
ISSN 0001-4346, Mathematical Notes, 2012, Vol. 92, No. 2, pp. 237–248. © Pleiades Publishing, Ltd., 2012.
Original Russian Text © V. A. Malyshev, 2012, published in Matematicheskie Zametki, 2012, Vol. 92, No. 2, pp. 262–275.

Analytic Dynamics of a One-Dimensional System
of Particles with Strong Interaction

V. A. Malyshev*

Moscow State University
Received July 15, 2011; in final form, December 8, 2011

Abstract—We consider the dynamics of a system of N particles on the circle with interaction of
nearest neighbors, a Coulomb potential, and an analytic external force. The trajectories are real
analytic functions of time. However, the series for them converge only for sufficiently small times.
For zero initial velocities and a uniform initial location of particles, we prove N-dependent estimates
on the coefficients of this series.
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1. INTRODUCTION

1.1. Statement of the Problem and Main Results

Consider a system of N point particles i = 1, 2, . . . , N on a half-open interval [0, L) ⊂ R with periodic
boundary conditions, i.e., on the circle SL of length L. Initially, they are located at the points

0 = x1(0) < · · · < xN (0) < L.

The trajectories xi(t) are determined from the system of N equations

d2xi

dt2
= −∂U

∂xi
+ F (xi); (1)

the interaction between the particles is of the form

U({xi}) =
∑

〈i,i−1〉
V (xi − xi−1),

where the sum is taken over all pairs of neighbors on the circle. We assume that the potential
V (x) = V (−x) = 1/r, r = |x|, is Coulomb and set

f(r) = −dV (r)
dr

= r−2.

Note that, because of strong repulsion at close distances, the particles in motion do not change their
order. Let F (x) denote an external force.

Fixed points of such systems were studied in [1], [2]. Questions pertaining to dynamics are
significantly more complicated. Certainly, the solution of system (1) exists and is unique (under
arbitrary initial conditions) on the whole time interval; however, it is rather hard to obtain more detailed
information about the trajectories of the particles (if N is sufficiently large) without developing a special
technique. If F is analytic, then, as is well known [3], the solution can be expressed as a power series
expansion in t in some neighborhood of the point t = 0.
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238 MALYSHEV

We consider the natural initial conditions: for all i,

Δ = Δi(0) = xi+1(0) − xi(0) =
L

N
, vi(0) = 0, (2)

and it is convenient to assume that x1(0) = 0. Note that this configuration is a fixed point in the case
of a zero external force. In this paper, we obtain estimates of the radius of convergence for such initial
conditions. We search for a solution of the form

vi(t) =
∞∑

j=1

ci,jt
j . (3)

Theorem 1. Let F be analytic on the circle SL. Then
1) for all j = 1, 2, . . . , there exist numbers bj < ∞ not depending on N such that, for all i and j

and for all N ,

|cij | < bjN
(j−1)/2;

2) let, in addition, for some CF > 0 and all x and k,

|F (k)(x)| ≤ Ck+1
F .

Then there exists a constant 0 < χ < ∞ not depending on N such that, for all i, j, the following
estimate holds:

|cij | < χjN5j/6−3/2.

This implies that the radius of convergence R = R(N) of the series (3) has the lower bound
R > χ−1N−5/6. From the proof of the first assertion of the theorem in Sec. 2.2, we can conclude that
an upper bound for the radius of convergence can be of order 1/

√
N , but this has not been proved yet.

In the proof of the second assertion of the theorem, we give an explicit estimate for χ. Also we present
explicit formulas for cij for j = 1, 2, 3, 4.

The goal and essence of the present paper is best illustrated by its physical motivation.

1.2. On the Riddle of the Electric Current

Mathematical questions of statistical physics have been extensively developed for equilibrium sys-
tems on the lattice; as to continuous space, it appears that they have been sufficiently developed
only for gases with small inverse temperature or density. For many other cases, there are even no
mathematical statements of problems. One of such cases is the direct electric current. Considered
on the macrolevel, such a current is described adequately by Ohm’s law, while, on the microlevel, it is
considered in all textbooks on solid-state physics as a system of free (or weakly dependent) electrons
each of which is accelerated by an external force and retarded by the external medium: both physicists
and mathematicians studied one-particle models with constant accelerating external force and various
versions of the external medium absorbing the energy of particles. (There were at least twenty such
versions, the first of which being the Drude model of 1900.)

