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Complete Cluster Expansion and
Spectrum of the Hamiltonian for
Lattice Fermion Models*

1. A. Kashapov and V. A. Malyshev

The spectra of the Hamiltonians H for lattice models of quantum field
theory have recently aroused considerable interest both in the mathematics
(11, 3, 5] and physics (1, 4,7, 10, 12] literature.

The purpose of this article is to transfer the results of [8, 9] to the case of
fermion models. As in [11], we will use Grassmann algebras for fermion
models, although we do not know whether the use of Clifford variables
(creation-annihilation operators) would lead to similar results,

Our results may be summarized briefly as follows. In Section 1, we
develop the necessary apparatus for linear functionals in Grassmann alge-
bras: conditional mathematical expectations, semi-invariants, etc. In Sec-
tion 2, we construct a dynamics by means of the Osterwalder—Schrider
construction (cf. [11]). In Section 3, we construct a small perturbation of an
independent field by means of a cluster expansion. Such a vacuum cluster
expansion differs only slightly from the boson case and is a standard
expansion [11, 3, 5]. We use the apparatus of [8], by means of which it is
possible to obtain uniform strong clustering estimates, and to some extent
even the notation of that paper.

Proofs that are obtained by verbatim repetition of the corresponding
proofs in [8] will not be presented here; instead, reference will be made
to [8].

In Section 4, we prove a Markov property by means of which it is
possible to reduce a physical Hilbert space 1o a single layer in the same way
as in the purely probabilistic case.

The basic supplementary technique we will use here consists of the
introduction of a new Hilbert space, first with an indefinite metric, and
then with a positive metric (Sections 5 and 6). It is precisely in this Hilbert
space that a cluster basis may be constructed (Section 5) in analogy with
the probabilistic case. In Section 8, an operator is constructed that is
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152 KASHAPOV AND MALYSHEV

unitarily equivalent to a tranfer matrix. In Sections 7 and 8, we construct,
in explicit form, an operator that specifies this unitary equivalence. In
Section 9, we prove the basic splitting theorem for the transfer matrix
spectrum, in which the spectrum is decomposed mto “finite particle”

subspaces. A nonisotropicity condition must be 1mposed on the interaction.
However, in Section 10, we will show how the case of an isotropic Dirac
field (and its perturbations) may be reduced to the conditions of this case
by means of a simple transformation.

Moreover, we prove a number of propositions, dealing with the statisti-
cal mechanics of Grassmann systems, that are of independent interest
(necessary and sufficient Osterwalder—Schrider positivity condition, non-
vanishing condition for a statistical sum, etc.).

1. Analysis and noncommutative probabilities
in a Grassmann algebra

Invertibility. Suppose that %A(n) is a Grassmann algebra defined over C
with n generators x,,x,, ..., x, and an identity element. An arbitrary
element in the algebra may be written

f= 2 Josiy o 5% Xy e X, (1.1)
1<i<ig< -+ <ip<n
An element f is invertible (i.e., the left and right inverses exist and are
equal) if and only if f, 7 0. The reciprocal element f ! (if f5 = 1) is given
by the formula

ffl=0-0)y'= 2 Q" (1.2)
where Q = —(f— 1); in the latter sum, there are only a finite number of

nonzero elements.

Differentiation. Right (left) differentiation (3/9x,).f ((3/9x,),f) is de-
fined as follows. In each term of f, x; must be shifted to the right (left) and
then deleted; but if x; is absent from the monomial, the result is zero.

Berezin Integral [2]. We consider the Grassmann algebra %(2n) with

generators x,X,, . . . , X,,dX,, . . . , d%,,dx,. Suppose that
T={iniy,..., 5} CN={1,2,...,n}, §i<ip<---<i.
We let
Xp=X; X -« X, dxp=dx, ...dx.dx;

and for a given dx; we define the linear mapping

f “dxp : U(n)—>A(n)
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by the formula
fxT,dexT= Xq if T'"NT=0;

f Xpdoxp=0 if T'¢ T,

and so on by linearity. If T = N, this formula defines a linear functional on
%A(n). The integral may also be considered as a linear mapping, thus:

f £ 9A(2n) = A(n).

Conditional Mathematical Expectation

Proposition 1.1.  Any linear functional { - defined on A(n) in such a way
that {1) =1 has the form

Jgfdxy
Jgdxy

= (1.3)

for some g € A(n).

Proof. () is defined by its values over monomials. We obtain a proof by
selecting coefficients g in an obvious way.

Remark 1.1. This type of linear functional corresponds to a state
(mathematical expectation) in the case of a C*-algebra (algebra of random
variables). The conditional functional defined below corresponds in many
cases to the conditional mathematical expectation.

Suppose that we are given a linear functional (1.3), with 7 C N, such
that [gdxy, 7 is invertible. We define the conditional mathematical expec-
tation by

A= ([ gaxnr)” [ gfdxyr. (14)
Then it is clear that {f|@) = (f>.

Proposition 1.2. If T\ D T, and [gdxy,, and (g dxy.\r, are invertible,
KATH| Ty = flTo. (1.5)

Proof.
KfT T2>d‘_e‘f(fgde\T2)_1fg<f| T1>de\T2

= i(fgdx,y\rz)_lf[fg<fl Tl>de\T|]de,\T2
+ (fgdxzv\rz)_lf[fgfdxmn}de,\T2= ST,
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since

fg<f| T1>de\T,=fgde\T,<f| T1>=fgfde\T|.

We present one more property of the conditional mathematical expecta-
tion by analogy with the probabilistic case.
If fis a polynomial in x;, i € T, then
SglT>=[Kgl T,
I T>=Lg|T).
Formula for a Linear Change of Variables [2]. Suppose that y,, ..., y,

are the generators of the Grassmann algebra %(n), and that x, = 2V
where 4 = ||a, || is a nondegenerate complex matrix. Then

[ Fx(3)) dy=deta [ fix)dxy (16)
The proof follows from the equation

XXy .. xy = (detA)y, vy ..., pN-

Semi-invariants. We formulate this concept for an arbitrary associative
noncommutative algebra % with an identity element. Suppose that a linear
functional (- ) is defined on % with the property that (1> =1, and let
§,...,8, €% Forany T={i,i,..., )y C{L2,...,m}, iy <i<
<o <y, we let

£T = gilgiz e gik .
We define the semi-invariants

&= <£il’£i2’ SR g,‘,(>

inductively by the formula

=2 - &) (L.7)
where the sum is taken over all partitions 7, U T, U - - - U T,=T. Hence
by the Moebius inversion formula [8]

&=y (=) (g - . (18)

Therefore the semi-invariants are multilinear (in the general case, non-
symmetric) functions of §,.

