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Abstract
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1 Introduction

There are su�ciently many mathematical results concerning equilibrium states

of Hop�eld models, but results on the dynamics of these networks are scattered

throughout the physical literature. Moreover, no rigorous exposition nor even

a de�nition of the dynamics in the thermodynamic limit seem to exist. Note

that there has been a lot of work on the equilibrium properties of such models,

in order of increasing complexity: for p = 1 (Curie-Wei�model), p = const ([7],

[8], [1], [10]), p = o(N) and p = �N for small � ([3], [2]).

As for the dynamics, only the case of p = 1 was su�ciently well understood,

because in the overlap representation it can be reduced to a one-dimensional

random walk (see for example [4] and references therein). Here we get a general

picture of the dynamics for p = const.

In Part 1 of this paper we consider asynchronous zero temperature dynam-

ics. We �rst take the limit for the temperature T ! 0 and N �xed and then

the thermodynamic limit N !1. We use a convenient representation (random

walk representation) for the dynamics, which is richer than the overlap repre-

sentation usually used by physicists. In this representation one can easily pass

to the thermodynamic limit. This representation seems to be known and used

by physicists by the name \pool dynamics", cf. [9], p.747.

The simple behaviour in the vicinity of �xed points was of course well un-

derstood. There were some results about �xed points themselves. But we know

only one paper where a global picture of the limiting dynamics has been estab-

lished: Procesi and Tirozzi [15] de�ned some cones in the overlap representation

and showed that the dynamics behaves di�erently in di�erent cones. We make

this picture more complete. In particular we study the dynamics on the bound-

aries of these cones. We indicate di�erent regions with respect to the dynamics

behaviour: LLN region (law of large numbers region), zero velocity region, in-

cluding not only �xed points but also some other points which we call \traps"

and scattering (singular) region.

For the limiting dynamics the trajectories of the dynamical system are piece-

wise linear and they converge to a global or local minimum, or to traps. In the

second part of the paper we will obtain estimates for the number of �xed points

and for the \transient time", i.e. the time to reach a neighbourhood of a �xed

point or trap.

One of our main concerns in this paper was also to be su�ciently careful with

many annoying technical details, usually neglected in physical presentations.

We �nally would like to note that for general quadratic (negative de�nite)

energy functions the results will be similar.
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2 De�nitions and Main Results

2.1 Zero temperature limit

Let � = 1; : : : ; N be a �nite volume. We consider the set S(�) = f�1; 1g

�

of

con�gurations � = (�

1

; : : : ; �

N

) on �, where �

i

2 f�1; 1g denotes the spin at

site i.

On this space we construct discrete time �nite Markov chains L

�;N

=

f�

�;N

(t)g with the following transition mechanism (asynchronous sequential

heat bath dynamics):

i) choose randomly a site i;

ii) erase the spin �

i

;

iii) choose a new spin �

0

i

via conditional Gibbs probabilities with inverse tem-

perature � and a quadratic energy function H

�

given by

H

�

(�) = �

1

2N

X

i;j2�

J

ij

�

i

�

j

:

The Gibbs distribution on a �nite set is thus given by

P

�

(�) = (Z

�

)

�1

exp(��H

�

(�)):

Note that this Gibbs distribution is a stationary distribution for the Markov

chain L

�;N

.

Lemma 2.1 For � ! 1, L

�;N

tends to a �nite discrete time Markov chain

L

N

with transition probabilities given by i), ii) and the new spin �

0

i

is equal to

�

0

i

= sgn

�

X

k 6=i

J

ik

�

k

�

;

if sgn(

P

k 6=i

J

ik

�

k

) 6= 0, and �

0

i

= 1;�1 with probability 1=2, if sgn(

P

k 6=i

J

ik

�

k

) =

0.

Here and in the sequel the sgn-function is de�ned as follows:

sgn(x) =

8

<

:

1; x > 0

0; x = 0

�1; x < 0:

The dynamics de�ned in the lemma is called zero temperature dynamics. We

would like to point out that it is not deterministic and it does not coincide on

hyperplanes

P

k 6=i

J

ik

�

k

= 0 with the dynamics that is usually referred to as

zero temperature dynamics. Indeed, the standard de�nition is not to change
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the spin in site i, if

P

k 6=i

J

ik

�

k

= 0, and site i has been selected, so we stand

still. This precludes that stochasticity arises.

Next we consider a special choice of the parameters J

ij

.

Let �

�

, � = 1; : : : ; p, be given con�gurations on S(�). In the �rst part of

the paper we assume p to be �xed as N tends to in�nity. The con�gurations

��

�

will be called patterns. We choose

J

ij

=

X

�;�

c

�;�

�

�

i

�

�

j

:

We get Hop�eld networks if we choose

J

ij

=

p

X

�=1

�

�

i

�

�

j

;

according to Hebb's rule. Otherwise speaking

H

�

(�) = �

1

2N

p

X

�=1

�

�

�

; �

�

2

:

up to an additive constant.

2.2 Random Walk Representation and Scaling

Instead of anN -dimensional state description we can restrict to a 2

p

-dimensional

state description, which we will describe below. This representation generalises

the \overlap representation" widely used in the study of equilibrium distribu-

tions [2]. Using this overlap representation of the process, the Markov property

gets lost and so the dynamics for this cannot be de�ned. Our representation

still contains all necessary information for de�ning a dynamics.

Divide � into subsets of sites S

�

(N), where

� = (�

1

; : : : ; �

p

)

with (�

1

; : : : ; �

p

) a con�guration from the set f+1;�1g

p

, such that for all �

�

�

i

� �

�

, for all i 2 S

�

(N), and the sets S

�

(N) are maximal sets with such

property. There are at most 2

p

such sets. We assume that there are exactly 2

p

such sets, and we de�ne A = f1;�1g

p

. Throughout the paper we will make the

following assumption.

Assumption For

s

�

(N) = #fi 2 S

�

(N)g

the sequence s

�

(N)=N converges, i.e. there exists s = (s

�

)

�

with

P

�

s

�

= 1,

such that

s

�

= lim

N!1

s

�

(N)

N

:
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Further we assume that s

�

> 0.

The assumptions are satis�ed in the following examples.

i) The �

�

, � = 1; : : : ; p are orthogonal.

ii) The �

�

can be random. In this case one can ask whether the assumption is

satis�ed a.s. This is the case when �

�

i

are mutually independent and take

the value 1 with probability 0 < p

�

< 1. Hierarchical memory models are

also in this class.

Let Q(N) be the parallelepiped

Q(N) = f(r

�=(�

1

;:::;�

p

)

) : 0 � r

�

� s

�

(N)g \ ZZ

2

p

:

We de�ne a mapping r : f+1;�1g

�

! Q(N) given by

r

�

(�) = #fi 2 S

�

(N) : �

i

= 1g; (1)

and so the �th component of the vector r represents the number of sites in

S

�

(N) where � has spin 1.

Introduce the space scaling for our reduced representation:

x

�

= lim

N!1

r

�

N

;

provided that this limit exists. Under this scaling Q(N) becomes the paral-

lelepiped

Q = �[0; s

�

] � IR

2

p

:

We will study the time-space scaling limits for L

�;N

, as �, N ! 1. Denote

by f�

�;N

(t)g and f�

N

(t)g the \reduced state" processes corresponding to L

�;N

and L

N

respectively, and by �

�;N

(r; t), �

N

(r; t) the corresponding position of

the processes at time t, when starting at the point r 2 Q(N), i.e.

�

�;N

(r

N

; t) = r

�

�

�;N

(r

�1

(r

N

); t)

�

�

N

(r

N

; t) = r

�

�

N

(r

�1

(r

N

); t)

�

:

The mapping r is given in (1) and for r

�1

(r

N

) we can take any � with r(�) = r

N

.

Note that �

�;N

(t) and �

N

(t) are Markov chains.

2.2.1 Overlap representation

Consider the mapping m : S(�)! f�1; 1g

p

with

m(�) =

1

N

f(�

�

; �)g

�

: (2)

This representation does not completely respect the Markov property but ap-

proximately. We shall see in Section 2.5 that the semigroup property partially

survives in the large N limit.
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2.3 Finite N dynamics

In the sequel we will restrict to Hop�eld models and to the case of zero temper-

ature, i.e. � = 1. In Part 2 of this paper we will indicate for what quadratic

energy functions our results are still valid.

De�nition 2.1 A point r

N

2 Q(N) is called a �xed point (for �

N

(t)) if

�

N

(r

N

; 1) = r

N

a:s:

Lemma 2.2 The following monotonicity property holds

H

�

(�

N

(t+ 1)) � H

�

(�

N

(t)); a:s::

Moreover,

H

�

(�

N

(t+ 2)) < H

�

(�

N

(t));

with probability at least 1=N

2

, if �

N

(t) is not a �xed point, and if s

�

(N) 6= 1

for all �.

