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It is shown that for the »-dimensional quantum Ising model in the high temperature region e~ in the GNS representa-
tion admits a “multiplicative” N-particle cluster expansion and H admits an “additive™ N-particle cluster expansion.

Let us consider the (v + 1)-dimensional Ising model
with continuous time. It is a random field on Z¥ X R=
{(x, ©): x € 2%, t € R} with values t1 in each point. To

- define it we consider first for any x € Z" the stationary
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Markov process £,(f) with two values t1 defined by
the stochastic semigroup exp(—tHy, ) Hyy = (’ﬁ _i).
For different points x the processes £,(f) are mutually
independent. We denote by (£, Z, ug) the probability
measure space where all £, (¢) are defined. §2 car., be

" identified with the set of all functions f(x, ¢£) with val-

ues 1 which are stepwise constant for any fixed x.

Let us consider a new probability measure u AT OR

(2, ¥) with density
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where A is the cube in 2, x,x"' € A, T>0.

We shall consider only the case when § js sufficient-
ly small, |8} < Bg(A). It is a standard result then that
there exist:: a weak limit for A1 2V, T > o0t u=
limu, 7.

Let for any A C Z¥ X R X4 be the minimal o alge:
bra with regard to which all £,(¢) are measurable for
(x, £) € A. The physical Hilbert space is defined as

H=Ly(R Zp, ), Zg= Tovx {0}

‘The stochastic semigroup 7,: 3 = I (transfer 1aatrix) '

is defined by its matrix clements

E. Tk = G e,
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where ( }=(),, k|, £, €, U, is the translation from
the slice Z¥ X {0} onto the slice Z¥ X {t}.

One can show that 7, is-the strongly continuous
semigroup of positive self-adjoint operators and
1l =1.Then 7, = e~ where H is positive self-
adjoint.

The unitary group ¢~/ can then be identified [1]
with the evolution of a »-dimensional quantum spin
system with the formal hamiltonian
Hformal =, 22 ? 0.9) t8 |x~-z.\;l=l 0_(\.3)0'(\.%) :

Then I is the space of the GNS representation of the
quasilocal C* algebra in the ground state.

We shall obtain a cluster expansion for et angd
H on the special basis (first appeared in ref. [2]) which
we shall now define.

Let T,,,x € 2, be the set of all y € Z¥ such that
y <x in lexicographic order. P, is the orthogonal pro-
jection in L,(82, Zg, u) onto Ly(82, 27, w). Let us
put

Eo=E(0)= £,(0) — P £ O) [y =E (PEDVE,
f=Tlf, 1cz, <=, fy=1,
xel

£ O=Ufe, fO= ‘QI £.00).

Theorem 1. { f;} is a complete orthonormal basis in
JC. Moreover ’
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Thcbrcm 2. The semi-invariants
w(, 10 =(fy, ), s Fxy @) L (€); ons £, (O
i l = {xl 3 oy x'"}) = {x'lk! sy x;n }’

areC™int, t>0,and for/,I' #9

dkw(, 10 < L Ce-nd?
T (Cp)d( € )d ’

w(, I';0)=0ifIorI' is empty.

k=0,1,2,...
3)

Here I'(¢) is the translation of /' to the slice 2 X {t},
d' @ is the minimal sum of the lengths of the bonds
of any connected tree with vertices in 7 U I'(f) in tae
metrics |»! + 2] + - |y**!] in 2¥ X R, the 2V dizec-
tion (R direction) C depends only upon v and k.

The proof of this theorem is similar to the proof
of the same theorem for discrete time models in ref.
[3] and will appear in ref. [4]. -

Multiplicative cluster expansion for e= H
Theorem 3. The matrix elements of e~ admit the

following representation for 7,1 # @:

Upe )= Dol ;0 -0l ;) @

and are equal to 0 if 7 =@ or /' = . The sum is over all
partitions

Proof Thi: follows from (1) and the formula which
expresses mornents through the semi-invariants.
Additive ciuster expansion for H.

Theorem 4.‘ Matrix element of H are equal to
U HIp)==- LWy, 11:0), ©)

where the sum is over all nonempty I, CL C I'such
that / — 11 = ) bt ll
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Moreover w'(, 1';0) = dw(/, 1'; 0)/dt satisfies the
estimates (3) with d? = 0.

Proof. Let us calculate the derivative for £=0on
both sides of (4). Let us note then that

w(,150)=1, ifi=1"={x}, ©
=0, in other cases.

In fact we have

Sif=0, 1#I, %)

if we use (2) and Mn = M(M(n/ ETO,x))' Also we have

¢h=1. )

. Using the Mobius inversion formula we get from (7)

that w(/,1';0)=0if/ #1'. The ﬁrst part of (6) fol-
lows from (2). Finally

w(1,1;0)=§2 (DF=1k = 1) =

where the sum is over all partitions of {1, ..., n},n=
1=2.
This gives the complete N-particle cluster expan-

sions for ali NV and || < By(M).

The present result can be extended to other lattice
models in high- and low-temperature regions (see e.g.
ref. [3]). This and applications to the study of the
spectral properties of H will appear in forthcoming ar-
ticles.

We remark that all w can be represented as an ex-
plicit series with exponential convergence.
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