Proposition 1.3.  The formal Taylor expansion
InCexp(A i€, + Mpby + - - - + A6, )

=kz % S SAA NG E (19)
=1 " i

=1 h=1

holds for real A\, \,, ..., \

m =
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Proof. As in the commutative case, we have the formal series

A
inexpdyy = 3 LT TN
We make the substitution

M=Mi+Xh+ - + N0,
and use the multilinearity property.

Note that the right-hand side of (1.9) actually depends on what are
known as symmetrized semi-invariants, i.e.,

1 AE + FAEYS = AP LA o gy
n{exp(A§, nn)>—m1’m2,2“,mnm< T, E,
where m; >0, m+m+ .- +m,>1, (1.10)
<£’]m"'-'ag;m">=<£17~",£]7£2"'-’gn"'-’$n>7
5’_/ ;.__/
m; umes m, times

CITE IR gm—l’£m>s = % ;@7(1) 3517(2) ) gvr(m)>‘

Here the sum is taken over all permutations of the form
3 l- - m
RGOV,
Gaussian Integrals. Suppose that n is even and let a;, = — a,,. Then

fexp(Zaikxixk) dx, ... dx, = = (det|2a,])"/>. (1.11)

(For the proof, see [2].) The choice of sign depends on the matrix 4 = [l @]
For example, we may consider the case n =2 and a,, = ay=0.1f a, =
— ay, = 3, the left-hand side of (1.11) is given by

fexp(xlx:,_) dx,dx,= +1.

But if a,, + §, the left-hand side of (1.11) is equal to — 1. In both cases,
det(24) = +1. An important special case is obtained if the generators in

A(2n) are denoted by x,, ..., Xy; Xy, ..., X,. Then it follows from (1.11)
that

fexp(zcikxi)_ck) dx,dx, - - - d%, dx, = det||C,||. (1.12)

Gaussian Means and Diagrams. Suppose that the generators of AU(2n)
are Xy, ..., X, Xy, ..., X,. We set

F=x% - xX, (1.13)
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and consider the Gaussian mean

(Fy= (fexp(chx,xj)d)?,, dx, -+ - dx, dx,)

-1

XfFexp(Ec,jx,xj) dx,dx, - - - dx,dx,.

To calculate this mean, we consider the Grassmann characteristic func-

tional
-1
(fexp( ZC,jx,xj) - dx )
XfeXp(zc,-jx,-)'cj + 2%, + 29977,-)1176,. eedx
ij i j

= exp(—nc 7). (1.14)

Here 7, and 7; are Grassmann variables that, together with x, and X
generate the Grassmann algebra %(4n). To verify (1.14), we substitute m
the integral in the numerator

xi“’xi_%bikﬂk’ X, X — 2 by, (1.15)
where B = ||b,|| = C ~'. This substitution does not affect the value of the
integral (it does not change the coefficient of x,%, - - - x,X,).

Proposition 1.4.
F>=Sbi, byl 1, (1.16)
where the sum is taken over all permutations of the form
1---k%
" (w(k) ah w(k))
and |w| is the parity of .
Proof. By (1.14),

F>= ( o, ) ( 3?7.k )

r

: (5%,7),( a?’” )exp( 7C ).

Hence (1.16) follows at once. For monomials F of a different form, we have
(F=0.

As in [8], it is useful to introduce the concept of a diagram. Suppose that
the monomials Fy, F,, . . ., F, have the form (1.13), and that their product
F\F, - -+ F,#0. Every monomlal F; will be represented by a vertex whose
set of stalks corresponds to the generators that form this monomial. Then

1 Russian, “otrostki”; called “outlets” in the translation of [8]. (Translator’s note.)
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in computing {F,, F,, . .., F,)> each term on the right-hand side of (1.16)
corresponds to some diagram obtainable by a pairing of stalks. Here it is
assumed that in the diagram every stalk corresponding to an unbarred
variable is paired with a stalk corresponding to a barred variable. With
every diagram we may associate a graph whose vertices are the vertices of
the diagram and whose edges are paired stalks. A diagram is said to be
connected if its corresponding graph is connected.

Proposition 1.5. If every monomial F; has the form (1.13), then {(F,,
F,, ..., Fp> is equal to the sum of the contributions of all connected
diagrams.

Proof. Suppose the assertion is true for all p < m — 1. Then
(Fpp.. s Fpp={FF,--F,)— kE CFpp - (Fp).
*1

The first term on the right-hand side corresponds to the sum of all
diagrams, while the remaining terms, by the induction hypothesis, corre-
spond to all unconnected diagrams. Therefore, the left-hand side contains
the sum of all connected diagrams.

Remark 1.2. It is interesting that Gaussian semi-invariants even of the
fourth order may be nonzero, for example,

X1 X, X1, X0 = (XXX 1 Xp) — {0, X DX, %) — (X1 X0 X,X ) = —2by by, .

However, all symmetrized semi-invariants of order greater than two vanish,
as follows if we compute the integral

fexp(zcijxifj + 2 Ax; + 2}‘1)?1)’1’7': cedxy= exp(}\C_IX), (1.18)

where

A=QAphy, o A), A=A, LA)

are real vectors. The calculation is similar to that in (1.14) and (1.15).

From now on we shall use another definition of semi-invariants for the
Grassmann algebra. Let us suppose that a linear functional (- on %
satisfies the equation {f)=0 for any odd monomial f & U. Let £,
&, ..., &, be arbitrary monomials of the Grassmann algebra %. We shall
use the formula

& =S oX Gy X -+ X
instead of (1.7). The multiplier
o=0o(T,T,,...,T.§&,....§)=*1

is defined by the equation

fr=0X4 Xép, X 0 X
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Then we can define semi-invariants for any polynomial using the property
of multilinearity.

Note that a number of the properties of semi-invariants are preserved in
the Grassmann case, for example, the generalized expansion in connected
groups (formula (1.10) of Section 1.1 [8] and Lemma 1.1 of Section 2.1 [8)).