The intuition behind this lemma is quite simple. The conditional Gibbs distri-

bution chooses points of smaller energy with big probability that will be 1 for

zero temperature. The only problem is that one can move a su�ciently long

time in the neighbourhood of for example global maxima, where the decrease

in energy is very slow.

Lemma 2.3 For all su�ciently large N the following statements are true.

i) The set of �xed points P

N

is non-empty. They are the global and local minima

of H

�

on Q(N) and they consist of a subset of the set of vertices of the

parallelepiped �

�

[0; s

�

(N)] \ IR

2

p

.

ii) There exists a time T = T (N), such that for any initial point m

N

Pf�

N

(r

N

; t) 2 P

N

g = 1; t � T:

Next we study the limiting dynamics for N ! 1. To this end we need to

introduce some new concepts and notation.

Let us write c

�

2 f�1; 1g

2

p

for the con�guration with �-th component c

�

�

=

�

�

and let s(N) be the vector with �-th component s

�

(N). Note that the

vectors c

�

do not depend on �

�

and they are orthogonal, because all s

�

are

positive and hence all s

�

(N) for N su�ciently large.

In the reduced state representation the energy can be written as the following

quadratic polynomial.

Lemma 2.4

H

�

(r) = �

1

2N

p

X

�=1

�

4(c

�

; r)

2

+ (c

�

; s(N))

2

� 4(c

�

; r)(c

�

; s(N))

�

: (3)
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It easily follows that H

�

has a global maximum at the point

1

2

(s

1

(N); : : : ; s

2

p

(N)):

This maximum is not unique, as we shall see below.

2.4 Limiting Dynamics

2.4.1 Existence

Consider the scaled limit of the energy function

H(x) = lim

N!1

1

N

H

�

(r

N

)

= �

1

2

p

X

�=1

�

4(c

�

; x)

2

+ (c

�

; s)

2

� 4(c

�

; x)(c

�

; s)

�

; (4)

for r

N

=N ! x. Then

@

@x

�

H(x) = �2

X

�

c

�

�

(c

�

; 2x� s):

Only on hyperplanes (@=@x

�

)H(x) = 0 the limiting dynamics (see below) may

not be deterministic and scattering (cf. [13]) may occur.

For � 2 f+1;�1g

p

de�ne

h

k

�

= fx 2 Q j sgn

�

X

�

c

�

�

(c

�

; 2x� s)

�

= kg; k = �1; 0; 1:

The planes h

0

�

are called singular hyperplanes.

Lemma 2.5 Let r

N

2 Q(N) be a sequence with r

N

=N ! x 2 Q, and let

x 62 h

0

�

. Then for all su�ciently small � the following Euler limit exists

lim

N!1

1

N

�

N

�

(r

N

; [�N ])

D

= �

1

�

(x; �);

for some random variable �

1

�

(x; �). More precisely, �

1

�

(x; �) is deterministic

with

@

@�

�

1

�

(x; �) = v

�

(�

1

(x; �));

for the piecewise linear function v

�

: Q! IR given by

v

�

(x) = (s

�

� x

�

)1

fx2h

1

�

g

� x

�

1

fx2h

�1

�

g

:

7



The latter piecewise linear vector function

v(x) = fv

�

(x)g : Q! IR

2

p

;

has discontinuities on the singular hyperplanes.

Remark 2.1 Instead of time scaling one could consider from the beginning

the following asynchronous parallel dynamics. In each site i a Poisson arrival

process of rate 1

0 < t

i;1

< t

i;2

< :::

is de�ned, and all these processes are mutually independent. At time t

i;k

we

change the spin at site i as has been prescribed in the above.

2.4.2 Singular regions and vector �eld

Let F 2 f�1; 0; 1g

A

, and denote by F

�

the �-component of F . De�ne the

region B

F

� Q by

B

F

= \

�

h

F

�

�

:

Then [

F

B

F

= Q and B

F

\ B

F

0

= ; if F 6= F

0

. Often we will also denote a

region B

F

by F when no confusion can occur. If B

F

� [

�

h

0

�

, then we shall call

B

F

a singular region. By dim(B

F

) we shall denote the dimension of the region

B

F

.

Remark 2.2 The intersection \

�

h

0

�

has dimension 2

p

� p in Q. More speci�-

cally, it is given by

1

2

s+ fx j (c

�

; x) = 0; � = 1; : : : ; pg:

Since the global maxima of the limiting energy are exactly the points x with

(@=@x

�

)H(x) = 0 for all �, it follows that \

�

h

0

�

is exactly the set of all global

maxima, and so this set has dimension 2

p

� p in Q.

We will now recursively de�ne a vector �eld on Q.

For x 2 F with x 62 [

�

h

0

�

, de�ne

V (x) = v(x):

We shall also use the system of functions v

F

(x) and we shall identify

v

F

(x) = V (x)

i� x 2 F . To de�ne the vector �eld V on the remaining part Q, i.e. on [h

0

�

, we

need the following lemma.

8



Lemma 2.6 Let � and a region B

F

of maximum dimension be given. De�ne

the function v

F

(�) on h

0

�

\

�

B

F

by continuity. The function

sgn

�

X

�

c

�

�

(c

�

; v

F

(x))

�

is constant on h

0

�

\

�

B

F

.

Let B

F

be contained in at most k singular hyperplanes, say in h

0

�(l)

, l = 1 : : : ; k.

Assume that v

F

0

has been de�ned for all F

0

that are contained in at most k� 1

singular hyperplanes. Let B

F

0

be a region such that B

F

�

�

B

F

0

.

De�nition 2.2 B

F

0

is called an ingoing region for B

F

if for some (and hence

for any) x 2 B

F

,

F

0

�(l)

X

�

c

�

�(l)

(c

�

; v

F

0

(x)) � 0; l = 1; : : : ; k;

where v

F

0

(x) is de�ned by continuity; it is outgoing if for some x 2 B

F

,

F

0

�(l)

X

�

c

�

�(l)

(c

�

; v

F

0

(x)) � 0; l = 1; : : : ; k;

with strict inequality for at least one value l. Otherwise it will be called neutral.

The geometrical meaning of this de�nition is the following. Let B

F

0

be a face

of maximum dimension with

�

B

F

0

� B

F

.

How can one get immediately from B

F

0

to B

F

if the velocity at any point

y 2 B

F

0

is v

F

0

(y)? There should exist a point x in B

F

0

, such that if we draw

the line x+�v

F

0

(x), � � 0, this has a non-empty intersection with B

F

(because

the velocity is linear). But this only can hold if B

F

contains a point y, such that

the angle between the velocity vector v

F

(y) and the normal on all hyperplanes

h

0

�(l)

in the direction of B

F

0

is at least �=2. But this is exactly the de�nition of

B

F

0

being ingoing for B

F

.

In the same way: how can one immediately get from B

F

to B

F

0

? Then

there should be a point y 2 B

F

such that the velocity v

F

0

(y) at y points inside

B

F

0

. But this is only true if the angle between v

F

0

(y) and the normal on all

hyperplanes h

0

�(l)

is at most �=2. This is the de�nition of B

F

0

being outgoing

for B

F

.

Finally neutrality means that both of the above situations do not occur.

We can now complete our de�nition of the vector �eld V on Q.

De�nition 2.3 For x 2 B

F

set V (x) = v

F

(x) = v

F

0

(x), for any outgoing

region B

F

0

. If there is no outgoing region we de�ne V (x) = v

F

(x) � 0.

9



Note that in general the vector �eld on singular regions need not be uniquely

de�ned. The next lemma shows that the vector �eld can never be 0 on singular

hyperplanes.

Lemma 2.7 Each singular region has at least one outgoing singular region.

Morever, V (x) = 0 for some x 2 F implies that F is non-singular.

We will introduce paths � = �(t), which are continuous mappings � : [0; T ]! Q,

with T possibly equal to 1, such that

i) �(t) belongs to Q n [

�

h

0

�

, except possibly for a countable subset T(�) of �.

ii) in points of the same interval belonging to [0; T ]�T where �(t) runs through

a region B

F

� Q n [h

0

�

, �

x

is linear with velocity (d=dt)�(t) = v

F

(�(t)).

The system of paths starting at x 2 Q is called an x-bundle of paths and we

denote it by V

x

; paths starting at x are denoted by �

x

.

Let x be a point in the non-singular region F . Then for t su�ciently small

the path �

x

(t) will not cross any singular hyperplane and so

�

x

(t) = s

F

� v

F

(x) expf�tg = s

F

+ (x � s

F

) expf�tg = �

1

(x; t); (5)

where

s

F

�

=

�

s

�

; F

�

= 1

0 F

�

= �1;

by virtue of Lemma 2.5. Therefore, paths starting at x 2 F are headed towards

s

F

and we shall call s

F

the quasi-attractor of F .