Nevertheless, there is still an important question unanswered: Where does the accelerating force
come from? The fact is that, in any electric power line, the force acts only for a distance of several meters
from the generator, the turbine, etc. Here is what R. Feynman writes in this connection in his famous
“Lectures in Physics” (Vol 2, Sec. 16-2):

“. . . The force pushes the electrons along the wire. But why does this move the galvanometer, which
is so far from the force? Because when the electrons which feel the magnetic force try to move, they
push—by electric repulsion—the electrons a little farther down the wire; they, in turn, repel the electrons
a little farther on, and so on for a long distance. An amazing thing. It was so amazing to Gauss and
Weber—who first built a galvanometer—that they tried to see how far the forces in the wire would go.
They strung the wire all the way across the city . . . ”

So writes the famous physicist. We must state that this problem is, in general, totally ignored in other
books and papers.
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ANALYTIC DYNAMICS OF A ONE-DIMENSIONAL SYSTEM OF PARTICLES 239

Hence we already see that the electrons pushing each other constitute a strongly interacting system
of particles and such an interaction can only be Coulomb repulsion. For a mathematician, it is natural
to study this phenomenon by starting first with the simplest model. Such a model will be considered in
what follows.

In fact, there is not just one problem, but many. For example, we must explain why the steady-
state current velocity is constant and very small (0.1–10 mm/s), while the current is set up almost
instantaneously. The main idea behind the fact that the steady-state velocity is constant and small was
put forward in a somewhat different model in [4], but that model did not encompass Coulomb systems.

In this paper, we attempt to study the second problem. If the coefficients ck in the time series

v =
∞∑

k=1

ckt
k

for the particle velocity increase as Nak, a > 0, where N is the number of particles, then it is natural
to expect that the velocity of order 1 is established before the instant of time of order t = N−a, which is
“almost instantaneous” from the physical point of view. We were not able to find a rigorous proof of the
fact that the velocity setup time is small. however, the estimates of the coefficients given in this paper
make this fact very likely.

Since such estimates are sufficiently complicated even for the simplest model (see also [1], [2]), such
problems were not studied by physicists.

Numerous papers, beginning with Bogolyubov’s papers, dealing with the dynamics of multiparticle
systems, had a completely different orientation. In most cases, the existence of a thermodynamic limit of
the dynamics was proved. This means that, for a certain period of time, the given arbitrary particle
is significantly affected by only a bounded number of (adjacent) particles, and this remains valid in
an infinite volume. One of the main techniques used here is also the expansion (for example, of the
velocity) in a time series whose coefficients, however, are bounded uniformly with respect to the number
of particles and the velocity is small for small times under zero initial conditions; see [5]–[12]. In our
case, the thermodynamic passage to the limit is meaningless, because our problem is more intricate.

2. PROOF

2.1. Equations for the Coefficients

Let us fix the initial data xi(0), vi(0) just as in (2) and consider the trajectories xi(t) ∈ S on the
interval 0 ≤ t < t0 for some instant of time t0 = t0(N) > 0. Setting

Δi(t) = xi+1(t) − xi(t), Δ = Δi(0) =
L

N
,

we obtain the equations

dvi

dt
= f(xi(t) − xi−1(t)) − f(xi+1(t) − xi(t)) + F (xi(t))

or

dvi

dt
= f

(
Δ +

ˆ t

0
[vi(t1) − vi−1(t1)] dt1

)
− f

(
Δ +

ˆ t

0
[vi+1(t1) − vi(t1)]

)
dt1

)

+ F

(
xi(0) +

ˆ t

0
vi(t1) dt1

)
.
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Integral equations. The equivalent system of integral equations

vi(t) =
ˆ t

0

[
f

(
Δ +

ˆ t

0
[vi(t1) − vi−1(t1)

]
dt1

)

− f

(
Δ +

ˆ t

0
[vi+1(t1) − vi(t1)] dt1

)
+ F

(
xi(0) +

ˆ t

0
vi(t1) dt1

)]
dt (4)

can be rewritten as

vi(t) =
ˆ t

0

(
(Δ + Ri−1(t))−2 − (Δ + Ri(t))−2 + F

(
xi(0) +

ˆ t

0
vi(t1) dt1

))
dt, (5)

where

Ri−1(t) =
ˆ t

0
(vi(t1) − vi−1(t1)) dt1.