2. Construction of the dynamics

To construct the dynamics, we repeat the Osterwalder—Schrider construc-
tion [11].
In what follows,

Zr={t=("",. )

is a v-dimensional integer-lattice shifted by the vector (4,1, ..., 1), and
t'= 3 +n, where 7 is an integer. Suppose that an algebra %, (with identity
element) corresponds to every finite element A C 2 pif Ay C )\2, then
Ay, C A, We set A = J,A, (local algebra).

We will consider the case in which %, is a Grassmann algebra with 2s|A|
generators

(D) =¥a(1),  W2()=d(t), a=12,...,5: tEA.

We let A+ (A7) denote the subalgebra of 9 with generatrices Y5 (?) such
that >0 (+°< 0). Suppose that we are given an antilinear mapping
O : A > A with the properties

0:A*>AT, (2.1
O(fg) = (08)(8f). 22)
Then © will be selected by letting
LT LA Yy ==, ..., 1Y

denote a mapping into Z* and setting
OY; (1) = r(ay. (%), e=1,2.
Here r(a) = + 1 is arbitrary.

Remark 2.1. For the Dirac field in [11], s=4 and r(a) =1 for a = 1,2,
and r(a) = —1 for a = 3,4. If we make the substitution

Ya(D 22D, () =ity  (i=V=T)

for a = 3,4, it will be clear that we may limit ourselves to the case r(a) = 1.

(The transition matrix has the form QO) with determinant 1, so that the

formula for change of variables is trivial in this case.)

By property (2.3) and antilinearity, we may continue @ to the entire
algebra %. Now suppose that a linear functional (- is defined on A with
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(1> = 1. We define a bilinear form on A* by
(f 8) =<(©f) &> (23)

Suppose that the form is Hermitian and non-negative definite on A*. We
set

R = (fEU (), )=0)

Then M* is a linear space (by the Schwarz inequality). The scalar
product is then defined on A* /N*. With this scalar product, the comple-
tion 57 = 2¢,, to the space A /N* will be called a physical Hilbert
space.

Suppose that in % we define a representation S, of the group Z%, t€ Z?,
such that S, : 9%, > %, ,, is an isomorphism. In our case we let

Scba() = da (1 + 1),

which defines S, uniquely. We let S = .,» Where e¢;=(1,0,0,...,0); §
carries % into itself. Now suppose that

(5f. 8) = (1. Sg) 24)
for all f, g € A™. Then § preserves N, since
0 <(S.8)=(£S%) <UfIISH- (2:3)

Therefore S is defined on 5#°, and if S is bounded, then S is self-adjoint;
furthermore,

$*>0. (2:6)
If
(£ <e(l+n™) 2.7)
for some ¢ = ¢(f) and m, we iterate (2.5) to find that
ISIh<1. (2.8)

Remark 2.2. Assuming that 0 is not an eigenvalue of S, we may write

S2= e 2H H > 0.
The dynamics are then specified by the unitary group e”H. We will be
concerned with the spectral properties of H (i.e., S?).
Suppose that A is symmetric with respect to the hyperplane ° = 0 and

let 2#° € A, . We will consider the “unnormalized” bilinear form B(-,-)on
A=A, NA*:

B(f g) = [#(8f)gdt,
(2.9)

= T T1 (@20 dvdco).
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Proposition 2.1. The form (2.9) is Hermitian on A* if and only if
QX =

The proof is evident.
We set

T=2Z"%{12,...,5) X {1,2);
T™={(tae)€T:1°<0};
Tip={(tae)e€T:*=1}.

We let %, ,, denote the subalgebra of %" with an identity element and
generators Y, (1), (,a,e) € T, . _ .
For arbitrary 4 C T, we let 4 denote the projection of A4 onto Z* X

{1,2,...,s} and A its projection onto Z”. Tt will be convenient to denote
the direct product A X {1,2, ..., s} X {1,2} merely by A. We let
AT=ANT", At =A\A",

etc. We also write
di=max{|0 -1 :1,, € Az}
The following proposition was established in [11].
Theorem 2.1. The set Zof all even polynomials in U of the form
F=3(®F)F, Feu,
i

is closed under the operations of addition and multiplication.

Remark 2.3. There are no parity requirements in [11], although the proof
is given only for even polynomials.
From now on we assume that 2¢” is even and ¢ = 027",

Theorem 2.2. The Hermitian form (2.9) will be nonnegative definite if and
only if ¥ € Z.

Proof. Let us prove the sufficiency. Suppose that ¢ = 2(0G),)G,; is an
even polynomial in & and let A € A™*. In this case

K (Oh)h = (B h = (Oh) > (OG;)G:h

= 2 (8(G;h))(Gh).
Using Lemma 2.2 of [11], we find that B(h,k) > 0.

Let us now prove the necessity. For every finite M C T, we introduce
the notation

Yy = H Vo )]
(t,a,0)EM
where the product is taken in some order, for example, in lexicographic
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order. For arbitrary 1 € A} and 2 € %, the expansions
h= 2 hacdng » H = 2 2 bw (O )dn

MeA* KCAY MCA*

exist and are unique (here by ,,, )y, € C). Thus we have established an
isomorphism between the bilinear forms B(-,-) and the matrices B
= {bx )} Here by, =0 if |K| and |L| have different parity, since 3¢~ is
even. We now prove that B is a Hermitian matrix and is non-negative
definite. In fact,

0< X (Ohyhdy,

= 2 bKL'l;Mthf(@‘pM)(G‘PK)‘PL‘PN dp.y - dy+

K,LLMNCA™*
= 2 bxhyhy (f(‘PK‘PM)d‘Pm)(f(%\PN d\l/m))-

In the last sum, the first (or second) integral is nonzero if and only if
M = A" \K (or N=A*\L). The integrals are equal (to +1 or — 1) if
K =L and N= M = A" \K. Our inequality may therefore be rewritten in
the form

0<1§‘bKL}_)KyM’ IMEC, yy==%h,.

Since 8¢ = 2¢", we have by, = b, .

In Ay we define an operator B with matrix elements {bg, } in the basis
{¢x, KCTA™}; then B is a self-adjoint non-negative definite operator.
There is a unique operator 4 =yB which is self-adjoint and non-negative
definite, and is the limit of some sequence of polynomials in B. Suppose
{axs} are the matrix elements of 4 in the same basis {Yx, K CA* ). Then
agy = 0if |K| and | M| are of different parity. We set G, = Zagy Yy, then
H = Z(OG)Gy, with K € #. Theorem 2.3 is proved.