By virtue of the lemma below, it is su�cient to study the following set of

paths: V

x

� � if and only if �

x

crosses only singular regions of co-dimension at

most 1 in Q, for all �

x

2 V

x

.

For such paths, let us consider the velocity vector V (�

x

(t)). Then each

time �

x

crosses a singular region, precisely two components of V (�

x

(t)) are

discontinuous in t (two, since h

0

�

= h

0

��

).

Lemma 2.8 The set fx 2 Q jV

x

� � g contains an open subset dense in Q.

Following [13] one can give the de�nition of stability of a path and prove that

such paths are stable. One can also de�ne deterministic and essentially deter-

ministic systems and prove that the Hop�eld model is essentially deterministic.

Note that V

x

contains a unique path for x in the above set.

Theorem 2.9 For all x with V

x

� � and all � , the Euler limit exists, i.e. there

is a random vector �

1

(x; �), such that

lim

N!1

1

N

�

N

(r

N

; [�N ])

D

= �

1

(x; �);

for any sequence r

N

2 Q(N), with r

N

=N ! x. More precisely, �

1

(x; �) is

deterministic and equal to �

x

(�).

10



Remark 2.3 The limiting dynamics only depends on the patterns �

�

by the

values s

�

.

This form of the limiting dynamics can be obtained by a \glueing procedure",

provided that on each �nite time interval the paths �

x

cross the singular regions

only �nitely often. The latter is true because of acyclicity of paths, which

concept we will now de�ne.

For a given path �

x

enumerate T = f� � � ; t

i

; � � �g. With this path we can

associate the sequence of all regions

F

i

(�

x

) = F () �

x

(t) 2 F ; t 2 (t

i

; t

i+1

)

that �

x

subsequently visits.

De�nition 2.4 The path �

x

is called strongly acyclic if the following property

holds. The path visits each region at most once, i.e. the sequence F

i

(�

x

) is

�nite and all F

i

(�

x

) are mutually di�erent. The network is called (strongly)

acyclic if for almost all x the paths �

x

2 V

x

are (strongly) acyclic.

Theorem 2.10 All paths �

x

2 � are strongly acyclic and hence the network is

strongly acyclic.

Problem 1 Determine the form of the limiting dynamics for points x with

V

x

6� � .

We will comment on this problem. For such points x for which V

x

has a unique

element, the limiting dynamics will indeed exist and will have the same form

as in Theorem 2.9. However, if V

x

contains more than one element, then this

means that some path �

x

crosses a singular region having more than one out-

going region, at the point y say. In y scattering will occur (cf. [13]) and with

some probability (depending on y) the path continues along one of the outgo-

ing regions. In particular this holds for initial points x where H has a global

maximum.

Another problem with respect to such points x is, that the limiting dynamics

has no natural unique de�nition: it depends on the sequence r

N

=N . This can be

easily understood from the case p = 1 and �

1

= (+;+; : : : ;+). Then r

N

(�) =

#fi j�

i

= 1g and A consists of 1 element, � = 1 say. Hence h

0

�

= 1=2.

Let r

N

=N ! 1=2, N ! 1. If r

N

=N < 1=2 � 1=2N for all N , then with

probability 0 there is a jump to a bigger state. It means that r

N

(r

N

; t)=N 2 h

�1

�

for all values t. It easily follows that

lim

N!1

1

N

r

N

(r

N

; [�N ])

D

=

1

2

expf��g:

Similarly if r

N

=N > 1=2� 1=2N for all N , we have

lim

N!1

1

N

r

N

(r

N

; [�N ])

D

= 1�

1

2

expf��g:

11



Finally, if

1

2

�

1

2N

�

r

N

N

�

1

2

+

1

2N

;

for all N , then the limiting dynamics is non-deterministic:

lim

N!1

1

N

r

N

(r

N

; [�N ])

D

= X(�);

where X(�) = (1=2) expf��g or 1� (1=2) expf��g with equal probability. This

phenomenon is called \scattering" (cf. [13]).

2.4.3 Fixed points and traps

Next we shall introduce �xed points and study their properties.

De�nition 2.5 x is called a �xed point, if V (x) � 0 (in the case that V (x) has

multiple values, this means that all values should be 0).

Lemma 2.11 On the set fy 2 Q jV

x

� �g any �xed point x 2 Q has the

following property: for some sequence r

N

2 Q(N) with r

N

=N ! x

lim

N!1

1

N

r

N

(r

N

; �N)

D

= x;

for all � > 0. Also vice versa, i.e. if the last property holds for some x 2 fy 2

Q jV

x

� � g, then this is a �xed point.

Conjecture 1 This holds for all x 2 Q.

Problem 2 Prove this conjecture.

We will explain some ideas on this problem. The problem for proving this for

points outside the set fx 2 Q jV

x

� � g is the following. One should con-

struct a Lyapunov function in the neighbourhood of such points, which has

some uniformly negative drift in this neighbourhood. The \bad" points in this

set, however, are points with the following properties:

1. it is contained in a singular region with more than one outgoing region;

2. if the point is not an element of h

0

�

, then the velocity along the �-direction

is 0.

Such \bad" points are local maxima with respect to the coordinates along which

the velocity is not equal 0. Therefore the energy cannot be used as a Lyapunov

function, since the decrease in energy is arbitrarily close to 0.

Our suggestion is to use the quasi-attractors for the construction of a suitable

Lyapunov function, for example the distance to these quasi-attractors, because

a whole neighbourhood such points is attracted with some uniformly positive

speed towards some set of quasi-attractors (what set will become clearer below).

12



Remark 2.4 Under the conditions of the previous lemma, our �xed points are

stable �xed points in standard terminology.

Theorem 2.12 i) The set of �xed points P is a subset of the vertices of Q. In

particular, P is contained in the regions of maximum dimension and it

is precisely the set of local and global minima of the energy H.

ii) There exists a set of vertices T with P \ T = ;, such that for any � > 0

there exists a �nite time T (�) with

Pf inf

y2P[T

jj�

1

(x; t)� yjj < �g = 1

for all t � T (�) and all initial points x 2 fy jV

y

2 � g, where jj � jj is some

norm on IR

2

p

.

Remark 2.5 As a consequence of this theorem there are no limiting cycles.

Remark 2.6 It follows directly from (5) that the time to reach a �xed point is

always in�nite. This is di�erent from the case of �nite N . It means that even

though in the case of �nite N the �xed points are reached in �nite time, this

time is larger than linear in N . Additionally, we have convergence to vertices

that are no �xed points and hence no local/global minima of the energy on Q.

Remark 2.7 It is well-known and easy to see that the only global minima of

H

�

are the patterns ��

�

, if the �

�

are orthogonal. If

1

N

(�

�

; �

�

)! �

� �

;

then the scaled limiting vectors are the only global minima of the scaled limit of

the energy.

From (5) it is clear that T must consist of quasi-attractors. The function of a

quasi-attractor is determined by its location. We can distinguish the following

cases.

i) s

F

2 F . Then the path starting at x 2 F will converge to s

F

(although s

F

will be reached only after in�nite time). Since v

F

(s

F

) = 0, it follows that

s

F

is a �xed point of the vector �eld. Moreover, the cone F is invariant.

We have the following result.

Lemma 2.13 The set of �xed points for the vector �eld is given by

fs

F

j s

F

2 F ;F non-singularg:

13



ii) s

F

2 F nF , where F denotes the closure of F , and so s

F

is a point in some

singular region. Also in this case the path starting at x 2 F will converge

to s

F

and it will reach it only after in�nite time. Clearly

lim

y!s

F

;y2F

v

F

(y) = 0;

and so s

F

can be viewed as a �xed point for the region F . In particular,

the closure F of the cone F is invariant.

By Lemma 2.7 the velocity at s

F

cannot be equal to 0. Hence, s

F

is

not a �xed point and so all paths starting at the point s

F

will leave F

immediately. Such points s

F

will be called traps.

Lemma 2.14 The set T from Theorem 2.12 is exactly the set of traps,

i.e.

fs

F

j s

F

2 F n F ;F non-singularg:

iii) s

F

62 F . Then the path starting at x 2 F will move in the direction of

s

F

till it hits the boundary F n F . After this, the path will move along

some outgoing region of this boundary into the direction of the quasi-

attractor corresponding to the outgoing region. Hence, none of F and F

are invariant.

In Section 3 we will give an example of the existence of traps.

Remark 2.8 In all papers in zero temperature dynamics di�erent conventions

are used for the case when sgn(

P

j 6=i

J

ij

�

j

) = 0: the spin in a site is not

changed. This leads to a di�erent picture, in particular the number of �xed points

increases. The �xed points of the corresponding vector �eld are not only the �xed

points of our vector �eld, but also the points x with the following properties. If

x 2 F then:

i) F is singular;

ii) if F 6� h

0

�

, then v

F

�

(x) = 0. This means that x

�

= 0 if x 2 h

�1

�

, and

x

�

= s

�

, if x 2 h

1

�

.