In what follows, we shall need some notation related to discrete derivatives. Let a function g(i) be
given on the interval [0, N ] ⊂ Z with periodic boundary conditions (i.e., a periodic function on Z with
period N ). Let us call

(∇+g)(i) = g(i + 1) − g(i) and (∇−g)(i) = g(i) − g(i − 1) (6)

its right and left derivative, respectively. Note that they commute and the following relation holds:

∇+(gf)(i) = f(i + 1)(∇+g)(i) + g(i)(∇+f)(i) = (Sf)(∇+g) + g(∇+f), (7)

where S is the shift operator:

(Sf)(i) = f(i + 1).

In what follows, the discrete differentiation operators will act on the indices i. If the function f(i) is
independent of i, then its differentiation yields zero.

Let us return to the main equations and rewrite them as follows:

vi(t) =
ˆ t

0
dt

[
(−∇−((Δ + Ri(t))−2) + F

(
xi(0) +

ˆ t

0
vi(t1) dt1

)]
.

The following representation of the integrand will be useful:

(Δ + Ri−1(t))−2 − (Δ + Ri(t))−2 + F

(
xi(0) +

ˆ t

0
vi(t1) dt1

)

= Δ−2

(
1 +

Ri−1

Δ

)−2

− Δ−2

(
1 +

Ri

Δ

)−2

+ F

(
xi(0) +

ˆ t

0
vi(t1) dt1

)

= F (xi(0)) +
∞∑

m=1

dm[Δ−2−m(Rm
i−1 − Rm

i )] +
[
F

(
xi(0) +

ˆ t

0
vi(t1) dt1

)
− F (xi(0)

]

= F (xi(0)) +
∞∑

m=1

dmΔ−2−m(Rm
i−1 − Rm

i ) +
[
F

(
xi(0) +

ˆ t

0
vi(t1) dt1

)
− F (xi(0))

]
,

where

dm = (−1)m(m + 1).

If F is analytic on SL, then there exists a sufficiently small ε > 0 such that, for any x0 ∈ SL and for all
x ∈ [x0 − ε, x0 + ε), the following expansion in a convergent series is valid:

F (x) = F (x0) +
∞∑

k=1

F (k)(x0)
k!

(x − x0)k.
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Finally, we obtain

vi(t) = F (xi(0))t +
ˆ t

0

∞∑

m=1

dmΔ−2−m[−∇−Rm
i )] dt +

∞∑

k=1

ˆ t

0

F (k)(xi(0))(
´ t
0 vi(t1) dt1)k

k!
dt. (8)

Recurrence equations. Using (3) and

Ri−1(t) =
∞∑

j=1

(ci,j − ci−1,j)
tj+1

j + 1
, (9)

Ri − Ri−1 =
∞∑

j=1

(ci+1,j − 2ci,j + ci−1,j)
tj+1

j + 1
(10)

and substituting the series (3) into (8), we see that the right-hand side of (8) is also a power series
expansion in t with well defined coefficients.

Let us search for ci,j by equating of the coefficients of tj . For j = 1, 2, the equations immediately give
the explicit expressions

ci1 = F (xi(0)), ci,2 = 0, (11)

because the other summands on the right-hand side of (8) are of greater order in t. For j ≥ 3, the
equations for the coefficients of tj are of the form

cij =
1
j

[ ∞∑

m=1

dmΔ−2−m(−∇−Rm
i ) +

∞∑

k=1

F (k)(xi(0))(
´ t
0 vi(t1) dt1)k

k!

]

j−1

, (12)

where, for the power series

φ(t) =
∞∑

k=0

akt
k,

we put [φ(t)]j = aj . For j > 2, the coefficients ci,j are found from a recurrence relation; note that the cij

depend only on ci,k with k ≤ j − 2. Indeed, on the right-hand side of the equation for ci,j , there cannot
be ci,k with k ≥ j − 1, because, in view of (9), each of the cik appears together with tk+1.

In that case, the main equations take the form

cij =
1
j

∞∑

m=1

dmΔ−2−m

(
−∇−

[( ∞∑

j=1

(ci+1,j − ci,j)
tj+1

j + 1

)m]

j−1

)

+
∞∑

k=1

F (k)(xi(0))
k!

