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Abstract. We consider one-dimensional flow of point particles towards the
wall. The only interaction between neighboring particles are elastic collisions.
We consider the limiting transition to continuum mechanics, when number of
particles tends to infinity and the distance between neighboring particles tends
to zero. We show that, as a result of the shock, the sharp break appears between
regions with initial and double initial densities.
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1. Introduction

One of the important problems in mathematical physics is to deduce the
macro laws of continuum mechanics from micro laws of point particles mechan-
ics. However, the attempts to do this were only with strongly stochastic micro
dynamics. Purely deterministic way was suggested in fact in the following two
papers:

1. In [2], where simple models without interaction but with external forces
were considered. The notion of regularity (no intersection of particle trajecto-
ries) were introduced.

2. In [1] where systems of N particles with mutual interaction were con-
sidered, moreover, distances between neighboring particles were of the order 1

N
but not less than ε

N with 0 < ε not dependent on N . Euler equation, which was
obtained in this paper, appeared (very unexpectedly for us) to coincide with
the known Euler equation for one-dimensional Chaplygin gas, see [5, 6].

Here we consider simplest model with collisions but without external forces
and where collision is the only possible interaction between particles. Note that
collision models cannot be regular by definition (see [2]).
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Already here there are interesting phenomena in continuum limit. We will
immediately see two kinds of continuum limits for micro dynamics. This is due
to the absence of smoothness in the dynamics. This shows that the relation
between micro models in particle mechanics and macro models in continuum
mechanics may be more complicated than just a transition from many particle
ordinary differential equations to partial differential equations.

2. Model and Results

In general, at any time 0 ≤ t <∞ we have N identical (equal masses) point
particles 1, 2, . . . , N on R+ with initial coordinates

0 < x1(0) < . . . < xN (0) (2.1)

and negative initial velocities

v1(0) < 0, . . . , vN (0) < 0 (2.2)

There are no any external forces and interaction (except collisions) between
particles. When particle 1 collides with the wall (the point x0 = 0), its velocity
changes the sign. When two particles collide they exchange velocities. We agree
that always at the moments t of collisions vk(t) of any particle k means vk(t+0).

Remark 1. Collisions with external force for 2 particle system were considered
in [3] (see also [4]), where relation of such model with billiard dynamical systems
and with number π was discovered.

Below we consider the simplest cases, related by scaling x → x
N , t →

t
N .

Namely, for k = 1, 2, . . . , N

xk(0) = k, vk(0) = −1 (2.3)

and

xk(0) =
k

N
, vk(0) = −1, (2.4)

together with the limit N →∞ to get continuum mechanics model.

2.1. Continuum limit

Density. Now we consider the case (2.4) of initial conditions. Define distri-
bution function (of the number of particles) at time t as

FN (x, t) =
1

N
#{k : xk(t) < x}, 0 < x <∞
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It is clear that at time 0 there exists, as N → ∞, continuum limit of the
distribution function

F (x, 0) = lim
N→∞

FN (x, 0) = x, 0 < x < 1,

and the density
ρ(x, 0) = Fx(x, 0) = 1, 0 < x < 1.

Theorem 1. For any time t ≥ 0 there exists the limit

F (x, t) = lim
N→∞

FN (x, t),

and the function (density) ρ(x, t) such that∫ x

0

ρ(x, t)dx = F (x, t)

Moreover, for 0 < t < 1
2

ρ(x, t) =


2, 0 < x < t

1, t < x < 1− t
0, 1− t < x <∞,

for 1
2 ≤ t < 1

ρ(x, t) =


2, 0 < x < 1− t
1, 1− t < x < t

0, t < x <∞,

and for t ≥ 1

ρ(x, t) =


0, 0 < x < t− 1,

1, t− 1 < x < t,

0 t < x.