Examples of such points are global maxima and traps, but the set of such points

can be much bigger.

2.5 Dynamics for the overlap representation for zero tem-

perature

Similarly as for the random walk reduction we can study the processes associated

with the overlap representation

m

�;N

(m

N

; t) = m(�

�;N

(m

�1

(m

N

); t))

m

N

(m

N

; t) = m(�

N

(m

�1

(m

N

); t));

14



where the mappingm is given by (2) and form

�1

(m

N

) we can take some � with

m(�) = m

N

. It can be that for di�erent � with m(�) = m

N

, we get di�erent

associated overlap processes, contrary to the random walk reduction. This is

illustrated by the example in this subsection. However, in the thermodynamic

limit there is a unique overlap process associated with each initial overlap state,

except for at most a set of 0 Lebesgue measure.

We can also study this overlap process as the image of the random walk

process under the mapping

m

N

(r

N

) =

1

N

f(c

�

; 2r

N

� s(N))g

�

;

for N �nite and under the mapping

m(x) = f(c

�

; 2x� s)g

�

;

in the thermodynamic limit. Denote M = m(Q), m

F

= m(s

F

).

For �nite N and any � the overlap process is not Markovian. For this process

to be Markovian, we need that in the random walk process the transitions from

reduced states with the same overlap representation should be the same. At the

end of this section we will give an example for zero temperature, where this is

not the case. The same example is valid for positive temperature.

Therefore we will only study the dynamics for N ! 1. It can be simply

connected to the dynamics for the random walk representation by the represen-

tation of the reduced state that we will discuss now.

From Remark 2.2 it follows that the subspace \h

0

�

is exactly the space

fs=2�C

?

g\Q, with C the p-dimensional subspace of IR

2

p

spanned by the vectors

c

�

, � = 1; : : : ; p, and C

?

the orthogonal ((2

p

� p)-dimensional) complement of

C in IR

2

p

. This space C

?

is exactly the space of vectors x in IR

2

p

with overlap

vector m(x) � 0.

Each vector x 2 Q has a unique decomposition

x =

1

2

s+ y

?

+ y;

with y; y

?

2 C;C

?

respectively. Considered as a mapping from s=2�C to IR

p

,

the mapping m is bijective and so we can interpret m : Q!M as a projection

mapping.

Consider now 2 points x, x

0

with the same overlap m(x) = m(x

0

). This

means that they have decompositions,

x =

1

2

s+ y

?

1

+ y; x

0

=

1

2

s+ y

?

2

+ y;

y

?

i

2 C

?

, y

i

2 C. Hence x�x

0

2 C

?

, and they are elements of the same region

F . This means that the sets m(F) are mutually disjunct in M . Let us denote

m(F) also by F . Clearly F is either non-singular in both Q and M or singular.
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The vector �eld on Q induces the following vector �eld on M : for x̂ 2 F , F

a region of maximum dimension, de�ne

V

M

(x̂) = v

M;F

(x̂) = m(v

F

(m

�1

(x̂))) = m(s

F

�m

�1

(x̂)) = m

F

� x̂:

This relation is equivalent to the following one, used in the physical literature

(cf. [1], [15]): on F

_m

1

= m

F

�m

1

;

with m

N

=N

D

! m

1

.

In turn, this vector �eld de�nes a dynamical system �

M

on M that it is the

image under the mapping m of the dynamical system on Q, i.e.

�

M

x̂

(t) = m(�

x

(t)) (6)

for any x 2 m

�1

(x̂). Indeed, for small values of t

�

M

x̂

(t) = m

F

� v

M;F

(x̂) expf�tg

= m

F

+ (x̂�m

F

) expf�tg

= m(s

F

) +m(x� s

F

) expf�tg

= m

�

s

F

+ (x� s

F

) expf�tg

�

= m

�

s

F

+ v

F

expf�tg

�

= m(�

x

(t)):

Suppose that at time t

0

the path �

x

hits a singular region. Since all reduced

states with the same overlap belong to the same region, it follows that all paths

�

x

0

hit this singular region at time t

0

for all x

0

with m(x

0

) = m(x). This shows

(6).

We easily obtain the following conclusions. Fixed points of the dynamical

system on Q correspond to �xed points of the dynamical system on M . Fur-

thermore, V

x

2 � i� V

x

0

2 � for x; x

0

having the same overlap. Hence

m(fx 2 Q jV

x

� � g)

is well-de�ned and consists precisely of the points in M , from which emanate

only paths crossing at most singular hyperplanes (in M) of co-dimension 1. It

contains an open subset dense in M and the dynamical system on this dense

subset is acyclic and essentially deterministic. By the form of the dynamics in

M also quasi-attractors and traps coincide in Q and M . However, note that

vertices of Q are not necessarily vertices of M , although the reverse statement

is true.

The following theorem now immediately follows from the previous results.

We will only formulate the results in the thermodynamic limit, but for �nite N

similar results are valid.

16



Theorem 2.15 i) For all x̂ with �

M

x

2 m(� ), and all � the Euler limit exists,

i.e. there exists a random vector m

1

(x̂; �), such that

lim

N!1

1

N

m

N

(m

N

; [�N ])

D

= m

1

(x̂; �);

for any sequence m

N

2 m(Q(N)), with m

N

=N ! x̂. More precisely,

m

1

(x̂; �) is deterministic and equal to �

M

x̂

(t).

ii) The set of �xed points P

M

is a subset of the vertices of M . They are

contained in the non-singular regions in M and they are exactly the lo-

cal/global minima of the energy H on M .

iii) For any � > 0 there exists a �nite time T (�) with

P

�

inf

y2P

M

[m(T )

jjm

1

(x̂; �)� yjj < �

	

= 1

for all t � T (�) and all initial points x̂ 2 m(fy jV

y

� � g).

Of course, all the above assertions hold on dense subsets of Q and M . For

extending these to Q and M one should solve the following problem.

Problem 3 Consider points x 2 Q on a singular region with more than one out-

going region. Let r

N

=N ! x and consider a limiting distribution of r

N

(r

N

; [tN ])=N .

Let m(r

N

1

) = m(r

N

). Will r

N

(r

N

1

; [tN ])=N induce the same limiting distribution

on Q?

Example Let us consider the case p = 3. We take s

�

(N) = N=2

p

for N a

multiple of 2

p

, so that the patterns are completely unbiased. We have

c

1

= (+;+;+;+;�;�;�;�)

c

2

= (+;+;�;�;+;+;�;�)

c

3

= (+;�;+;�;+;�;+;�):

Let us enumerate A as follows i � (c

1

i

; c

2

i

; c

3

i

).

Since m(s=2) � 0, we can write each x 2 Q uniquely as x = y + y

?

,

y; y

?

2 C;C

?

respectively. It easily follows that in Q the hyperplane C

?

is

given by

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

�

1

0

B

B

B

B

B

B

B

B

B

@

1

0

0

0

0

0

0

1

1

C

C

C

C

C

C

C

C

C

A

+ �

2

0

B

B

B

B

B

B

B

B

B

@

0

1

1

0

1

0

0

1

1

C

C

C

C

C

C

C

C

C

A

+ �

3

0

B

B

B

B

B

B

B

B

B

@

0

0

0

1

1

0

0

0

1

C

C

C

C

C

C

C

C

C

A

+ �

4

0

B

B

B

B

B

B

B

B

B

@

0

0

1

0

0

1

0

0

1

C

C

C

C

C

C

C

C

C

A

+ �

5

0

B

B

B

B

B

B

B

B

B

@

0

1

0

0

0

0

1

0

1

C

C

C

C

C

C

C

C

C

A

: �

i

2 IR;8i

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

;

17



and similarly for Q(N). Hence the points

(s

1

(N); 0; 0; 0; 0; 0; 0; 0)

and

(s

1

(N); 1; 1; 0; 1; 0; 0; 1)

have the same overlap representation (2s

1

(N); 2s

1

(N); 2s

1

(N))=N .

In the next step a state with overlap representation (2s

1

(N) + 2; 2s

1

(N) +

2; 2s

1

(N) + 2)=N can be reached only if the �rst coordinate increases by 1 or

the last decreases by 1. Clearly, from state (s

1

(N); 0; 0; 0; 0; 0; 0; 0) this cannot

occur. Let us check state r

N

= (s

1

(N); 1; 1; 0; 1; 0; 0; 1). For the desired tran-

sition to occur the unique (+1)-spin in the region S

8

(N) should be changed to

(�1). For the corresponding site, i say, we should have

�1 = sgn

�

X

j 6=i

J

ij

�

j

�

= sgn

�

X

�

c

�

8

(c

�

; 2r

N

� s(N))� p�

i

�

= sgn

�

� 3s

1

(N)� 3�

i

�

= sgn

�

� 3s

1

(N)

�

:

This is clearly true.

