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On Large Densities in Fermi Systems

V. A. Malyshev A. A. Zamyatin

Abstract

The goal of this paper is to give some rigorous results, concerning high density behavior

of Fermi systems.
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1 Introduction

The goal of this paper is to prove some rigorous results, concerning high density behavior of
Fermi systems. This behavior had been presented in Landau-Lifshitz course, see p. 345 of
[1], as follows: for large densities the Fermi system becomes ideal, they mean by this that
the kinetic energy of most particles becomes much greater than their interaction (with other
particles or external field) energy. However, some work is necessary to make this clear physical
picture mathematically well-defined.

It is well known that in the equilibrium quantum statistical mechanics, as β → ∞ and
under some mild conditions, β-KMS state tends to the ground state, see [2]. On the contrary
for fixed β, if the chemical potential µ (for grand canonical ensemble) or the density ρ of
particles (for canonical ensemble) tend to infinity, there is no natural limiting state. In this
case it is reasonable to study the large µ or large ρ asymptotics of thermodynamic functions,
in particular of lnZ, where Z is the partition function.

We want to note that heuristic arguments for the classical system show that it is only
possible when the interaction tends to zero as the volume and density tend to infinity. In fact,
take the volume Λ with ρΛ particles. Let the radius of potential be r, assume it bounded by v
and local. Introduce external field so that this mean interaction energy were 0, in other words,
that the system were neutral. By central limit theorem for most particles the interaction energy
is of order v

√
ρr

d
2 . At the same time the kinetic energy is of order c(β). Thus the kinetic energy

exceeds the interaction energy if only vr
d
2 = o(ρ−

1
2 ), or o(ρ−1) without neutrality condition.

Our rigorous results show that in an one-dimensional model the smallness of potential is
not really necessary. This is not quite evident because standard spectrum perturbation theory
is not applicable, since difference εk − εk−1 between consecutive eigenvalues tends to zero, if
k ≪ Λ2.

In [1] neutral systems of M nuclei and N = qM electrons are considered, where q is the
charge of the nuclei. Assuming that the nuclei are situated in the vertices of a periodic lattice
and the electrons do not interact with each other, we model this as the system of independent
spinless Fermi particles in the external potential V .
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2 Results

Now we give exact definitions. In a finite interval Λ ⊂ R we consider (one-particle) Hamiltonian

h = −∇2 + V

in L2(Λ) with Dirichlet boundary conditions, but other boundary conditions could be considered
as well. V is the multiplication operator on the function V (x), it is always assumed to be
bounded. Let

ε1 < ε2 < ... εk = ε
(V )
k (Λ) < ...

be the eigenvalues of this one particle problem. It is known that there are no multiple eigen-
values, see [3], theorem 13.7.50. It is known also that for V = 0

ε
(0)
k (Λ) = π2 k

2

Λ2

Now consider the Fermi gas of independent particles in the external field V in Λ. The
canonical partition function is

Z
(V )
N (Λ) =

∑

0<k1<k2<...<kN

exp

(

−β

N
∑

i=1

ε
(V )
ki

(Λ)

)

,

where N is the number of particles and Λ is the "volume". We always assume that the potential
V is such that the limit

F = F (β, ρ) = lim
1

Λ
lnZ

(V )
N (Λ)

exists if Λ → ∞ so that N
Λ
= ρ.

Theorem 1 Let V be bounded potential. Then as N and Λ tend to infinity so that N
Λ
→ ∞ we

have
lnZ

(V )
N (Λ)

lnZ
(0)
N (Λ)

→ 1

The grand canonical partition function for Fermi gas in external field with potential V is

Ξ(V )
µ (Λ) =

∞
∏

k=1

(

1 + ze−βε
(V )
k

(Λ)
)

,

where z = exp(µβ) and µ is the chemical potential.

Theorem 2 Let Λ be fixed and V be bounded. Then as µ → ∞

ln Ξ
(V )
µ (Λ)

ln Ξ
(0)
µ (Λ)

→ 1
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Put

Ω(V )
µ (Λ) =

1

Λ
lnΞ(V )

µ (Λ)

We always assume that the potential V is such that the limit

Ω(V )
µ = lim

Λ→∞

1

Λ
lnΞ(V )

µ (Λ)

exists.

Theorem 3 As µ → ∞
Ω

(V )
µ

Ω
(0)
µ

→ 1

3 Proofs

We will need the following result.

Lemma 4 If V is bounded then for any Λ

|εk(Λ, V )− εk(Λ, 0)| < C

Proof. This fact can be found in the proof of theorem 13.821
2

in [4]. We give the sketch of the
proof. Consider the analytic family of operators (for fixed Λ)

H(a) = −∇2 + aV, 0 ≤ a ≤ 1

From simplicity of the eigenvalues for any a one can deduce that they analytically depend on
a on this interval. Then using the formula

dεk(a)

da
= (φk(a), aV φk(a))

where φk(a) are the corresponding eigenvectors with norm 1, we get

|εk(1)− εk(0)| ≤ sup
[0,Λ]

|V | = C

3.1 Canonical ensemble

Lemma 5 Let N > Λ. Then

Z
(0)
N (Λ) ≤ 1

N !