[( ∞∑

j=1

ci,j
tj+1

j + 1

)k]

j−1

. (13)

We have
[( ∞∑

j=1

ci,i
tj+1

j + 1

)k]

j−1

=
∑

j1+···+jm=j−m−1

ci,j1

j1 + 1
· · · ci,jk

jk + 1
, (14)

where
∑

j1+···+jm=j−m−1 is the sum over all ordered collections j1, . . . , jk, (some of which can be
identical) such that

(j1 + 1) + · · · + (jk + 1) = k + j1 + · · · + jk = j − 1, (15)

whence

k ≤ j1 + · · · + jk = j − 1 − k ≤ j − 2, k ≤
[
j − 1

2

]
. (16)
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Similarly,

[( ∞∑

j=1

(ci+1,j − ci,j)
tj+1

j + 1

)m]

j−1

=
(j−1,m)∑

j1,...,jm

∇+ci,j1

j1 + 1
· · · ∇

+ci,jm

jm + 1
;

here (15) and (16) hold with k replaced by m. Therefore, the equation can be written as

c = Gc + c(0), (17)

where c is the vector c = {cij}, the constant term c(0) = {c(0)
ij } is

c
(0)
i1 = F (xi(0)), c

(0)
ij = 0, j ≥ 2, (18)

and the nonlinear operator G is of the form

ci1 = c
(0)
i1 = F (xi(0)), ci2 = 0,

cij = (Gc)ij = −
[(j−1)/2]∑

m=1

∑

j1+···+jm=j−m−1

Aij(m; j1, . . . , jm)

+
[(j−1)/2]∑

k=1

∑

j1+···+jk=j−k−1

Bij(k; j1, . . . , jk)

(19)

for j ≥ 3, where

Aij(m; j1, · · · , jm) =
1
j

dmΔ−2−m∇−
(
∇+ci,j1

j1 + 1
· · · ∇

+ci,jm

jm + 1

)
, (20)

Bij(k; j1, . . . , jk) =
1
j

1
k!

F (k)(xi(0))
ci,j1

j1 + 1
· · · ci,jk

jk + 1
. (21)

Further, let Fi,k,q denote any discrete derivative of the form
( q∏

p=1

∇s(p)

)
F (k)(xi(0)),

where s(p) = ±. For estimates, the choice of s(p) is not important at all. Denote Fi,k = Fi,k,0.
Explicit expressions for ci3 and ci4 are readily obtained if, in Eqs. (19), we take into account only

terms with k = 1 and m = 1, because k,m ≤ [(j − 1)/2] ≤ 1. We have

ci3 = −1
3

d1Δ−3∇−∇+ ci1

2
+

1
3

F (1)(xi)
ci1

2
=

1
6
(d1Δ−3Fi,0,2 + Fi,0,0Fi,1,0),

ci4 = −1
4

d1Δ−3∇−
(
∇+ ci1

2

)2

+
1
4

F (1)(xi)
c2
i1

4
=

1
8

(
−d1Δ−3Fi,0,2Fi,0;1 +

1
2

Fi,1,0F
2
i,0,0

)
.

The formulas

Fi,0,1 = Fi+1,0,0 − Fi,0,0 =
ˆ xi+1

xi

F (1)(x) dx, |Fi,0,1| ≤ C2
F Δ,

Fi,0,2 = (Fi+2,0,0 − Fi+1,0,0) − (Fi+1,0,0 − Fi,0,0)

=
ˆ xi+1

xi

(ˆ x+Δ

x
F (2)(y) dy

)
dx, |Fi,0,2| ≤ C3

F Δ2,

(22)

imply that

|ci3| ≤
1
3

C3
F

(
Δ−1 +

1
2

)
, |ci4| ≤

1
4

C5
F +

1
16

C4
F .
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2.2. Estimate of the Principal Exponent

It follows from the recurrence formulas (20) and (21) that the coefficients cij are finite and depend
on i, j, and N . First, we consider them as functions of N for fixed i, j. In other words, we prove the first
part of the theorem. Let us introduce the notion of principal exponent

I(ξ) = lim sup
N→∞

ln |ξ|
lnN

for the quantity ξ depending on N . In simple terms, this notion indicates that the principal order of the
asymptotics ξ is N I(ξ).

We shall consider the algebra A of polynomials in a countable number of (commuting) variables
Fi,k,q, i = 1, . . . , N , k, q = 0, 1, 2, . . . with real coefficients independent of F . For any monomial M from
this algebra, we denote

Q(M) = −
∑

q

over all q in this monomial. The natural mapping of the algebra A onto the subalgebra A0 generated by
all the Fi,k = Fi,k,0 is defined by the successive substitutions

Fi,k,q = Fi+1,k,q−1 − Fi,k,q−1

or

(∇+)n = (S − 1)n =
n∑

k=0

Ck
n(−1)kSn−k.