In the thermodynamic limit we have seen that this problem does not oc-

cur: all states with the same overlap still have the same overlap at any time

t. The only explanation for this di�erence seems the following. During large

time intervals (of order N) the average change in overlap is the same for all

initial (reduced) states with the same overlap. In the thermodynamic limit all

coordinates change synchronously, and so the change in overlap is the same.

However, for �nite N the coordinates of the reduced states change successively,

so to say asynchronously, and therefore the change in overlap during small time

intervals can be di�erent.

2.6 Singular regions and domains of attraction

We can distinguish two di�erent types of singular regions of co-dimension 1. A

similar characterisation of singular regions of higher co-dimension is not neces-

sary, since the set of paths entering such regions have Lebesgue measure 0.

A singular region of co-dimension 1 is called a transient region, if it has

one ingoing and one outgoing region. It is called a separatrix, if it has exactly

two outgoing regions. So, a transient region is crossed by paths entering it,

and separatrices cannot be reached by any path, unless the path starts on the

separatrix itself.

This characterisation is useful for studying domains of attraction of �xed

points and traps.
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The domain of attraction of a certain �xed point or trap is the set of points,

such that the paths starting at these points will converge to this �xed point or

trap.

Then it is clear that the domains of attraction are convex bodies bounded

by separatrices, and they form a tiling of Q (or M).

3 Examples

In some pictures we will show the dynamical systems for zero temperature for

the cases p = 1, p = 2.

For the case p = 1 we will �rst choose �

1

= (+1;+1; : : : ;+1). Then the set

A consists of one element f� = 1g and in fact r

N

1

denotes the number of sites

with (+1) spin. This description is equivalent to using overlap states.

The zero temperature dynamics in the thermodynamic limit is then given

by

�

1

(x; �) =

8

<

:

x expf��g; x <

1

2

1 + (x� 1) expf��g; x >

1

2

1

2

expf��g; 1�

1

2

expf��g; with equal probability; x =

1

2

:

The vector �eld is shown in Figure 1. We will also give the vector �eld for

p = 1, using our formal 2-dimensional state description. Then A consists of two

vectors with one component each, namely (+), (�), enumerated by 1,2. The

sets S

1

(N), S

2

(N) are the blocks of sites, where �

1

is +1 and �1 respectively.

It is seen that the intersection h

0

1

\ h

0

2

has co-dimension 1, and this whole set

has overlap 0.

Figure 3 shows the vector �eld for the case p = 2, where we take the following

choice of �

1

, �

2

:

�

1

= (+;+; : : : ;+;+;+;+; : : : ;+;+)

�

2

= (+;+; : : : ;+;+;�;�; : : : ;�;�):

This gives rise to a 2-dimensional state description. The set A now consists of

the vectors (+;+), (+;�), which we will enumerate by 1 and 2. So S

1

(N) is
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1
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�
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\ h

1

2

?

@

@
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P

P

P

P

P

P

P

Pq

B

B

B

B

B

B

B

B
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P

P

P

P

P

P

P

P

Pi

B

B

B

B

B

B

B

B

BN

-

6

�

?

(s

1

; 0)

(0; s

2

)

the block of sites, where both �

1

and �

2

are positive, and S

2

(N) is the block of

sites, where �

1

and �

2

have opposite signs. Note that the singular hyperplanes

are orthogonal. This is only true for p = 2, but not for higher dimensions.

Next we will give an example showing that traps exist.

Example Let p = 4. We again take the generic construction of completely

unbiased patterns, i.e. s

�

= s = 1=2

p

for all � and

c

1

= (+;+;+;+;+;+;+;+;�;�;�;�;�;�;�;�)

c

2

= (+;+;+;+;�;�;�;�;+;+;+;+;�;�;�;�)

c

3

= (+;+;�;�;+;+;�;�;+;+;�;�;+;+;�;�)

c

4

= (+;�;+;�;+;�;+;�;+;�;+;�;+;�;+;�):

We will enumerate A as follows: i � (c

1

i

; c

2

i

; c

3

i

; c

4

i

). Let us consider the quasi-

attractor

s

F

= (0; s; s; s; s; s; s; s; 0; 0; 0; 0; 0; 0; 0; s)

of the region

F = f\

k=1;9;10;11;12;13;14;15

h

�1

k

g \ f\

l=2;3;4;5;6;7;8;16

h

1

l

g:

We should check that F is non-empty and that s

F

2 F n F . To this end, we

need to determine the region to which s

F

belongs.
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Since (c

�

; s) = 0 by complete unbiasedness, we have

h

k

�

= fx : sgn(

X

�

c

�

�

(c

�

; 2x� s)) = kg = fx : sgn(

X

�

c

�

�

(c

�

; x)) = kg:

We will calculate (c

�

; s

F

):

(c

1

; s

F

) = 6s; (c

2

; s

F

) = �2s; (c

3

; s

F

) = �2s; (c

4

; s

F

) = �2s:

Hence, we �nd that

fsgn(

X

�

c

�

�

(c

�

; s

F

))g

�

= (0;+;+;+;+;+;+;+;�;�;�;�;�;�;�; 0)

so that

s

F

2 f\

k=9;10;11;12;13;14;15

h

�1

k

g \ f\

l=1;16

h

0

l

g \ f\

m=2;3;4;5;6;7;8

h

1

m

g;

which is a subset of F n F if F is non-empty. But F is non-empty, since for all

su�ciently small �

1

, �

2

> 0 with 2�

1

< �

2

the point

ŝ = (�

1

; s� �

2

; s; s; s; s; s; s; 0; 0; 0; 0; 0; 0; 0; s) 2 F :

Indeed, we only have to check that ŝ 2 h

�1

1

. Since,

(c

1

; ŝ) = 6s+ �

1

� �

2

; (c

2

; s

F

) = �2s+ �

1

� �

2

(c

3

; s

F

) = �2s+ �

1

� �

2

; (c

4

; s

F

) = �2s+ �

1

+ �

2

we �nd that

X

�

c

�

1

(c

�

; ŝ) = 4�

1

� 2�

2

< 0;

and so F is non-empty. Checking that F is non-empty is crucial. Indeed, the

following point

s

F

0

= (s; s; s; 0; 0; s; 0; 0; s; s; 0; s; s; 0; 0; 0)

would be a trap for the region

F

0

= f\

k=1;2;3;6;9;10;12;13

h

1

k

g \ f\

l=4;5;7;8;11;14;15;16

h

�1

l

g;

if F

0

would be non-empty. However, it is easily checked that F

0

is empty.

It is simple to give an example of a quasi-attractor on a singular hyperplane,

which nevertheless is not a trap:

s

F

0

= (s; s; 0; 0; 0; 0; s; 0; s; 0; s; s; s; s; 0; 0)

with

F

0

= f\

k=1;2;7;9;11;12;13;14

h

1

k

g \ f\

l=3;4;5;6;8;10;15;16

h

�1

l

g:
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The overlaps are given by

(c

1

; s

F

) = �2s; (c

2

; s

F

) = 2s; (c

3

; s

F

) = 2s; (c

4

; s

F

) = 2s:

So

fsgn

�

X

�

c

�

�

(c

�

; s

F

0

)

�

g

�

= (+; 0; 0;�; 0;�;�;�;+;+;+; 0;+; 0; 0;�);

and

s

F

0

2 f\

k=1;9;10;11;13

h

1

k

g \ f\

l=2;3;5;12;14;15

h

0

l

g \ f\

m=4;6;7;8;16

h

�1

m

g:

Hence F

0

� h

1

7

, but s

F

0

2 h

�1

7

, so that s

F

0

62 F

0

n F

0

.

4 Proofs

4.1 Proofs for N �nite

Proof of Lemma 2.1. The energy di�erence between spin +1 and spin �1 at

site i is equal to

H

�

(�

��fig

; 1)�H

�

(�

��fig

;�1) = �

2

N

X

k 6=i

J

ki

�

i

;

where the symmetry of J

ki

in i and k is used. It immediately follows for

�

0

i

= 1;�1 that

lim

�!1

Pf�

�;N

(t+ 1) = (�

��fig

; �

0

i

) j�

�;N

(t) = �; site i is choseng =

=

�

1; �

0

i

= sgn

�

P

k 6=i

J

ki

�

k

�

1

2

; sgn

�

P

k 6=i

J

ki

�

k

�

= 0:

(7)

Hence, given that site i is chosen, the spin value that results in a con�gura-

tion with the lowest energy is chosen deterministically in the limiting dynamics

for � = 1 outside hyperplanes where sgn

�

P

k 6=i

J

ki

�

k

�

= 0. The following

lemmas make this more precise.