Let us now consider the case in which 3¢ = exp U,, where
Uy= 2 ¢y, &,EC (2.10)
ACA

Without loss of generality, we may assume that cg = 0. Let U} denote the
sum of all the terms of U, that belong to %*. Then OU,;7 € A~. We set

UR=U,—- Uy -0U;}. (2.11)
From the definition of (2.11), it follows that
U/? = 2 Ca¥as

A:ANAY*<Qand ANA~ %0

where the sum is taken over all subsets 4 C A that have nonempty
intersections with A* and A~ simultaneously. We introduce the constraint
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¢, =Oifd/?> 1. Then
Ug = 2 CKL(G‘PK)‘PL’

K,LEA,

where cx; = ¢, if (@)Y, =,. The sum is taken over all nonempty
subsets K,L € A, ,. Since ¢ € eV € &, we have

eVl = W(@e"ult)e_U't EZ,
eVi=1+ 2 C;(,L(G‘PK)‘PL .
KL

We now apply Theorem 2.3, assuming that 2#” = e U4, that is, we assume
that by, = ci, if K+#@ and L+ @; byg = 1 and by, = 0 otherwise (e,
when K or L is empty, but not both). Then

eVi = 2 b (Ovg )Y,

K,LCA|/2

= 2 EaKMaML(G\Pk)‘PL

MCA;, KL
= % (® % aMK‘I/K)( ; aML‘PL)-

By construction, agp = 1 and a,,, = 0 if precisely one of the sets M or L is
empty, in which case

eUIO\ - %1: (®K§ﬂaMK¢K)(L§QaML¢L)

=1+2(8Gy )Gy,
M

and the free constant in G,, is zero. Thus we have proved the following
theorem.

Theorem 2.3.  Suppose exp Uy € # and let ¢, =0 if d° > 1, in which case
Up=In(1+ > (0Gy )Gy )

-ZE0T S @66 ); (2.12)
I=1

M CA]/Z
furthermore, all the sums are finite, and G,, € U, PIAR.Y

3. Construction of the Gibbs ficld

We first define an “independent field,” i.e., a linear functional {+>oon ¥,
by supposing that 4 C A and that F, is supported on 4, i.e., is a polyno-
mial in the generators y;(¢), (#,a,e) € A. Then we may assume that

CFgdo=Eqy lfFA expVody,,

Vo= 3 (A0, Eo=feV°d\,bA=1.

(t,a)EA



e
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Note that {F, ), is independent of the choice of A, and that we need only
require that 4 C A. _The property of “independence” has the following

precise meaning. If 4,,4,, ..., A, are pairwise disjoint, then
<FAlFA2 o Fy 0= <FA,>O<FAZ>O T <FA,,>O' 3.1
Suppose that ||/f || > 2, in which case we may let
d,=d;.

Here d; is the smallest sum of the lengths of edges of the connected tree
constructed on 4 (cf. [8]). Length is measured in the metric

v—1
0=l = 3 I~ g
If HA:|| <2, we letd, = 1. We also let d(4,, ..., A,) denote the smallest
value of d,, where 4 is such that the set {4,4,,..., A,} is connected.

We now define a Gibbs linear functional (- on % A by

CFon=Z23(Fyexp Vo
with
Vy= Z cA)\dﬁ[/A R Zp={exp ¥V, >,- (3.3)
ACA
It will always be assumed that |A| is sufficiently small and that legl <.
Then Z, > 0. The set of numbers ¢, will be assumed to be translation-
invariant.
If there exists a linear functional < - > on % which is a weak limit point of

{*as then (-5 will be called the limiting Gibbs state for the formal
operation

Za(Wa() + Dy, & =A% (34
We now present the concept of a cluster expansion in a case more
general than that treated in [8]. Suppose _we are given the direction

(increasing) of a family of finite sets AZ"* and a sequence of linear
functionals defined on % ,.

Definition. Suppose that for every F, € %, we have |4]| < oo and that for
any A D A in our family we have

CEpop= ;b}{\) ) (3.5)

where the sum is taken over all finite R C A and the numbers BN =
bEM(F,) possess the following properties:

Cl. bg™ converges to certain numbers b z for all R, with A7 T:

C2. bgY are bounded uniformly with respect to A by the numbers br,
and the series 25R converges.

Then

(Fy) = [{i;nT(\F4>A= EbR(FA )
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exists and defines a linear functional on 9. We say that there exists a
(vacuum) cluster expansion for this linear functional.

We will also require the concept of an exponentially regular cluster
expansion, which may be translated word for word from Section 1.2 [8] to
our somewhat more general case, and so will not be repeated here.

The existence of a cluster expansion in the domain of interest is already
quite well known. It may be obtained in a variety of ways: for example, if
all the y, are even, then any of the methods given in [11, 3, 5] may be
applied.

Theorem 3.1. For sufficiently small Ny >0, a cluster expansion in the
domain of interest (I\| <X, |c4| < ¢) exists and the (Fp) are analytic
functions of X and every c, in this domain.

To prove this assertion for odd y,, we may use such methods as
expanding {Fp) in a series in semi-invariants and then proving the conver-
gence of these series, using the bounds found for semi-invariants in Section
2.1 [8]. However, we need only deal with the case in which all the Y, are
even, and so we may use the method given in Section 1.4 [8]. As in [8], we
let

ky=exp(cdq)—1=cpy,, kr = H ky-
ACT

It is easily seen that
ol < Al (3.6)

where ¢ = max|c,|. We shall use the notation of [8]. Repeating the compu-
tations of Section 1.4 [8] verbatim, we find that

<FB> = ;a}' b4
a, = <F3krl(y)>o R G kr"(y)>0~ (3-7)

Theorem 3.2.  The clusier expansion obtained above is exponentially regular,
and we have the uniform strong clustering estimates

|<Fp, F,» .-, Fp)

n
< cFBN BB B T] (38)

i=1
where u; is the number of B, (j=1,2,...,n) for which B; N B, # 0.
Proof. The existence of exponential regularity is proved exactly as done at
the end of Section 1.4 [8]. The existence of uniform strong clustering

estimates is also proved exactly as in [8], i.e., the inequalities (3.6) in
Chapter II of [8]. From these inequalities, (3.8) follows if we can prove that

[<Fg) < C1#! (3.9)
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for every monomial F, with coefficient 1 and some constant C which is
independent of B. But the bound in (3.9) follows from the cluster expansion
(3.7) and Lemma 3.4 of Section 1.3 [8]. Substituting (3.9) for ¢, in (3.6) of
Section 2.3 [8] yields the desired result.