Lemma 1. For any monomial M ∈ A,

I(M) ≤ Q(M).

Proof. In order to prove the lemma, it suffices to show that

I(Fi,q) ≤ Q(Fi,q) = −q.

Just as in (22), to do this, we use induction on q.
For any polynomial P =

∑
arMr with (different) monomials Mr and coefficients ar not depending

on F , but, possibly, depending on N , we define

Q(P ) = max
r

(I(ar) + Q(Mr)),

which is consistent with the previous definition. Then, for any polynomial P , we have

I(P ) ≤ max
r

(I(ar) + I(Mr)) ≤ max
r

(I(ar) + Q(Mr)).

Note that, for every pair of polynomials P1 and P2, the following inequality holds:

Q(P1P2) ≤ Q(P1) + Q(P2).

We also have

Q(∇+P ) ≤ Q(P ) − 1, Q(∇−∇+P ) ≤ Q(P ) − 2. (23)

By the degree deg P of the polynomial P =
∑

arMr we shall mean the greatest degree of its
monomials.

Lemma 2. For j > 1, cij is a polynomial in the algebra A0 of degree at most j − 1.

Proof. We have already noticed this fact for j = 1, 2, 3, 4. Note that

deg(∇±P ) = deg P.

Further, we can use induction: in formula (20), the degree will be j − 2, while, in (21), the degree will be
j − 1.
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Note that the recurrence formulas define cij for all functions F (x), not necessarily analytic. Therefore,
the following statement is meaningful.

Lemma 3. Let F be infinitely differentiable. Then, for all i, j,

I(cij) ≤ Q(cij) ≤
j − 1

2
.

Proof. Since

Q(cij) = 0, j = 1, 2, Q(ci,3) = 1, Q(ci,4) = 0,

the statement is valid for j = 1, 2, 3, 4. Let us prove the lemma by induction on j. Suppose that

Q(cij) ≤
j − 1

2
for all j = 1, 2, . . . , J − 2.

Then, for given m, j1, . . . , jm, using (15) and (16), we obtain

Q(AiJ(m; j1, . . . , jm)) ≤ 2 + m − 1 + Q(cij1) + · · · + Q(cijm) − m

≤ 1 +
1
2
(j1 + · · · + jm) − m

2
= 1 +

1
2
(J − m − 1) − m

2
,

because, in view of (23), (−1) and (−m) are added from the action of the discrete derivative operators
applied to the corresponding monomials. The maximum of the last expression is attained at m = 1.
Hence

Q(AiJ(m; j1, . . . , jm)) ≤ J − 1
2

.

Similarly, for BiJ(k : j1, . . . , jk), the following inequalities hold:

Q(BiJ(k; j1, . . . , jk)) ≤ 1
2
(J − 1 − k) − k

2
<

J − 1
2

.

This yields Q(ciJ ) ≤ (J − 1)/2, and hence I(ciJ) ≤ Q(ciJ) ≤ (J − 1)/2.

2.3. The Radius of Convergence

Here we prove the second assertion of Theorem 1. In the proof, it is convenient to write N instead
of N/L and assume CF ≥ 1.

We shall use the majorization principle for infinite systems of recurrence equations and inequalities:
for example if we are given two systems of equations

c
(q)
ij = P (q)(c(q)

i1 , . . . , c
(q)
i,j−2), q = 1, 2,

where the P (q) are polynomials with coefficients p
(q)
α such that p

(2)
α ≥ 0, |p(1)

α | ≤ p
(2)
α for all α, and

|c(1)
ij | ≤ c

(2)
ij for j = 1, 2, 3, 4, then |c(1)

ij | ≤ c
(2)
ij for all the j. We shall presently introduce one of such

systems obtained from the one-particle problem (i.e., the problem with N = 1) with a specially chosen
external force. Another auxiliary system β(cij) with positive coefficients will be introduced later.

The one-particle problem. For j = 1, 2, . . . and a fixed a, let us set Then the following statement is
valid.