We need to specify the dynamics for � =1. The transition probabilities of

the reduced Markov chain �

N

are as follows. For r

�

< s

�

(N)

Pf�

N

(t+ 1) = r + �

�

j �

N

(t) = rg =

=

8

>

<

>

:

s

�

(N)�r

�

N

; if sgn

�

P

�

c

�

�

(c

�

; 2r � s(N)) + p

�

= 1

0; if sgn

�

P

�

c

�

�

(c

�

; 2r � s(N)) + p

�

= �1

s

�

(N)�r

�

2N

; if sgn

�

P

�

c

�

�

(c

�

; 2r � s(N)) + p

�

= 0;
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and for r

�

> 0

Pf�

N

(t+ 1) = r � �

�

j �

N

(t) = rg =

=

8

<

:

r

�

N

; if sgn

�

P

�

c

�

�

(c

�

; 2r � s(N))� p

�

= �1

0; if sgn

�

P

�

c

�

�

(c

�

; 2r � s(N))� p

�

= 1

r

�

2N

; if sgn

�

P

�

c

�

�

(c

�

; 2r � s(N))� p

�

= 0:

Proof of Lemma 2.2. If the spin at site i changes, then in terms of the �-

representation the di�erence in energy is given by

H(� � 2sgn(�

i

)�

i

)�H(�) =

4

N

X

k 6=i

J

ki

�

k

sgn(�

i

):

Hence,

sgn

�

H(��2sgn(�

i

)�

i

)�H(�)

	

=

�

��

i

sgn(�

i

) < 0; sgn

�

P

k 6=i

J

ki

�

k

�

6= 0

0; sgn

�

P

k 6=i

J

ki

�

k

�

= 0:

This implies the �rst monotonicity property in the Lemma.

Translated to the reduced state representation, the energy di�erence is strictly

negative if

sgn

�

X

k 6=i

J

ki

�

k

�

= sgn

�

X

�

c

�

�

(c

�

; 2r � s(N))� p�

i

�

6= 0; (8)

for r = r(�), provided the spin at site i changes.

We will next show that from any point, which is not a �xed point, we jump

with positive probability in at most two steps to a point with lower energy,

provided that s

�

(N) 6= 1 for all �.

Clearly, if the spin changes at site i 2 S

�

(N), and if 0 < m

�

< s

�

(N), then

the energy does not decrease only if

�p =

X

�

c

�

�

(c

�

; 2r � s(N)) = p;

yielding a contradiction. Hence, the only possibility for the energy remaining

constant with probability 1 after a jump, is when r is a vertex. For this r the

following should hold: for all �

X

�

c

�

�

(c

�

; 2r � s(N)) � �p; if r

�

= 0 (9)

X

�

c

�

�

(c

�

; 2r � s(N)) � p; if r

�

= s

�

(N); (10)

and there exists at least one value � for which there is equality in one of (9)

and (10), because otherwise r is a �xed point.
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Suppose that r

�

= 0 and (9) holds with equality. Then

�

N

(r; 1) = r + �

�

with probability s

�

(N)=N . From this point in one step a state of lower energy

can be reached unless r + �

�

is a vertex as well. This can only happen if

s

�

(N) = 1, contradicting our assumption.

The same conclusion holds for � if r

�

= s

�

(N), thus proving the second

assertion of the Lemma.

Next we should give a lower estimate for the probability of jumping in at

most two steps to a state with strictly lower energy. If for the �-coordinate we

have that s

�

(N) > r

�

> 0 then it follows immediately that in one step one can

step to a state of lower energy with probability at least

1

2N

minfs

�

(N)� r

�

; r

�

g �

1

2N

:

And so with at least this probability one can jump in two steps to a state of

lower energy.

Let us assume that (9) and (10) are valid, but for at least one value � we

have r

�

= 0 and there is equality in (9) (the other case is similar). Then with

probability

s

�

(N)

2N

�

s

�

(N)� 1

N

�

1

N

2

two successive times a �1-spin in the S

�

(N)-block is changed into a +1-spin,

thus yielding a state with lower energy.

Proof of Lemma 2.3. First we prove i).

It follows from the above proof that the �xed points should be a subset of

the vertices of the parallelepiped �

�

[0; s

�

(N)] � IR

2

p

.

Clearly by the concavity of the function H

�

, its local and global minima on

the above parallelepiped should be vertices. Therefore they are points of Q(N)

and hence �xed points, since the energy cannot strictly increase by a jump.

If the vertex r is a �xed point, then the energy at all neighbouring points

on the lattices Q(N) should be strictly larger than the energy in r. If r is not

a local/global minimum, then it easily follows that H

�

has a local minimum in

the set

�[0; s

�

(N)] \ �[r

�

� 1; r

�

+ 1]

which is a point in the interior of the parallelepiped. This is a contradiction and

thus i) is proved.

We will prove ii). The �xed points are the only closed classes of the Markov

chain �

N

. Since �

N

is a Markov chain on a �nite state space, absorption into

the closed classes takes place within �nite time, uniformly over all initial states.
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Proof of Lemma 2.4. Clearly, for r = r(�)

X

i;j

�

�

i

�

�

j

�

i

�

j

=

X

�;�

0

c

�

�

c

�

�

0

X

i2S

�

(N)

X

j2S

�

0

(N)

�

i

�

j

=

X

�;�

0

c

�

�

c

�

�

0

�

r

�

r

�

0

� r

�

(s

�

0

(N)� r

�

0

)

�r

�

0

(s

�

(N)� r

�

) + (s

�

(N)� r

�

)(s

�

0

(N)� r

�

0

)

= 4(c

�

; r)

2

+ (c

�

; s(N))

2

� 4(c

�

; r)(c

�

; s(N));

and the result immediately follows.

4.2 Proofs for the thermodynamic limit

Euler limits

Proof of Lemma 2.5. Inside regions of maximum dimension the vector of mean

drift from a point (and thus the vector �eld V ) is smooth in the thermodynamic

limit. The result then easily follows from a straightforward application of [6],

Theorem 1.6.5.

Proof of Theorem 2.9. As in the above proof, Kolmogorov's inequality and

Kolmogorov's exponential bounds for sum of i.i.d. random variables is easily

generalised to our case, because of smoothness of the drifts inside regions of

maximum dimension.

Since we only consider trajectories passing region of co-dimension 0 or 1, the

proof of this theorem follows analogously to the proofs for the existence of the

Euler limit in the case of random walks on ZZ

+

2

that are homogeneous on \faces",

given in [12], for trajectories of the random walk crossing from a 2-dimensional

face to a 1-dimensional face.

Proof of Lemma 2.11. This follows immediately from Theorem 2.9.

Construction of the vector �eld

Proof of Lemma 2.6 Let x; y 2 h

0

�

\

�

B

F

. From the de�nition of the vector �eld

on B

F

it easily follows that

v

F

(x) � v

F

(y) = y � x:
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But since x; y 2 h

0

�

, it follows that

X

�

c

�

�

(c

�

; y � x) = 0

and hence

sgn

�

X

�

c

�

�

(c

�

; v

F

(x))

�

= sgn

�

X

�

c

�

�

(c

�

; v

F

(y))

�

:

Properties of Paths

First we will show Lemma 2.7, namely the existence of outgoing non-singular

regions.

Proof of Lemma 2.7. Since h

0

�

= h

0

��

, B

F

can be only contained in minimally

2 singular hyperplanes. Let us �rst assume that exactly two, h

0

�

= h

0

��

say, and

let x 2 B

F

. Let F

0

= F + �

�

� �

��

and F

00

= F � �

�

+ �

��

and suppose that

both are not outgoing for F . This means that

X

�

c

�

�

(c

�

; v

F

0

(x)) � 0

�

X

�

c

�

�

(c

�

; v

F

00

(x)) � 0:

However, v

F

0

(x) and v

F

00

(x) agree on  6= �;�� and v

F

0

�

(x) = s

�

� x

�

,

v

F

00

�

(x) = �x

�

, v

F

0

��

(x) = �x

��

and v

F

00

��

(x) = s

��

� x

��

. Adding the two

above expressions therefore yields that

X

�

(c

�

�

)

2

s

�

+

X

�

(c

�

��

)

2

s

��

= p(s

�

+ s

��

) � 0;

which is false. Hence B

F

has an outgoing, non-singular region.

We will use induction to the number of singular hyperplanes contained in

our singular region divided by 2. So let us assume that all singular regions

contained in at most 2(M � 1) singular hyperplanes have at least one outgoing

non-singular region.