4. Markov property and reduction of physical
Hilbert space

In what follows we-will assume that the conditions of the preceding section
hold, along with condition (2.12). On % we define the bilinear form

(f & =<(©f) g (4.1)
where ¢ - ) is the limiting Gibbs functional constructed in Section 3.
Lemma 4.1. Forall fe U™,
(£N)=>0,
and the inequalities (2.4) and the bound (2.7) hold.

Proof. The non-negativity follows from Theorem 2.2. In passing to the
limit, the volumes A are chosen to be invariant with respect to . In place
of (2.7), we have the stronger bound

I(fs S| < [K(Bf)S™f)| < const,
which follows from (3.9).

Lemma 4.2 (Markov Property). Let

fe Ua d'~l/A\A,/2
be invertible and f € A™*. Then
CfIA 2 UAT D = fIA - 42)

Proof. We use the representation (2.11):

Uy=Ul+U)+0U;.
Then

SAidn=([expUndban,,) [ fexpUdtpn,,
=([exp(UR+OU) dg- [ep Ui d¢A+\A.,2)_1
X f exp(US + OU ) dy, f fexpUg dyyoy, ,
=(fexouy d\pA+\AI/2)_1ffCXP Ui dpen,,

= (fexp Uy d‘l’)\*\)\,/z)_ lffexP U d‘!’A*\Al/z
= <f|A1/2 UA™ 4.
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Lemma 4.3. If g €A} and f € A}, then under the hypotheses of Lemma
4.2 we have (with all averages are taken over A):

(&)= (g’<f|Al/2>)
= (<g|A1/2>,<f|A1/2>)- (4-4)
Proof.
(&) =08)f>=<(Og) fIA ), UATH)
= (Og)fl1A /2 U AT = (O fIA )
= (& <{flA2) = O flA, D) g
= K(OTA )8l A2 U AT D) = LOfTA ) gl A, UATD)
= (®<f|A1/2>)<g|A1/2>>
= <(®<g|A1/2>)<f| A1/2>> = (gl A1/2>’<fl A1/2>)-

Let ¥, /, denote a subalgebra of % with generators yS(2), © =
Lemma 44. If f €U}, then
SfIA DA EN )y -

Proof. This follows from (4.3):

SIADa=(fe S dbann,) " [ dbrenn,,.

1
5.

We now turn to the conditions of Section 3. Note that the conditions of
Lemma 4.2 hold. This is readily verified by means of the cluster expansion
for

U
fe Ypa,,

(as in Section 3).
We introduce the norm || - ||, in ¥ by

HZCA‘PA“C: 2 ICA|C|A|,
where the constant C is defined by (3.9), and then
KL< ISl -

We let A, U, 2> and A* denote the closures of the corresponding
algebras with respect to the norm || - ||,.

Passing to the limit as AT, we obtain analogs of Lemmas 4.2-4.4 for
the case of infinite volume. For example, the analog of Lemma 4.2 is as
follows:

The limits

i A i A ,UA™
Illng<f| 1/2>A and [{lj,nT<f| 1/2 oA
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exist for all f €A™, and are equal. Note that even if f €A™, we can say
only that these limits belong to %, 2
Let ¢ denote the mapping of %™ into A, /2 given by the formula

e(f) =</ T1/2> = Al}f'nT<f| A1/2>A-

Then
(P(ﬁ+)=ﬁ1/2, (p(ﬁ*)cﬁ“ DQ—II/Z, (4.6)
Moreover, it follows from (4.4) that if f € A*, we have
(f=o(N)f-e()=0. (4.7)

In other words, f — ¢(f) € RF. Therefore we have proved the following
theorem.

Theorem 4.1. The mapping ¢ induces an isomorphism from A¥ /NT onto
Uy o/ (RT 0 U, ,) that preserves scalar products.

Therefore the physical space 5#° may be identified with the closure
%q o, 2/ T N, ), a result which is very useful in studying the evolutionary
spectrum.

5. Construction of a cluster basis

Unfortunately, it is not possible to construct a cluster basis directly in  on
as in the real case. We introduce a different bilinear form in 3~ :

(/. 8),=X(598f) g

It is, generally speaking, indefinite. We can see that this form is Hermitian.
In fact,

(f: 8)=59f) &
= {(B((56f)g)> = {(Og)(O56f))
= {(SOg)(S8SOY)) = {(50g)(O))
={S0g)f>=(& /), -

Here we have used translation-invariance and the formula SOS = . Note
also that

(51, 8),;= (£, &) = {(SOF)(Sg)> = (/. Sg),

ie., S is self-adjoint. We write x, < x, if either #, < ¢, in the lexicographic
sense, or ¢, = ¢, and «; < a,, in which case we assume that x = (4, a).
Suppose that x = (¢,a) and let 7 € T /2- We set

T.={(»e)ET )p:y<x).
For arbitrary g € U, /2 We set
T =1li . .
(g Ty = lim {g| T.N Ay (5-3)
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Lemma 5.1.  The limit on the right-hand side of (5.3) exists in the sense of
convergence in a quasilocal algebra.

Proof. As in (3.7), we obtain a cluster expansion for the conditional
mathematical expectation.
We set

UA,x=UA_ 2 Catlyq
ACT,NA

and let < - ), denote the average with respect to the independent field in
A\T, . Then

gl T, NAY, = (<exp Urdox) ™' gexp Updox

= (exp Up 1 30) " (gexp U, o (54
As in [8], we have the cluster expansion (in the notation of [8]):
Ty =3a,,
ay = <nk1"|(y) >0,x e < - qu(y) >0,x . (5’5)

Notice that all the ( — kr (v 0« are even polynomials in the generators of
T,. Therefore the order of the factors in 5.5 is immaterial. The term
<kr (v 20« has even parity, since polynomials which are odd with respect to
the variables in T, will also be odd with respect to the variables in A\ T,
and will yield zero after the application of < Do

For finite I C T, (I may be empty), we set

= > a,. (5.6)
Y :suppyNT, =1

Lemma 5.2.
glT,y= Z Ny - (5.7)

ICT,

Here the parity of 7, coincides with the parity of g (if g is 2 monomial),
and

lImille <(eA)?. (5.8)

Furthermore, as in Section 3.1 of [8], we look for a “conditionally orthonor-
mal” basis with respect to the scalar product introduced above. We let

8 = () - 1,
& =¥:(?), x=(ta), e=12.