(

Λ

β

)N (

1 +
eββN

Λ

)Λ

(1)
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Proof. Set for p = 1, ..., [Λ]

ZN,p(Λ) =
∑

0<k1<...<kp≤[Λ]
<kp+1<...<kN

exp

(

−β
N
∑

i=1

ε
(0)
ki
(Λ)

)

=

∑

0<k1<...<kp≤[Λ]

exp

(

−β

p
∑

i=1

ε
(0)
ki
(Λ)

)

∑

[Λ]<kp+1<...<kN

exp

(

−β
N
∑

i=p+1

ε
(0)
ki
(Λ)

)

and for p = 0

ZN,0(Λ) =
∑

[Λ]<k1<...<kN

exp

(

−β

N
∑

i=1

ε
(0)
ki
(Λ)

)

Then

Z
(0)
N (Λ) =

[Λ]
∑

p=0

ZN,p(Λ)

If ki > [Λ] , then ε
(0)
ki
(Λ) > ki

Λ
and

∑

[Λ]<kp+1<...<kN

exp

(

−β
N
∑

i=p+1

ε
(0)
ki
(Λ)

)

≤
∑

[Λ]<kp+1<...<kN

exp

(

−β
N
∑

i=p+1

ki
Λ

)

=

∑

[Λ]<kp+1

exp

(

−βkp+1

Λ

)

...
∑

kN−1<kN

exp

(

−βkN
Λ

)

=

exp (− (N − p)β)

N−p
∏

k=1

exp
(

−βk
Λ

)

1− exp
(

−βk
Λ

) = exp (− (N − p) β)

N−p
∏

k=1

1

exp
(

βk
Λ

)

− 1

Using the evident estimate exp
(

βk
Λ

)

− 1 > βk
Λ

we get

∑

[Λ]<kp+1<...<kN

exp

(

−β
N
∑

i=p+1

ε
(0)
ki
(Λ)

)

≤ exp β (p−N)

(N − p)!

(

Λ

β

)N−p

Further, we may estimate the following sum

∑

0<k1<...<kp≤[Λ]

exp

(

−β

p
∑

i=1

ε
(0)
ki
(Λ)

)

≤
(

[Λ]

p

)

Hence,

Z
(0)
N (Λ) =

[Λ]
∑

p=0

ZN,p(Λ) ≤ exp(−βN)

[Λ]
∑

p=0

(

[Λ]

p

)

exp βp

(N − p)!

(

Λ

β

)N−p

=

exp(−βN)

N !

[Λ]
∑

p=0

(

[Λ]

p

)

exp βp
N !

(N − p)!

(

Λ

β

)N−p
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But N !
(N−p)!

≤ Np and

Z
(0)
N (Λ) ≤ exp(−βN)

N !

(

Λ

β

)N [Λ]
∑

p=0

(

[Λ]

p

)

exp βp

(

βN

Λ

)p

≤

1

N !

(

Λ

β

)N (

1 +
eββN

Λ

)Λ

The lemma is proved.
Take the logarithm of both sides of inequality (1) and divide by N :

lnZ
(0)
N (Λ)

N
≤ ln Λ− lnN !

N
+

Λ

N
ln

(

1 +
eββN

Λ

)

− ln β

Since for large N
lnN ! > N lnN −N

then

lnZ
(0)
N (Λ)

N
≤ ln Λ− lnN +

Λ

N
ln

(

1 +
eββN

Λ

)

− ln β + 1 =

ln
Λ

N
+

ln
(

1 + eββN
Λ

)

N
Λ

− ln β + 1

So, we see that the right side of the above inequality tends to −∞ under the conditions of the
theorem. It follows that as N,Λ, N

Λ
→ ∞

lnZ
(0)
N (Λ)

N
→ −∞ (2)

Return to the proof of the theorem. We need to show that as N,Λ, N
Λ
→ ∞

∣

∣

∣

∣

∣

lnZ
(V )
N (Λ)− lnZ

(0)
N (Λ)

lnZ
(0)
N (Λ)

∣

∣

∣

∣

∣

→ 0 (3)

It follows from lemma 1 that
∣

∣

∣

∣

∣

lnZ
(V )
N (Λ)− lnZ

(0)
N (Λ)

lnZ
(0)
N (Λ)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

CN

lnZ
(0)
N (Λ)

∣

∣

∣

∣

∣

Now (3) follows from (2).