Suppose that B

F

is singular and contained in 2M singular hyperplanes

h

0

�

0

(l)

= h

0

��

0

(l)

, l = 1; : : : ;M , but it has no outgoing non-singular region. Then

\around" B

F

there is a cycle of neutral non-singular regions. More precisely,

the following cycle of regions B

F(l)

, l = 0; : : : ; 4K for some K � M can be

constructed:

i) B

F(2l)

is singular, and B

F(0)

= B

F(4K)

;
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ii) B

F(2l+1)

is non-singular;

iii) B

F(2l+1)

is outgoing for B

F(2l)

and ingoing for B

F(2l+2)

(mod(2K));

iv) #f� : F(2l + 1) 6= F(2l� 1)g = 2;

v) f� : there exists l such that F

�

(2l+1) 6= F

�

(2l�1)g � f�

0

(l);��

0

(l)g

l=1;:::;M

.

Lemma 4.1 Such cycle of regions cannot exist.

Proof. Note that each singular hyperplane has to be passed an even number of

times. Let us start by considering the following case:

i) F(2l � 1), F(2l + 2K + 1) � h

1

�(l)

= h

�1

��(l)

, F(2l + 1), F(sl + K � 1) �

h

�1

�(l)

= h

1

��(l)

;

iii) �(l) 6= �(j) for j 6= l, l; j = 0; : : : ;K � 1.

Hence we pass each singular hyperplane exactly twice.

For any region B

F(k)

we can de�ne the vector �eld v

F(k)

by continuity

in the point s

0

= (s

1

; : : : ; s

2

p

)=2. Using similar arguments as in the proof of

Lemma 2.6, we only need to consider the point s

0

, since s

0

2

�

B

F(k)

for all F(k).

Write

K

i

=

X

�

X

� 6=�(l);l=1;:::;k

c

�

�(i)

c

�

�

v

F(0)

�

(s

0

);

K

�i

=

X

�

X

� 6=��(l);l=1;:::;k

c

�

��(i)

c

�

�

v

F(0)

�

(s

0

):

Let s

0

j

= s

0

�(j)

and denote c

ij

=

P

�

c

�

�(i)

c

�

�(j)

. Note that

P

�

c

�

��(i)

c

�

�(j)

= �c

ij

and so on.

Then for B

F(2l�1)

to be ingoing and B

F(2l+1)

to be outgoing for B

F(2l)

,

l < K, the following inequalities should hold:

K

l

�

X

j<l

c

lj

(s

0

j

+ s

0

�j

) +

X

j>l

c

lj

(s

0

j

+ s

0

�j

) + c

ll

s

0

l

� 0; (11)

�K

l

+

X

j<l

c

lj

(s

0

j

+ s

0

�j

)�

X

j>l

c

lj

(s

0

j

+ s

0

�j

) + c

ll

s

0

l

> 0; (12)

�K

�l

�

X

j<l

c

lj

(s

0

j

+ s

0

�j

) +

X

j>l

c

lj

(s

0

j

+ s

0

�j

) + c

ll

s

0

�l

� 0; (13)

K

�l

+

X

j<l

c

lj

(s

0

j

+ s

0

�j

)�

X

j>l

c

lj

(s

0

j

+ s

0

�j

) + c

ll

s

0

�l

> 0: (14)
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For B

F(2l+2K�1)

to be ingoing and B

F(2l+2K+1)

to be outgoing for B

F(2l+2K)

,

l < K, we similarly have the inequalities:

�K

l

�

X

j<l

c

lj

(s

0

j

+ s

0

�j

) +

X

j>l

c

lj

(s

0

j

+ s

0

�j

) + c

ll

s

0

l

� 0; (15)

K

l

+

X

j<l

c

lj

(s

0

j

+ s

0

�j

)�

X

j>l

c

lj

(s

0

j

+ s

0

�j)

+ c

ll

s

0

l

> 0; (16)

K

�l

�

X

j<l

c

lj

(s

0

j

+ s

0

�j

) +

X

j>l

c

lj

(s

0

j

+ s

0

�j

) + c

ll

s

0

�l

� 0; (17)

�K

�l

+

X

j<l

c

lj

(s

0

j

+ s

0

�j

)�

X

j>l

c

lj

(s

0

j

+ s

0

�j)

+ c

ll

s

0

�l

> 0: (18)

Combination of (11), (13), (15) and (17), and similarly of (12), (14), (16) and

(18) yields

� 2

X

j<l

c

lj

(s

0

j

+ s

0

�j

) + 2

X

j>l

c

lj

(s

0

j

+ s

0

�j

) + c

ll

(s

0

l

+ s

0

�l

) � 0; (19)

2

X

j<l

c

lj

(s

0

j

+ s

0

�j

)� 2

X

j>l

c

lj

(s

0

j

+ s

0

�j

) + c

ll

(s

0

l

+ s

0

�l

) > 0: (20)

Clearly (20) follows from (19), since c

ll

(s

0

l

+ s

0

�l

) > 0, so we will only consider

the equations (19). It follows that it su�ces to prove that

Cx � 0; (21)

has no non-negative solution x 6= 0 for the K �K matrix C de�ned by

C

ii

= c

ii

= p;

C

ij

= �C

ji

= 2c

ij

= 2c

ji

; j > i:

To this end, we will use the following lemma.

Lemma 4.2 Let C be a real N �N matrix with the following properties:

i) C

ii

� 0 for all i;

ii) C

ji

= �C

ij

for j < i.

Then there is no non-negative solution x 2 IR

N

to the inequality (Cx)

i

� 0,

i = 1; : : : ; N .

Proof. We shall show this in a recursive way. First we shall show that no strictly

positive solution x

i

> 0 exists.

(Cx)

1

� 0 implies that

C

12

� �C

11

x

1

x

2

�

X

j>2

C

1j

x

j

x

2

:
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From (Cx)

2

� 0, we get

C

12

� C

22

x

2

x

1

+

X

j>2

C

2j

x

j

x

1

;

and we �nd that

C

22

x

2

x

1

+

X

j>2

C

2j

x

j

x

1

� �C

11

x

1

x

2

�

X

j>2

C

1j

x

j

x

2

: (22)

Next we will estimate C

13

from the equation (Cx)

3

� 0:

�C

13

< C

23

x

2

x

1

� C

33

x

3

x

1

�

X

j>3

C

3j

x

j

x

1

;

and together with (22) we �nd

C

22

x

2

x

1

+

X

j>3

C

2j

x

j

x

1

� �C

11

x

1

x

2

� C

33

x

3

2

x

1

x

2

�

X

j>3

C

1j

x

j

x

2

�

X

j>3

C

3j

x

j

x

3

x

1

x

2

: (23)

Then using the estimate for �C

14

obtained from (Cx)

4

� 0, we similarly get

C

22

x

2

x

1

+

X

j>4

C

2j

x

j

x

1

� �C

11

x

1

x

2

�

4

X

i=3

C

ii

x

i

2

x

1

x

2

�

X

j>4

C

1j

x

j

x

2

�

4

X

i=3

X

j>4

C

ij

x

j

x

i

x

1

x

2

:

Continuing this procedure till (Cx)

N�1

� 0, we get

C

22

x

2

x

1

+

X

j>N�1

C

2j

x

j

x

1

� �C

11

x

0

x

1

�

N�1

X

i=3

C

ii

x

i

2

x

1

x

2

�

X

j>N�1

C

1j

x

j

x

2

�

N�1

X

i=3

X

j>N�1

C

ij

x

j

x

i

x

1

x

2

;

and using the estimate (Cx)

N

� 0 we �nally obtain

C

22

x

2

x

1

< �C

11

x

1

x

2

�

N

X

i=3

C

ii

x

i

2

x

1

x

2

:

This is a contradiction, since C

ii

and x

i

are all positive. If some of the coordi-

nates of x are allowed to be 0, then similar arguments apply, thus proving the

lemma.

The proof of Lemma 4.1 follows as a consequence.
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We will complete the proof of Lemma 2.7. However, it is easily checked that

if assertions i) and ii) do not hold, we still get a similar system of inequalities

as in the statement of Lemma 4.2. In particular, if assertion ii) does not hold

then we should combine the inequalities corresponding to two successive times

that we enter the hyperplane h

0

�(l)

. If the hyperplane h

0

�(j)

, j 6= l, is not passed

between these two times, then this gives (l; j)-th and (j; l)-th entry equal to 0 in

the matrix C. This proves that each singular region has at least one outgoing

non-singular region.

Suppose that for some x 2 B

F

, B

F

singular, V (x) = 0 for one of the values of

V . Then for some outgoing non-singular region B

F

0

of B

F

we have v

F

0

(x) = 0,

where v

F

0

(�) is de�ned by continuity on B

F

. Then for all y 2 B

F

we have

F

0

�

X

�

c

�

�

(c

�

; v

F

0

(y)) = 0;

for all � with h

0

�

� B

F

, by virtue of Lemma 2.6. But then B

F

0

is not outgoing

for B

F

, yielding a contradiction.

