

dαt

dt
= −µαt + v(1 − αt)p0(0, t). (8.4)

Proof. Equation (8.4) follows by integrating (8.3) from 0 to ∞. ✷

Denote vcr = µ/(λ(J + 1)). We have seen before, that the whole process
goes off to infinity with velocity vcr, if v = 0. It is therefore plausible that the
whole system goes to infinity with speed vcr−v, if v < vcr, and that there exists
a stationary regime, i.e. p(x, t) ≡ p(x), if v > vcr.

For the stationary regime we have

−v(1 − α)
∂p0(x)

∂x
= −µ(1 − α)J+1GJ (x)p0(x)

+ µλe−λx(1 − α)J+1

x
∫

0

GJ(y)p0(y)eλydy + λµαe−λx, (8.5)
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since αt ≡ α.
Let us denote

m0(t) =

+∞
∫

0

xp0(x, t) dx and m(t) =

+∞
∫

0

xp(x, t) dx.

We shall calculate α and m ≡ m(t) for the stationary regime.

Theorem 8.1. For the stationary regime, α ≡ αt is the unique solution of the

following equation

v(1 − α) =
µ(1 − α)J+1

λ(J + 1)
+

µ

λ
α. (8.6)

Proof. Multiplying (8.5) by x, integrating from 0 to +∞ and subsequently
changing the integration order in the second term of the right-hand side, we
get (8.6). We have to prove the existence of a solution of (8.6). Indeed, denote

f(α) = −v(1 − α) +
µ(1 − α)J+1

λ(J + 1)
+

µ

λ
α.

Then
f(0) =

µ

λ(J + 1)
− v < 0, f(1) =

µ

λ
> 0,

and one easily gets, that f ′(α) ≥ v > 0. Hence, (8.6) has a unique solution and
so the proof of Theorem 8.1 is finished. ✷

Theorem 8.2. For the stationary regime, m ≡ m(t) satisfies the following

inequality

m ≤ 1

2(v − vcr)

(

2µ
(1 − α)J+1

λ2(J + 1)
+ µα

( 1

λ
+

1

λ2

))

. (8.7)

Proof. We obtain this by multiplying (8.5) by x2, taking the integral from 0 to
+∞, and then simplifying the right-hand side similarly to the case v = 0 in the
calculation of b(t). ✷

Remark 8.1. Generally speaking, for the particle there are two possible rules for
making the decision to jump or not to jump. We have assumed that the ith
particle jumps if zi(t) ≤ zj(t), but here we may substitute ≤-sign by <-sign.
In the case v > vcr these two situations differ essentially, because αt 6→ 0. The
case “≤” we have considered before. For the case “<” one can write down a
similar equation as (8.3), and it seems likely that αt → 1 as t → +∞, if v > vcr.
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