3.2 Grand canonical ensemble

Proof of theorem 2 Define distribution function of eigenvalues

F
(V )
Λ (t) = #{k : ε

(V )
k (Λ) ≤ t}

We have

ln Ξ(V )
µ (Λ) =

ˆ ∞

0

ln
(

1 + eβ(µ−t)
)

dF
(V )
Λ (t) (4)

Let us prove the following lemmas.
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Lemma 6 As t → ∞
F

(V )
Λ (t) =

Λ
√
t

π
+O(1) (5)

Proof. We give elementary proof, see general result in [5], [6], [7]. Let

ε
(V )
k (Λ) ≤ t < ε

(V )
k+1(Λ)

For such t : F
(V )
Λ (t) = k. Using the estimate (lemma 4)

|ε(V )
k (Λ)− ε

(0)
k (Λ)| ≤ C

find

−C +
k2π2

Λ2
≤ t ≤ C +

(k + 1)2π2

Λ2

After multiplying by Λ2/ π2 and extracting the square root we come to the inequality:

−1 +
Λ
√
t

π

√

1− C

t
≤ k ≤ Λ

√
t

π

√

1 +
C

t

But k = F
(V )
Λ (t), so

−1 +
Λ
√
t

π

√

1− C

t
≤ F

(V )
Λ (t) ≤ Λ

√
t

π

√

1 +
C

t

Subtracting Λ
√
t

π
we get

−1 +
Λ
√
t

π

(

√

1− C

t
− 1

)

≤ F
(V )
Λ (t)− Λ

√
t

π
≤ Λ

√
t

π

(

√

1 +
C

t
− 1

)

For t large enough

−1 − Λ
√
t

π

C

2t
≤ F

(V )
Λ (t)− Λ

√
t

π
≤ Λ

√
t

π

C

2t
It gives the result of the lemma.

Lemma 7 As µ → ∞

ln Ξ(V )
µ (Λ) ∼ 2

3

Λ

π
µ3/2 (6)

Proof. Indeed,

ln Ξ(V )
µ (Λ) =

ˆ ∞

0

ln
(

1 + eβ(µ−t)
)

dF
(V )
Λ (t)

Integrating by parts and using F
(V )
Λ (t) ∼ Λ

π

√
t we have

ln Ξ(V )
µ (Λ) = β

ˆ ∞

0

eβ(µ−t)

1 + eβ(µ−t)
F

(V )
Λ (t)dt =

= β

ˆ µ

0

F
(V )
Λ (t)dt− β

ˆ µ

0

F
(V )
Λ (t)

1 + eβ(µ−t)
dt+ β

ˆ ∞

µ

F
(V )
Λ (t)

1 + eβ(t−µ)
dt
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It follows from (5), that
ˆ µ

0

F
(V )
Λ (t)dt ∼ 2

3

Λ

π
µ3/2 (7)

Let us show that
ˆ µ

0

F
(V )
Λ (t)

1 + eβ(µ−t)
dt = O(µ1/2+α), (8)

where α > 0 is arbitrary small. By (5) we can write

F
(V )
Λ (t) = c

√
t+ r(t), r(t) = O(1)

Let us prove
ˆ µ

0

√
t

1 + eβ(µ−t)
dt = O(µ1/2)

After change of variable s = t− µ

ˆ µ

0

√
t

1 + eβ(µ−t)
dt =

ˆ 0

−µ

√
µ+ s

1 + e−βs
dt =

√
µ

ˆ 0

−µ

√

1 + s
µ

1 + e−βs
dt = O(µ1/2)

It gives formula (8) since
ˆ µ

0

r(t)

1 + eβ(µ−t)
dt = O(1)

Let us show now that
ˆ ∞

µ

F
(q)
Λ (t)

1 + eβ(t−µ)
dt = O(µ1/2) (9)

After change of variable we get

ˆ ∞

µ

F
(q)
Λ (t)

1 + eβ(t−µ)
dt =

ˆ ∞

0

F
(q)
Λ (µ+ t)

1 + eβt
dt =

= c

ˆ ∞

0

√
µ+ t

1 + eβt
dt+

ˆ ∞

0

r(µ+ t)

1 + eβt
dt

It is clear that

ˆ ∞

0

√
µ+ t

1 + eβt
dt =

√
µ

ˆ ∞

0

√

1 + t
µ

1 + eβt
dt = O(µ1/2)

ˆ ∞

0

r(µ+ t)

1 + eβt
dt = O(1)

Formulas (7), (8) and (9) prove the lemma.
Now the assertion of the theorem follows from (6).
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Proof of theorem 3 By theorem 2 we have

1

Λ
lnΞ

(0)
µ−C (Λ) ≤ 1

Λ
lnΞ(V )

µ (Λ) ≤ 1

Λ
lnΞ

(0)
µ+C (Λ) (10)

It is well known that

lim
Λ→∞

1

Λ
lnΞ(0)

µ (Λ) =
1

π

ˆ ∞

0

ln(1 + eβ(µ−p2))dp

After the change of variables t = p2 and integrating by parts we get

ˆ ∞

0

ln(1 + eβ(µ−p2))dp =

ˆ ∞

0

√
t

1 + eβ(t−µ)
dt

It was shown above
ˆ ∞

0

√
t

1 + eβ(t−µ)
dt ∼ Kµ

3
2 , µ → ∞

So the result follows from (10).
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