Lagrangian trajectories. For any x ∈ [0, 1] and any N we define particle
(index) k = k(N, x) such that its initial coordinate xk(0)=xk(N,x)(0) is the
closest from x (say, from the right). Let xk(t) = xk(N,x)(t) be the trajectory of
this particle.

We call (if this limit exists)

y(x, t) = lim
N→∞

xk(N,x)(t) (2.5)

the Lagrangian trajectory of the continuum media “particle” which is initially
at point x.
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Theorem 2. The limit (2.5)

y(x, t) = lim
N→∞

xk(N,x)(t)

exists for any t ≥ 0 and is equal to

y(1, t) =

{
1− t, t ≤ 1

2 ,

t, t > 1
2 ,

y(0, t) =

{
0, t ≤ 1,

t− 1, t > 1,

y(x, t) =


x− t, t < x

2 ,
x
2 ,

x
2 ≤ t <

1
2 ,

x
2 + (t− 1

2 ), t ≥ 1
2 .

(2.6)

We see that for any t the function y(x, t) defines one-to-one mapping (2.6)
of (0, 1) to some interval. All these formulas follow from results in Section 3 by
simple scaling xk(t)→ 1

N x k
N

(t).

Problem with Eulerian velocities. We could define the velocity v(y, t) of
“particle” which at moment t is situated at the point y by using the velocity of
particle xk(t) closest to x from the left as follows (for any c > 0)

v(y, t) = lim
xk(t+ c

N )− xk(t)
c
N

,

but this will not have limit in the region where density ρ(y, t) = 2, as the velocity
of particles xk(t) quickly fluctuates between 1 and −1 , as we will see below.

That is why we should increase the scale. namely, choose the corresponding
particle xk(t) and define limiting velocities say on a bit greater scale - between
1 and 1

N - for example on the scale 1√
N

as:

v(y, t) = lim
xk(t+ 1√

N
)− xk(t)

1√
N

Then we get

Theorem 3. For 0 < t < 1
2 ,

1
2 < t < 1 and t > 1 we have correspondingly

v(y, t) =


0, 0 < y < t,

−1, t < y < 1− t,
0, 1− t < y < 1,

v(y, t) =


0, 0 < y < 1− t,
1, 1− t < y < t,

0, t < y < 1,

v(y, t) =


0, 1 < y < t,

1, t < y < t+ 1,

0, t+ 1 < y,
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3. Proofs – Cellular Automata and Words

Here we consider initial conditions (2.3).

Lemma 1. At time moments t ∈ D = { j2 : j ∈ Z+} the particles can be only
at the points x ∈ D. Moreover, at any time t ∈ D and for any 1 < k ≤ N the
distance xk(t)− xk−1(t) is either 1 or 0.

These assertions will be clear from the constructions below.
In our case terminology of discrete mathematics (cellular automata, words)

can help. Namely, we consider cellular automaton, where cells are numerated
by numbers i ∈ Z+ and the state of the cell i at time t is denoted by ω(i, t).
Time is discrete t ∈ D = { j2 : j ∈ Z+}, thus the time unit is 1

2 .
Each cell can be in only one of the 4 states 0,±1, 2. The state of all system

(of our cell automaton with 2N cells) at time t we represent by the word (that
is by finite sequence) of some length n+ 1.

w(t) = ω(0, t)ω(1, t) . . . ω(n, t),

that is by the sequence of states of all cells. Bur we will have in mind that
ω(n, t) 6= 0 and ω(i, t) = 0 for i > n.

We will need below the following three words

w−,m = 0(−1)0(−1) . . . 0(−1), w+,m = 0101 . . . 01, w2,m = 0202 . . . 02

Each of them has length 2m and consists of m repeated pairs 0(−1), 01, 02
correspondingly. Each state of our automaton will conssist of 1 or 2 of these
words.

We will see that, in the dynamics, the state ω(i, t+ 1
2 ) depends only on the

states ω(i − 1, t) and ω(i + 1, t). More exactly the dynamics will be defined
below. Thus one can also say that such dynamics defines deterministic locally
interacting process.