Note that {1, g2, g!, g2} is an orthonormal basis in A, ,, with scalar

(5.9)
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product (f, g)o = {(SOg)f>,. Here

, 1, e=¢ =2;
(8 8),=Yer=4—1, e=¢=1,0; (5.10)
0, e+ ¢,

We now introduce the quantities f¢ € %I—l/_z with the properties
SOfi=f7"  e=12;
SO =f, (fIT>=0, (5.11)
{(SOf; )f)f:| T =8 Yee » x> x.

Our method of computation is the same as in [8]. That is, we look for fi as
a perturbation of g:. We immediately have the formula

g — <&l T

1+ T
-1

_ & (EITH(1+ ) (1 +<&ITY)

k= (1+ <2 T, '

The square root of 1+ {g?| 7,.> and its inverse element exist, since

<82l THll e < eA.

All the equations in (5.11) may be verified directly.
For arbitrary finite 7 C T, /2> We introduce the following function de-
fined on I

X ’

(5.12)

0 if xxX{L2}ycCI>
g(x)=+1 if (x,1)el, (x.2) &I,
2 if (x2)el, (x,)el
We set

=17 fo=1,

xel
where the product is taken in lexicographic order over x € Ie= g(x).

Lemma 53. The system { f,} is orthonormal, that is,

Und)=vw={ 5 120

where the plus (minus) sign corresponds to evenness (oddness) of the number of
times &(x) is equal to 0 or 1.
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Proof.
(frs fr) = (SOf;) fr>
=<(SOf - - (SOfNf - S (5-13)

We will assume that x, = (,,a,) is the maximal x; and analogously for
x} = (#},a}). There are three cases to consider. In the first case, x, # x|. For
example, suppose that x; > x{. Then writing { - > in the right-hand side of
(5.13) in the form (- | T, >>,, we obtain zero (because of the second row of
(5.11)). Similarly we obtain zero if x, = x|, but ¢, # €. But if x, = x| = x
and ¢, = ¢], the right-hand side of (5.13) becomes

(SOLfz) - (SOfG - - FEU(SEN LI T
=ASO%) - (SOLNSL - S Ve

The proof of Lemma 5.3 is completed by induction.

6. Construction of a new Hilbert space and the operator .7
We let
N, ={feAT: (fg),=0}
for all g €A™, and prove an analog of Lemma 4.3.
Lemma 6.1. If f €A™, we have
f=LSfIT ) ER,. (6.1
Proof.
(g’<f| T1/2>), = <(S®g)<f| T1/2>> = <(S@g)<f| T1/2 UurT->>
=K(SO)fITi U T ™)) =L{(SOg)f>
= (&)
Let us now consider the linear space L =% /N,.

Lemma 6.2. Every element f € L may be represented in the form

f= > afi,  where 3 |c]|- CY< 0. (6.2)

ICT ) icr

Here f; is understood to mean the image of f; defined in Section 5 by the
mapping AT > L.

Proof. We need only to prove that an arbitrary element f €%, ,, may be
represented in the form (6.2); the desired result will then following from the

preceding lemma. But this proof is entirely analogous to the proof of
Lemma 2.3 in [8].
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Let f be written in the form (6.2). We set
f+= 2 afrs f-=f—f+, (6.3)
I:(ff)i>0

and introduce a new scalar product in L. For f and g written in the form
(6.3), we let

fs Baew=(f+ > g+)—(f-> g-);-

The completion of L in this new norm is denoted by 2#°.,,. If we introduce
an operator 8 in 5, according to the formula

o =f,—f_,

it is clear that
(f g)new f (Sg) (f’ g)1= (f’ ag)new )

Lemma 6.3. The operator S:U¥ —> AT preserves N,;.
Proof. Letf €N, and g €AT. Then

(51, 8),;= (SOSf) &> = {(Bf) 8> = (SOf)Sg)> = (f, Sg),=

By virtue of this lemma, S is defined on L. We define the operator % = &S
on L, noting that & carries L into itself.

7. Cluster properties of ¥

We introduce the concept of a regular partitioning of a finite subset in 7.
The collection a = (A4,,4,,...,4,) is called _a regular partitioning of
ACTif(@) 4, UA,U - Ud,=4,and (b) 4,,4,, ..., A, are pairwise
disjoint.

Remark 7.1. If a is a regular partitioning of 4, we have (see Section 3)
Wado = W ol¥ao - Wy dor

Let A be given and let (4, 4,, . .., 4,) be the finest regular partitioning of
A. Then either 4; = (x;,&) or 4, = {(x,, 1), (x;,2)}. In the second case, we
provisionally set ¢ = 0 and, w1th this notation, set

o(A) = CfSh o 2.

Later it will be useful to define ® on T in accordance with its earlier
definition:

O(t,a,8) = (¥1,0,3 — £).

Lemma 7.1. The operator ¥ is a (bounded) non-negative cluster operator
on ey, in the basis { f,}.
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Proof. Let us first prove that ¥ has cluster estimates in the basis { f;}:

> i) pew= > Sf0)= (s> fr)

=L(Ofi) fry =2 e(Y) - - - o(Yy).
The fact that w(Y)=0for Y C I or Y C ©I is proved precisely as in [8].
The cluster estimates
lo(Y) <(cA)*

follow from the general theorem in [8] on cluster estimates in the situation
in which there exists an exponentially regular cluster expansion.

Observe also that ¥ (1) = 1. From the cluster property, it follows that #
is bounded, and therefore has a unique continuation to 5#°,.,,. Let us prove
that ¥ = % * and .¥ > 0. In fact, the first assertion follows from the
sequence of equations

(7 &new= (/:58),= (51, &),
=(07£.8)= (7 &uew
and the second from the sequence
(fsZ Naew= (8N =ONH=(f /) > 0.