Lemma 4. For j = 5, 6, . . . , the following inequalities hold:

gj ≥
1
j

[(j−1)/2]∑

k=1

∑

j1+···+jm=j−m−1

(
a

2

)k+1 (k + 1)(k + 2)
2

gj1

j1 + 1
· · · gjk

jk + 1
.
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Proof. Suppose that, at time t = 0, a particle is at the point x(0) = 0 and is moving with velocity (a > 0
is arbitrary)

v(t) =
1√

1 − at
=

∞∑

j=0

gjt
j

in the field of some external force F (x), which is to be found. Then

x(t) =
ˆ t

0
v(s) ds =

(
−2

a

)√
1 − at +

2
a
,

whence we obtain

1 − at =
(

1 − ax

2

)2

,

F =
dv

dt
=

a

2
1

(1 − at)3/2
=

a

2
1

(1 − ax/2)3
,

F (k)

k!
=

(
a

2

)k+1 3 · 4 · · · (k + 2)
k!

=
(

a

2

)k+1 (k + 1)(k + 2)
2

.

Just as in the proof of the recurrence equations given above (the only difference being that now v(0) = 1
and there are no A-terms), we obtain

gj =
[(j−1)/2]∑

k=1

k−1∑

p=0

∑

j1+···+jm=j−m−1

1
j

1
k!

F (k)(xi(0))C
p
kvp(0)

gj1

j1 + 1
· · ·

gjk−p

jk−p + 1

for the gj defined above. Here, just as above,
∑

j1+···+jm=j−m−1 means summation over all j1, . . . , jk−p

such that

j1 + · · · + jk−p = j − k − 1.

Taking into account the fact that all the coefficients are positive and discarding the terms with p > 0, for
all a > 0 we obtain

1
j

[(j−1)/2]∑

k=1

∑

j1+···+jm=j−m−1

(
a

2

)k+1 gj1

j1 + 1
· · · gjk

jk + 1

≤ 1
j

[(j−1)/2]∑

k=1

∑

j1+···+jm=j−m−1

(
a

2

)k+1 (k + 1)(k + 2)
2

gj1

j1 + 1
· · · gjk

jk + 1
≤ gj .

Majorization. From the recurrence formula for cij , we see that these coefficients can be expressed as

cij =
dij∑

r=1

bi,j,rN
Ii,j,rMi,j,r,

where bi,j,r and dij are numbers independent of either N or F , and Mi,j,r ∈ A. In addition, by Lemma 2,
we have

deg Mi,j,r ≤ j − 1.

We shall also need some other preliminary notions. For any polynomial

P =
∑

brN
IrMr,

where the br are numbers independent of either N or F , and Mr ∈ A, we set

β(P ) =
∑

r

|br|N Ir+Q(Mr)C
Q0(Mr)−Q(Mr)+deg Mr

F ,
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where, for any monomial Mr, the natural number Q0(Mr) is equal to the sum
∑

k over all of its
multipliers Fi,k,q. In particular,

β(cij) =
∑

r

|bi,j,r|N Ii,j,r+Q(Mi,j,r)C
Q0(Mi,j,r)−Q(Mi,j,r)+deg Mi,j,r

F .

For all i, k, by definition, we have

β(Fi,k,0) = Ck+1
F , β(∇±Fi,k,0) = β(Fi,k,1) = Ck+2

F N−1 = CF N−1β(Fi,k).

In addition, the following assertion holds: for any two polynomials P1 and P2, we have

β(P1 + P2) ≤ β(P1) + β(P2), β(P1P2) ≤ β(P1)β(P2) (24)

and, for any monomial M , we have

β(∇±M) ≤ (deg M)NQ(M)−1C
Q0(M)−Q(M)+deg M+1
F = (deg M)CF N−1β(M), (25)

and hence also for any polynomial P ,

β(∇±P ) ≤ (deg P )CF N−1β(P ). (26)

Let us call β(P ) the majorant of the polynomial P , because, in view of

|Fi,k,1| = |∇+Fi,k| ≤
ˆ xi+1

xi

|Fi,k+1(x)| dx ≤ Ck+2
F N−1 = β(Fi,k,1),

the following property holds:

|P | ≤ β(P ).

It follows from (24) and (17) that

β(cij) ≤
[(j−1)/2]∑

m=1

∑

j1+···+jm=j−m−1

β(Aij(m; j1, . . . , jm))

+
[(j−1)/2]∑

k=1

∑

j1+···+jk=j−k−1

β(Bij(k; j1, . . . , jk)).

Our inductive assumption (with gj = gj(1)) is as follows:

β(cij) ≤ χjN5j/6−3/2gj , j = 1, 2, . . . , J − 2. (27)

Initial data. We can choose χ0 > 0 so that, for j = 1, 2, 3, 4,

χj
0N

5j/6−3/2gj ≥ β(cij).