Now we give exact relation of this cell automaton with our particle system.
Namely, our main assumption above was that the initial velocities are equal
and initial distances between particles are also equal. Remind that to make this
relation more clear we use the scale (2.3). Then we want to describe the set
{xk(t)} of particle trajectories in more detail. Note, that for any t the order of
particles is conserved, that is xk(t) ≤ xk+1(t), k = 1, 2 . . . , N − 1. This follows
from the definition of dynamics.

We identify the cell i of the automaton with the point i
2 ∈ D. and the

sequence of cells with the sequence of these points The state of these cells is
defined by the number of particles in this point and their velocities. Namely,
we will see later that at any point can be either:

1) 0 particles (state 0);
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2) 1 particle with velocity 1 (state 1) or −1 (state −1);
3) 2 particles, where one particle has velocity 1 and the other −1 (moment

of collision).
We will need the following notation:
1. X(t) – the maximal coordinate among the coordinates of collision points

at time moment t ∈ D;
2. Tk – the time of first collision of the particle k. Note that the particle N

can collide only with particle N−1. Thus, at the moment TN particles N−1, N
will get velocities −1, 1 correspondingly;

3. Xk - the coordinate of the first collision of particle k;
4. TNN - the time when particle Nwill return to its initial position N ;
5. k(x, t) - the (serial) number of the particle which has positive velocity at

point x at time t, if there is such. Put K(t) = k(X(t), t).
After scaling like in the theorems 1,2: 1) xN (t) defines the length of our

“shock wave”. 2) X(t) defines the trajectory of the boundary between domains
with densities 1 and 2, 3) TN defines the time when after permanent decrease
of the length it becomes to increase.

There are 3 useful ways to understand the situation in detail. The first way
– from the very beginning to see the increase of X(t), 2) to understand the
decrease of any xk(t) until Tk, Xk, 3) to imagine the whole picture in terms of
cellular automaton. These ways correspond to the following lemmas.

Dynamics of the length.

Lemma 2. 1) If t ≤ TN then

X(t) = t− 1, K(t) = 2t− 1, TN =
N + 1

2
, X(TN ) =

N − 1

2
,

xN (t) = N − t.

2) If TN < t < TNN then

TNN = N + 1, X(t) = X(TN )− (t− TN ) = N − t,

xN (t) = X(TN ) + (t− TN ) = t− 1.

It is useful to start with initial steps. Initially (t = 0) we have the sequence
of particles with all velocities −1 and with coordinates 1, 2, . . . , N . This corre-
sponds to the word w(0) = 0ω−,N of length 2N + 1 with N + 1 zeros and N
cells with the state −1.

At time t = 1
2 we will have the word w( 1

2 ) = ω−,N of length 2N . The first
collision will occur when the particle 1 will reach the wall – that is at time t = 1.
All other particles will have the integer coordinates 1, 2, . . . , N−1. Thus at time
t = 1 the particle 1 will get velocity v1(1) = 1, and particle 2 at this moment
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will be at the point 1 and will have velocity v2(1) = −1. Particles 3, 4 . . . will
move to the left on the distance 1

2 . Thus at time t = 1 we will have the word
w(1) = 1w−,N−1 of length 2N − 1.

At time t = 1 + 1
2 particles 1 and 2 collide at the point x = 1

2 , at the
same moment particle 3 will be at the point x = 3

2 . The corresponding word is
w(1 + 1

2 ) = 02w−,N−2 = w2,1w−,N−2.
At time t = 2 particle 1 will again collide with the wall and particles 2 and

3 collide at x = 1. That is w(2) = 1w2,1w−,N−3.
Thus we have the following sequence of words

w(0) = 0w−,N , w(
1

2
) = w−,N , w(1) = 1w−,N−1,

w(
3

2
) = w2,1w−,N−2, w(2) = 1w2,1w−,N−3.