From now on we will consider a system with interaction of the form
(3.4), and will require a somewhat stronger condition on the coefficients ¢ ;:

& = c A%, (1.1)

To determine the exponents JA, we introduce a metric p,(-,-) on T for
every finite subset 4 C T

1 if t,=t*e and
Pa(X1%3) = ({xpx2} X {1,2}) N A = {(x),),(x2,3 — ¢)},
max{2 +|) — £3],|t, — 1|} otherwise.
Let JA be the length of the minimal connected graph in T whose vertex set
contains 4; the length of the graph is measured in the metric p,(x,, x). If
|A| = 1, we will have d, = 2.
Let ¢(qe = ¢4 if
A= {(t,a,e),(t+ ey, a,3 —¢)}.
Here d, s = 1. By translation-invariance, c,,, is independent of 7 € Z.

From the condition U, = ®U, and Theorem 2.3, it follows that all the

C(anM are real and non-negative. We will limit ourselves to the case in
which

Clae >0 (7.2)

for all 25 pairs (a, ¢), and A is sufficiently small and positive.
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We now define the part # of ¥ by means of its matrix elements:

0 if I#1I,

B = (fi>Bfr) = f[ Wo(BHUJ), I=T,

i=1

where I and I’ are finite subsets of T, and the product is taken over all
elements of the finest regular partitioning (J,J,, . .., J;) of the set I = I'.

Lemma 7.2. %, satisfes the inequalities

(eM< By < () (7.4)
Proof. Let us find coefficients ¢, and ¢, such that

0 <2¢, <|eganl <ic,

for all pairs (a, ). (There are 2s such pairs.)
If |J|=1,J = {(x,¢)}, we will have

(W)U JT)=(fi, fi) =i + O,

and if |J| =2, J = {(x, 1),(x,2)}, we will have

W((B)UT) = (f5 ) = New@nan + ON)-
In both cases, for sufficiently small A, we will have

(e MV o(9T) U T) < (e )L
The required bound follows from the definition of %,,..
Lemma 7.3. Let us write
dyp=F 1 — B .
Then
cA)™H! if |I|l=

B :|I"=mlﬁ”/| < {Ec}‘;max{m,m) ; ||]ll ~m.

Proof. We have

Fu= 2 H (/)
..... J)yi=1
where the sum is taken over all regular partitionings (J,,J,, . . ., J;) of the
set (®1) U J. In this case, if J, € ©1 or J; C J, then w(J;) = 0. In the general
case,

Iw(AO)I < (cx)min(zi‘|+:a2+ RPN dAm)_

The minimum is taken over all collections {A4,,4,, ..., 4,,} of subsets of
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T such that:
(a) {ffo,/f,, e ,/fm} is a connected graph in T
(b)

m m

> (x, HN4l=2>|x, 2)N A4,
i=0 i=0
for every x € T

(c)

The rest of the proof is similar to the proof of Lemma 3.1 in [9]. The
validity of these bounds may be verified by means of the same reasoning as

in [8].
8. Equivalence of 57 phy and 577,
Suppose that the hypotheses of Section 7 are satisfied.
Lemma 8.1. %, CRN¥.
Proof. If f €R,, then (f, Sf), = 0. Note that
(f:S)=(f f)

Since N; and NT are linear spaces,

a _ (AT/%)

"T (N /R

Therefore we can identify 5#° phy With the closure of the set 5#°.,, /% in
the metric (-, -). Here

R={f€Hew:(f f)=0)}.

Since .# is a non-negative self-adjoint operator, the square root 4 = % 1/2
exists. The operator A4 is also nonnegative and self-adjoint on 2#°
Furthermore, we have

(/> 8) = (7 8)pe= (/A*4g), .= (4f. Ag), .., -
Therefore A may be extended to a unitary mapping
A oy > K

new:*

new -

Lemma 8.2.  Under the mapping A : #° phy > H new the operator ASA* corre-
sponds to S.

Proof. (f,5g) = (f,F S2)new = (Af,(484)Ag),..,. In other words, we have
the following theorem.

e o et 10
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Theorem 8.1. The operator S? in 3¢, is unitarily equivalent to the
operator ASF 8A* in H ey

We will study the operator S?, since S is not positive definite.

9. Spectrum of S?

By Theorem 8.1, we may forget S? and 5#° phy and instead study the
operator & = A8F 84* in 57, .

We say that the operator &, is dual to &, if there exists two bounded
linear operators 4 and B such that ¥, = AB and &, = BA. Our method of
studying the spectrum and invariant subspaces will be based on the
connection between the spectra of dual operators. This connection is
described in the following lemma. We let 0(4) denote the spectrum of 4.

Lemma 9.1. Suppose that A and B are bounded linear operators on the
Hilbert space . Then

6(AB\{0) = o(BA)\{0). ©.1)
If ' is a closed subspace invariant with respect to AB, the image B'is

invariant with respect to BA, and if the restriction of AB to 7' has a (closed)
spectrum that does not contain 0, the B37' is closed and

«(AB| ) = 6(BA| g3"). (9:2)

Proof. Suppose that p € 6(4B)\{0}. Then there exists a sequence of
vectors { f,} in 5#” such that

Ifl=1, |I(4B = p) fill 0.

Here it may be assumed that || Bf,|| > ¢ > 0, since otherwise p would be
zero. Let us write

_ _Bf
YA
Then || g,|l =1 and
_ 1 _ 1 _
I(BA = 0 &l = 15y |BAB = i)l < IBII(AB = ) [, =>0.

This means that p € 6(BA)\{0} or
‘6(AB)\{0} C o(BA)\{0}.

Because of symmetry, we obtain the first of these statements. Now suppose
that (4B)2#°' C 2¢°’. Then

(BA)(B#'y= B((AB)#") C BX".

Furthermore, note that if B is the restriction of B to %, then ~1§ ~1 exists
and is bounded in BZ#’, since 0 & o(B) (although if 0 € o(B), we will
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have
0 € 0(AB|4.)).
Hence it follows that B2#’ is closed. Let us prove the latter assertion.
Suppose that
0 € o(BA| pye).
Then there exists a sequence & € B3’ such that
llg.ll=1 and | BAg,||—~0.

Let us consider
-1

8n
IB ~'g.|
Hence 0 € 0(4B|,..). We have obtained a contradiction. The rest of the

argument coincides with the proof of the first assertion. Lemma 9.1 is
proved.

<UIBIlIAgll < IBIIIIB~"| || BAg,| —>O0.