Indeed, only for j = 3, there is a dependence on N , but (5/6)3 − 3/2 is precisely 1.

Induction step for A-terms with m > 1. To estimate A-terms, we shall distinguish two cases: m = 1
and m > 1. For m > 1, we use the obvious estimates

β(∇±cij) ≤ 2β(cij), β(∇−(∇+ci,j1 · · · ∇+ci,jm)) ≤ 2m+1
∏

p

β(ci,jp).

Then, using (24) and (20), we obtain

β(AiJ (m; j1, . . . , jm)) ≤ m + 1
J

N2+m2m+1 β(ci,j1)
j1 + 1

· · · β(ci,jm)
jm + 1

≤ m + 1
J

N2+m2m+1χJ−m−1N (5/6)(J−m−1)−m(3/2)
m∏

p=1

gjp

jp + 1
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≤ 2m+1χJ−m−1N (5/6)J−3/2 m + 1
J

( m∏

p=1

gjp

jp + 1

)
,

because the exponent of N admits the following estimate for m ≥ 2:

2 + m +
5
6
(J − m − 1) − m

3
2

=
5
6

J − m
8
6

+
7
6
≤ 5

6
J − 3

2
.

Further, by Lemma 4 with a = 2 (if χ ≥ 2), we have

[(j−1)/2]∑

m=2

∑

j1+···+jm=j−m−1

β(AiJ (m; j1, . . . , jm))

≤ N (5/6)J−3/2χJ

(j−1)/2∑

m=2

2m+1χ−m−1
∑

j1+···+jm=j−m−1

m + 1
J

( m∏

p=1

gjp

jp + 1

)

≤
(

2
χ

)3

N (5/6)J−3/2χJgj . (28)

Induction step for A-terms with m = 1. In the case m = 1, we shall use the following estimates for
j = J − 2 ≥ 3. In view of (26), (27) and Lemma 2, we have

β(∇+cij) ≤ (j − 1))N−1CF β(cij) ≤ (j − 1))N−1CF χjN (5/6)j−3/2gj

and, similarly,

β(∇−∇+ci,j)| ≤ ((j − 1)CF )2N−2χjN (5/6)j−3/2gj .

This yields the additional summand (−2) in the exponent of N , which now becomes

3 − 2 +
5
6
(J − 2) − 3

2
≤ 5

6
J − 3

2
,

i.e.,

Aij(1; j1) = Aij(1;J − 2) =
1
j
|d1|N3∇−∇+ci,J−2

J − 1

≤ 2C2
F χj−2N (5/6)J−3/2gj−2 ≤ 2C2

F gj−2

χ2gj
χjN (5/6)J−3/2gj . (29)

Induction step for B-terms. For B-terms, the induction estimate is simpler, but here the degree of
the monomials increases:

β(Bij(k; j1, . . . , jk)) =
1
j

1
k!

β

(
F (k)(xi(0))

ci,j1

j1 + 1
· · · ci,jk

jk + 1

)

≤ 1
j

Ck+1
F

k!
1

j1 + 1
· · · 1

jk + 1
β(ci,j1) . . . β(ci,jk

)

≤ 1
j

Ck+1
F

k!
gj1

j1 + 1
· · · gjk

jk + 1
χj1+···+jkN j1+···+jk ;

hence, by Lemma 4,

[(j−1)/2]∑

k=1

∑

j1+···+jk=j−k−1

β(Bij(k; j1, . . . , jk))

≤ 1
j

[(j−1)/2]∑

k=1

Ck+1
F

k!

∑

j1+···+jk=j−k−1

gj1

j1 + 1
· · · gjk

jk + 1
χJ−k−1N (5/7)j
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≤ CF eCF χJ−2NJ/2 1
j

[(j−1)/2]∑

k=1

∑

j1+···+jk=j−k−1

gj1

j1 + 1
· · · gjk

jk + 1

≤ CF eCF χJ−2NJ/2gj . (30)

Let us sum the three summands (28), (29), and (30) and choose χ = χ1 > 0 so that
(

8χ−1 +
2C2

F gj−2

gj
+ CF eCF

)
χ−2 ≤ 1.

Then, for any χ ≥ max(χ0, χ1), we have

|cij | ≤ χJNJ/2gj ≤ χJNJ/2.

The theorem is proved.
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