At moment 3
2 there are two particles with numbers 1 and 2 at the point 1

2 .
And particle with number 2 will have positive velocity. Other particles will be
at the points

x1(
3

2
) = x2(

3

2
) = X(

3

2
) =

1

2
,

x3(
3

2
) =

1

2
+ 1,

xk(
3

2
) =

1

2
+ k − 2, . . . ,

xN (
3

2
) =

1

2
+N − 2.

That is for 2 < k < N

xk(
3

2
)− xk−1(

3

2
) = 1

Then X( 3
2 ) = 1

2 ,K( 3
2 ) = 2, At the next moment t = 2 the particles 2 and 3

collide at point 1, and points with k > 3 will move to the left on 1
2 without any

collisions.
For any t < TN we will define a “quasiparticle” (leader) with trajectory

y(t), 32 ≤ t. Namely, on the interval 3
2 ≤ t < 2 it is the particle 2, that is

y(t) = x2(t). Then at time t = 2 particle 2 collides with particle 3 and passes
leadership to it, that is on the time interval 2 < t ≤ 5

2 it will be y(t) = x3(t).
And so on: we can continue because no particle behind y(t) cannot influence
(cannot catch it up) its movement, as all velocities are ±1. In general at time
moments t ∈ D y(t) = X(t) and it passes leadership to k(X(t) + 1, t). Until
t = TN . After this particle N will move freely to the right with velocity 1. So,

X(t)−X(t− 1

2
) =

1

2
, K(t)−K(t− 1

2
) = 1,
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X(
3

2
+ τ) =

1

2
+ τ, K(

3

2
+ τ) = 2 + 2τ,

or putting 3
2 + τ = t

X(t) = t− 1, K(t) = 2t− 1 = 2X(t) + 1, K(t)−X(t) = t.

Particle trajectories. Let T+
k be the smallest time after which particle k has

always velocity 1, and X+
k = xk(T+

k ).

Lemma 3. For any particle k there are 3 stages of dynamics:

1) Particle k moves with velocity −1 until its first collision at time Tk = k−1
2 ;

2) It performs fluctuations with period 1
2 in the time interval Tk < t < T+

k .
It fluctuates between two points Xk and Xk + 1

2 . Moreover, fluctuations
of all fluctuating particles are synchronized, as it is shown in lemma 4,

3) It moves with velocity 1 for t > T+
k .

Particle xN (t) has velocity −1 until its first collision, that is for t < TN , and
gets velocity 1 at the moment TN . And has velocity 1 always afterwards that
is for t > TN , because no other particle can reach it.

Then TN−1 = TN − 1
2 as until time TN−1(when particle N − 1 gets velocity

1) the distance between particles N and N − 1 is always 1.
Note that for any k < N the particles k, k+ 1, . . . , N move with velocity −1

until the first collision of particle k. At the moment of first collision particle
k = k(X(t), t) gets velocity 1, and then, in one time unit, X(t) increases on 1

2
because

xk(X(t),t)+1 − xk(X(t),t) = 1

and these subsequent particles collide at the point xk(X(t),t) + 1
2 .

It follows by induction that

Tk = TN −
N − k

2
=
N + 1

2
− N − k

2
=
k + 1

2
. (3.1)

In particular, the first collision of particle 1 (with the wall) is at time T1 = 1.
Similarly,

XN = N − TN =
N − 1

2
,

Xk = k − Tk =
k − 1

2
.

(3.2)

Particle k has its first collision with particle k − 1 and the second collision
with particle k + 1. Afterwards it will have collisions with these two particles.
Moreover, it will move back and forth between two points. Particle 1 fluctuates
between points 0 and 1

2 , particle 2 – between 1
2 and 1, particle 3 - between 1

and 3
2 , particle k – between points k−1

2 and k
2 .
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Dynamics of words.