We now use the fact that the operators 7, = 87 6% = 8.7 8A*A and
Dy=F8F8=A*A8.7 8 are dual to @ and to each other.

We first study the cluster properties of &, and 9,, ie., we prove
analogs of Lemmas 7.1 and 7.2.

Lemma 9.2. In the basis (f,}, the matrix elements of the operator 8% 6%
=B = BS B8 satisfy the inequalities

(e < (B2, < (e A, (9.3)

This lemma is an obvious corollary of Lemma 7.1.

Lemma 93. Now suppose that a?, i=1,2, are the matrix elements of
D; — B*. Then the Jollowing cluster estimates hold:

E |011'l <{(c)\)2'"+1 ¥ om= III;

I' 0 =m (cAymax@mH L} m|I|.
The proof follows from Lemma 7.2.
We now state the basic result on the spectrum of the transfer matrix.

Theorem 9.1.  For any integer N > 1, there exists a number Ao > O such that
Jor all A:0 <A <\, the operator S* on ¥ phy has N + 2 mutually orthogo-
nal invariant subspaces:

%0={C0nst},%1,9f2,...,%1v,

N
2, =;«/phye( ® y/,().
K=1
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These subspaces are invariant under translation. The spectra a(S2|%K) of the
restrictions of S? to each of the subspaces satisfy the conditions

U(SZ|%N) Q[CQ\M,CI}\M], K=12,...,N;

2 2AN+1 (9'5)
a(S%%,) C[0cA™ )].

Proof. Using the cluster estimates from Lemmas 9.2 and 9.3, we may
construct (for i = 1 and 2) a set of subspaces

Ko = {const), I\ (i), i), - . ., Hn (i), n (i)
with the following properties:

1. mutual orthogonality;
2.

Hon(i) = %me( é %K(i));
K=1

3. 2#°% (i) are invariant with respect to the &; and to translations in
new;

4,
0(Dilwee ) S[eA e MK, K=12,...,N;
o(Zil,m) C[0,eN NP,

This construction is entirely analogous to the proof of the basic theorem in
[9], and we will not discuss it here.
It now follows from the duality of &, and &, and from Lemma 9.1 that

8k (2) C 'k (1), FH k(1) CHx(2), K=1,...,N. (9.6)
Hence,
8F H# k(1) C 8% (2) C Hk(1).

But 87 3¢ (1) = 57°x (1), because of the bounds for the spectrum. There-
fore

8% (2) = H#x (1),
and similarly

FH k(1) = Hk(2).
To prove the theorem, we set

Hx=AKx(l), K=12,...,N.

We choose 27y as the orthogonal complement of the direct sum of
gy H 1, ...,y . By Lemma 9.1, we now have all the assertions of our
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theorem except perhaps the last assertion, i.e.,
(2%, C [0,(cl,>\)2<”+”]. 9.7

Suppose that there exists some invariant subspace 57’ of the operator &
which is orthogonal to the subspace DOY_o# x, and let

o(Z|4) C[ ()N, 1]. (9.8)
Then again by Lemma 9.1 and the properties of the invariant subspaces

of Z,, we have

N N
A C B Hy(2)= © Forg).
K=0 K=0

Therefore 27 C @%_ 57 , which follows from the explicit form of A*.

10. Perturbation of the Dirac field

Here we construct a transformation by means of which it is possible to
reduce a perturbation of an isotropic Dirac field to the nonisotropic case
considered in Section 7.

For a Dirac field on a lattice, formal interaction may be taken in the
form

U= ;4/‘(:)4/2(;) +A ;w(:)y(r — W1, (10.1)
where

LUEZY N0 = (V). (1), wi(0)

is a row vector and y*() is the column vector formed by the generators of
the Grassmann algebra

E : _ = _ .
Y(=—ty=~y(r—n={% T 1=0=e, p=0123
0 if |t—1)#1.

Here the Euclidean Dirac matrices have the form

1 0 0 i
Yo= Yo = I ) Y= ' >
~1 —i

0 -1 —i 0

0 1 0 i 0
E _ -1 E_ 0 —i

Y2 -1 ’ Y3 ~i 0 H

1 0 0 0

{Y#E’YVE} =26, , (Y#E)* =’
e, =(0,1,0, 0), e, = (0,0, 1,0, e;=(0,0,0, 1).

B % g
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The effect of (10.1) may be written concisely in the form

U=y¢'(1+A02% (10.2)

where vy = {y(t = )}, € Z* is an infinite-dimensional matrix. We define
¥, as follows:

- , t—t if O=1"
V(1 —1)= {Y( ) ,
0 otherwise.

Yspace =

Let ¥, = vy — ¥,; then
Yo¥s = — ¥s¥o» (10.3)

as may be verified by simple computation. We introduce new Grassmann
generators

' =y (1+A7,/2), @ =(1+M,/2%
Then
Y=g (1+A7,/2)7 ¥ =(1+A7/2) ¢ (10.4)

The inverse of the matrix (1 + AY, /_2) evidently exists for the small A (for
example, it may be an operator in A). Substituting (10.4) into (10.2) yields

U=¢'(1+M,/2)7 (1 + M, + Mo)(1 +A,/2) "7
Furthermore, we readily observe that

(1+A7,/2) 7 (1 +A7)(1 + A7, /2) "= 1+7,
where
15— 1)l < min{(cx)z,(cx)"""}
(norm in ). Furthermore,
(1+A3,/2) " Ao(1 + A7,/2)""
oo o0
= 3 (C3M) Mo 3 (— 435"
i i ST R A
=Moo+ A X X (N e + TR ]9
K=
_>\ 2 2 - % K+[‘YSK’70?SI

=>\‘70+O+§’

since the expression in brackets vanishes by (10.3).
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Thus (10.2) may be rewritten in the form

Us=o'(1+ Mo+ §+ 90 + So' (09X
+AY {(pl(t)yoq>2(t +e) — @'+ eo)y0<p2(t)}

+ S OF( = 1)+ (= )9

After the substitutions

(P igl(r),  Qi(H)ipl(; a=3,4,

we obtain

U= ; gqvl(t)qo,f(t) + AZ Ea) gwf(f)wi"e(t + )

+ ECA¢A >
A

where

|eal < min{(ch)%, (N7},

Le., ¢, satisfies the bounds postulated in Section 7.

(1]
(2]

3]
(4]
(5]
(6]

(7]
8]

9]
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