Note that an immediate consequence of Lemma 4.1 is strong acyclicity of

all paths �

x

2 � , since such paths always satisfy the properties i) upto v)

mentioned before the formulation of this lemma.

Proof of Theorem 2.10 This follows from Lemma 4.1.

Characterisation of �xed points for the limiting dynamics

First we will prove Theorem 2.12. To this end we use the following Lemma.

Lemma 4.3 The energy decreases strictly along paths not indentically equal to

a �xed point. More speci�cly, let x not be a �xed point and let a path �

x

be

given. Then for any t > 0 there exists a positive constant c(t) = c(t;�

x

), such

that

H(�

x

(t)) � H(x)� c(t) � t �min

�

min

�

fx

�

jx

�

6= 0g;min

�

fs

�

�x

�

j s

�

�x

�

6= 0g

	

:

The problem with the uniform bound in the above lemma is mainly the following.

The region B

F

for F � 0 corresponds exactly to the global maxima of H . But

although this region has an outgoing non-singular region, the decrease in energy

is arbitrarily close to 0 as long as the path is close to B

F

.

Proof of Lemma 4.3. Note that for x 2 F

lim

h#0

1

h

�

H(�

x

(h))�H(�

x

(0)

�

=

X

�

@

@x

�

H(x)

�

(s

�

�x

�

)1

fF

�

=1g

�x

�

1

fF

�

=�1g

�

:

(24)
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By construction

@

@x

�

H(x) < 0

is equivalent to x 2 h

1

�

, and

@

@x

�

H(x) > 0 (25)

is equivalent to x 2 h

�1

�

, and so the left-handside of (24) is strictly negative in

all points of non-singular regions except �xed points. There maybe points in

singular regions, where the right-handside of (24) also equals 0, for example in

the global maxima.

Let x be such point. By Lemma 2.7 each region has an outgoing non-

singular region. Hence, it follows that there exists �, such �

x

(�) is a point in a

non-singular region. The necessary estimates easily follow.

Proof of Theorem 2.12 i). We �rst show that the local/global minima of H on

Q are vertices, and they are not elements of the singular hyperplanes.

Suppose that x 2 F is a local/global minimum. Then necessarily v

F

(x) = 0

by Lemma 4.3. Hence, x is a �xed point and by Lemma 2.7 F is not a singular

region. Suppose that x is not a vertex, then 0 < x

�

< s

�

for some �. Hence

v

F

�

(x) 6= 0, thus yielding a contradiction. Hence x is a vertex.

Suppose next that there is a �xed point x, which is not a global/local min-

imum of the energy. By de�nition of the vector �eld, x must be a vertex. By

virtue of Lemma 2.7 x belongs to a non-singular region, F say. By the form of

the vector �eld, we have for y 2 F that

v

F

(y) = v

F

(x) + x� y = x� y:

Further, we have that v

F

�

(y) = x

�

� y

�

< 0 implies F

�

= �1 and v

F

�

(y) > 0

implies F

�

= 1. But by de�nition, if F

�

= �1 then v

F

�

(y) = �y

�

, and if

F

�

= 1 then v

F

�

(y) = s

�

� y

�

. Hence

�

y

(t) = x� (x� y) expf�tg;

so that x \attracts" the path starting at y 2 F . Since the energy decreases along

paths by virtue of Lemma 4.3, necessarily H(x) � H(y). As y was arbitrary

and F is open in Q, we have found that x is a local or global minimum.

We shall now connect the location of �xed points to outgoing non-singular

regions for B

F

, F � 0. Note that this region has no ingoing faces by virtue of

Lemma 4.3. Also �xed points are vertices by Theorem 2.12 i) and elements of

the set of non-singular regions.

Let �(l) be an enumeration of A. Let us consider the point x de�ned by

x

�(l)

= 0, l � m, x

�(l)

= s

�(l

, l > m. Then x is the attractor s

F

for the region

F = \

m

l=1

h

�1

�(l)

\ \

l>m

h

1

�(l)

:
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Lemma 4.4 1. The following statements are equivalent.

i) The point x is a �xed point.

ii) x 2 F .

iii) F is strictly outgoing for the region F

0

� 0, i.e.

F

�

X

�

c

�

�

(c

�

; v

F

(s

0

)) > 0;

for all s

0

2 \h

0

�

and all �.

2. The following statements are equivalent for F not empty.

i) x is not a �xed point, but for any y 2 F we have

�

y

(t)! x; t!1;

with �

y

(t) 2 F for all t � 0.

ii) x 2 F n F.

iii) F is outgoing but not strictly outgoing for F

0

� 0.

This lemma gives an exact characterisation of traps and �xed points.

Proof of Lemma 4.4. We will prove the �rst equivalences. Assume i). Then x

is a point in the non-singular region, F

0

say. By continuity of the velocity, we

have v

F

0

�(l)

(y) = �y

�(l)

for l � m and v

F

0

�(l)

(y) = s

�(l)

�y

�(l)

for l > m. It follows

that F

0

= \

l�m

h

�1

�(l)

\ \

l>m

h

1

�(l)

. This shows ii).

Assume that ii) holds. Let ŝ be given by ŝ

�(l)

= �s

�(l)

, l � m, and ŝ

�(l)

=

s

�(l)

, l > m. Then at the point x

X

�

c

�

�(l)

(c

�

; 2x� s) =

X

�

c

�

�(l)

(c

�

; ŝ)

�

< 0; l � m

> 0; l > m:

For the point s

0

= (s

1

; : : : ; s

2

p

)=2 2 \h

0

�

we have v

F

(s

0

) = ŝ=2. Hence

F

�(l)

X

�

c

�

�(l)

(c

�

; v

F

(s

0

)) =

1

2

X

�

c

�

�(l)

(c

�

; 2x� s) > 0;

for all l, and so F is strictly outgoing for the region \h

0

�

. This shows that ii)

implies iii).

Next assume iii). From the above relations it follows that x 2 F . Subse-

quently, it follows that v

F

(x) = 0 and so x is a �xed point. Hence iii) implies

i).

The proof of the second equivalences is similar.

33



Proof of Lemma 2.13. This follows immediately from Lemma 4.4.

Proof of Theorem 2.12 ii) and Lemma 2.14. Let F be a region of maximum

dimension, and suppose that its quasi-attractor s

F

62 F . Further denote

I

F

= F [ fF

0

j F is ingoing for F

0

g

Then it is easy to see that there exists a �nite time t

F

<1, such that for any

x 2 I

F

t

x

= infft j�

x

(t) 62 I

F

g � t

F

:

If s

F

2 F , then for any � > 0 there exists t

F

= t

F

(�) < 1, such that for any

x 2 I

F

infft j jj�

x

(t)� s

F

jj < �g � t

F

:

De�ne T = fs

F

j s

F

2 F n Fg. Then for the points fy jV

y

2 � g there is a

unique, acyclic path. Hence, for all x 2 fy jV

y

2 �g

inf

y2P[T

jj�

x

(t)� yjj < �;

for t �

P

t

F

, where we take the summation over all F of maximum dimension.

This set T cannot be chosen smaller because of Lemma 4.4. The assertions now

follow immediately from Theorem 2.9.

Proof of Lemma 2.8. Consider a non-singular region F with s

F

62 F . We

consider the set I

F

de�ned in the foregoing proof and let for any x 2 I

F

y(x) = �

x

(t

x

);

with t

x

as above. Clearly y(x) is an element of a singular region for which F

is ingoing. It is now simple to see that the set of points x 2 I

F

with y(x) an

element of a singular region of co-dimension at least 2, has co-dimension at least

1, and so this set has 0 Lebesgue measure. Let us denote this set by O

F

. There

are �nitely many such regions, and so the set [O

F

, where we take the union over

all F of maximum dimension with s

F

62 F , has 0 Lebesgue measure. Clearly, if

s

F

2 F there is no problem. Hence the set of points, the paths emanating from

which hit a singular region after crossing one non-singular region, or which do

not leave this singular region in �nite time, has 0-Lebesgue measure.

For F , let us now consider the points x 2 I

F

\ [h

0

�

, with y(x) an element

of a singular region of co-dimension at least 2. This set has co-dimension at

least 2. Hence, similarly as in the above we can show that the set of points,

the paths emanating from which hit a singular region for the �rst time after

crossing exactly 2 non-singular regions, also has 0 Lebesgue measure.
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We can continue this argument, and because of Lemma 4.1 no path can cross

more than the total number of non-singular regions, before hitting a singular

region of co-dimension at least 2.

Note, that in this recursive argument we did not take into account paths

starting at a point in a singular region of co-dimension at least 2. But also this

set of points has 0 Lebesgue measure, since it is contained in the union of the

singular hyperplanes.

Thus we have a �nite union of sets of 0 Lebesgue measure and the proof is

completed.
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