Lemma 4. In our dynamics there can be only the following 2 types of words
(where l ∈ Z+): 1) for 0 ≤ l ≤ N

2 only

w(N, l,−) = w2,lw−,N−2l and w1(N, l,−) = 1w2,lw−,N−2l−1,

2) for N
2 < l ≤ N only

w(N, l,+) = w2,lw+,N−2l and w1(N, l,+) = 1w2,lw+,N−2l−1.

The dynamics for unit of time 1
2 in case 1) is

w2,lw−,N−2l → 1w2,lw−,N−2l−1 → w2,l+1w−,N−2l−2.

In case 2) the dynamics is

w(N, l,+) = w2,lw+,N−2l → 1w2,l−1w+,N−2l+1 → w2,l−1w+,N−2l+2.

We could equivalently write down dynamics in terms of real time if we put
l = 2t⇐⇒ t = l

2 .
Assume that at time t we have the word w(t) = w2,lw−,N−2l. Then l integer

coordinates 0, 1, . . . l − 1, will be empty and coordinates 1
2 ,

3
2 , . . . ,

2l−1
2 will be

collision points. It follows that

X(t) = l − 1

2
,K(t) = 2l.

As for the word w−,N−2l, its corresponding coordinates l, . . . , N−l will be empty
and any of the same number of non-integer points contains one particle only.

We will show that at time t + 1
2 the state of the system corresponds to the

word

w(t+
1

2
) = 1w2,lw−,N−2l.

In fact, at time t+ 1
2 particle 1 will move to point 0, other integer points 1, 2, . . . , l

will become collision points and non-integer points will become empty. A special
case is the contact between particles 2l and 2l+ 1. The distance between them
is 1, and their velocities are v2l = 1, v2l+1 = −1. They collide and as a result,
the points X(t) = l− 1

2 and X(t) = l+ 1
2 become empty and the point l becomes

a collision point.

Scaling. As N → ∞ then in our scaling the main parameters change as fol-
lows:

1) TN → 1
2 , TNN → 1;

2) X(t) becomes the point between left interval where ρ = 2 and right interval
where ρ = 1. Thus, X(t)→ t for t ≤ 1

2 , and X(t)→ 1− t for 1
2 < t < 1;

3) if for example k = [αN ], where 0 < α > 1, then Xk → α. Moreover, both
Tk and Xk tend to α

2 .
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4. Pictures

Here we show how the region of double density (thick segments) moves in
time.

5. Conclusion

Other Problems There are many generalizations of our model - from sim-
ple to sufficiently difficult. First generalizations are of course initial conditions
(2.1,2.2) but with non-equal distances between neighbors and/or non-equal ve-
locities.

Remark 2. In our model below there was no simultaneous collisions of 3 or more
particles at one point. But for other initial conditions this could occur and there
are two ways to deal with this:

1) just ignore this problem, as such collisions can occur only for initial con-
ditions from a subset G of R2N

+ with Lebesgue measure 0,
2) one can define somehow the distribution of velocities in such multiple

collisions satisfying conservation laws.

But main generalization could be existence of external forces on some par-
ticles and various interactions between particles. One of the question is the
convergence to known and unknown one-dimensional PDE of continuous me-
chanics. Note that we did not find this in our model. This indicates on the
possibility that in some cases the situation cannot be described by accustomed
PDE equations.

Below we give references to earlier work in this direction. But in our paper
there are some new points:
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1. Dynamics of particles at discrete time moments exactly coincides with
the dynamics of cellular automaton.

2. Moreover, trajectories of particles are given explicitely. However, they
are smooth only on some time intervals, depending on the initial position of the
particle.

3. Density of particles has very strong gap, which also moves.
4. In our scaling 1

N the trajectories of particles tend to continuum dynamics
trajectories. Nowever, velocities do not have limits in this scaling (due to local
fluctuations of particles in the domain of double density), but do have for more
rough scaling 1

N1−ε .
More detailed mathematical review of earlier and possible future activity in

this direction is in progress.
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