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CLUSTER EXPANSION FOR UNBOUNDED NON-FINITE POTENTIAL

R. R. Akhmitzjanov, V. A. Malyshev and E. N. Petrova

Let Z'cRY , v22 , be the v -dimensional lattice,

Tipr the distance between t,t'€e ZV .
Let ACZ" be a finite volume. We consider the Gibbs
measure u, on IRA:
w(x) = Z;1exp{—x-uA(x)— ) |xt|m}dx (1)
ten
where x={xt,t€A}€ RA , dx= 1 dxt , A>0 1is small, m>0 ,
teA
and
2K 2k =(vte)
U, (x) = 7 U . (x_,x,,) = )  xp x,r (2)
A t,E'en tt t’7t t,£ren t Tt' Tt
x>0 is an integer, >0 , the sum runs over all pairs
t,t' from A .
The partition function is
| M
2, = [ exp{—XUA(x) - 1%, | ax .
RA teEA

Our main result is the following

Theorem. Let the parameters v, m, e, « satisfy the inequality

mv + me - 2vk =2 0 . (3)

Then there exists a AO>O such that for each 0<A<AO the
partition function ZA has the cluster expansion

nor, |
Z2, = Z C Ko "ees'K (4)
F1,...,Fn 1 n

where the sum runs over all collections {F1,...,Fn} of
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pairwise nonintersecting subsets of A : FiCA , i=1,...,n ,
C depends on the parameters *» and m , but is bounded from
below by an absolute constant:

C=cO,m > 20" (5)

We denote by |A| the cardinality of the set AcCZV .

Moreover, the values of r satisfy the cluster es-
timate: for each N
N
Lol 60 (6)
r:Tso
|r|=N

The sum in (6) runs over all sets rcg’ such that T
contains the origin and has fixed cardinality N , and
§(x) » 0 when a0 .

The potential utt' in consideration is non-finite
and unbounded. In the case of finite unbounded potential
the only condition for the existence of the cluster expan-—
sions is the boundedness of the potential from below. For
non-finite, but bounded from above potential condition
€e>0 is sufficient. Both these results were obtained in
[2] . In both of these cases the initial independent measure
is arbitrary and not necessarily has the density

exp{- ) Ixt|m} as we have in (1). Cluster expansion for
tEA

non-finite unbounded potential is also established in [1].
In terms of our paper conditions in [1] are as follows:
m>4k , e>5v . We improve these conditions.

The main idea of the expansion is the following. We
choose some barrier B and in the case when the values of
the random field in consideration are less than B we use
the known techniques (see [2]) of expansion and estimation.
We build some neighbourhoods of such tez" , for which
|xt[Z>B , and unite them into clusters. In this case we get
the cluster estimate because of the smallness of
exp(-|xt[m) .

Note that because of (4)
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“”']...[KF c"fn‘]

e L R P
e T 1 n

A

and hence the standard cluster techniques can be used only

in the presence of an estimate:

T

iKFiC- < oV

I W~

o
N

but since we have (5) it is sufficient toc prove (6).

— e

r:r
|r|

Proof of the theorem. Cluster expansion

We need to formulate some definitions. We call a set
2cz’ connected iff for each t,t' €A there exists a se-

quence t1""’tn such that tiEA , i=1,...,n and r =

tt1

=r =...=Y =r =1

tit, toqat,  tat

We say that a collection of sets T=={A1,...,An} ,
AiCIZV , i=1,...,n 1is connected iff for each £,m €
€ {1,...,n} there exists a sequence 11,...,iK ; ij €
€ {1,...,n} , j=1,...,« , such that AzrﬁAi # 0,
1

Ai'r\Ai' # § for all j and Ai FWAm # 0 . We call

3, 3 K
r =V A, the support of thecollection T = {A1,...,An} .

i=1

Now we shall describe the construction of the expan-

sion (4). First we fix an arbitrary configuration x =

={xt,t€A} and construct clusters F1""'Fn corresponding
to the fixed configuration.
Let us put
B=p80) = /8 (7)

For each t€A with |x |[>B we construct the v -dimen-

sional neighbourhood 0 having the center t and radius

t
Rt :
_ 1y 2x/ (vie)
R, = ({xt B ) (8)
Denote M = {t€A: [x |>B} . Let D1,...,Dp be the maximal con-

nected components of the set U Ot . We shall refer to a
teM
Di as a drop.
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Let G be a graph with vertices 1,...,p (note that
p 1is the number of constructed drops), a line connecting
i and j , i#j , exists iff there exist t e Dir\M and
t'e DerM such that

A1/2X2K X2K r—(v+5)

t £ Tegr > 1 . (9)

In general G 1is not a connected graph. For each maxi-
mal connected component G of G consider the union

U~Di with i running oyer all vertices of & . Changing the

i€G 13 P

components G we get the sets A1,...,A£ , U Ai = U Di .
i=1 i=1

We will refer to A1,...,A£ as fragments. So, the number

of constructed fragments is equal to the number of connec-
ted components of G .

Let us denote by T=T(x) the collection of such pairs
(t,t") , that t and t' do not belong simultaneously to
one and the same fragment. Note that for each (t,t')erT

2k 2k _=(v+e) el

A-Utt,(xt,xt.) = Axt Ry Tigo <

(10)

In fact, if fxti <B and |Xt'| <B (10) follows from
(7). 1f Ixt|>B and ]xt,|>B , then since t and t' be-
long to different fragments, (9) is not fulfilled and hence
(10) is true. If |x,{>B and th,J<B then since t'¢0,

rtt' >Rt ; SO
2¢ 2k _~=(v+e) 2k 2k = (v+e) 4k
AxT R, Tie < ABTT xg R, < A-B g Va .

The following identity will be useful for us:

y 1 a, ., (11)

exp{—x u ,} =
(t,t")er £t oCT (t,t')eq tt

where the sum runs over all subsets QCT (including the
empty set) and

a = exp{-il

e P (12)

tt!

If Q=@ we put the corresponding term equal to 1 .
We call each pair (t,t') a 14ink. Let us fix an arbit-
rary QCT . Let T be the collection of sets, consisting of



225

all constructed fragments A1,...,A£ and all links belong-
ing to Q . Let T1,...,Tn be the maximal connected subcollec-
tions of T , and respectively F1,...,Fn be their sup-

ports. We call each of F1,...,Fn a cluster, corresponding

to fixed configuration x and QCT(x) and define

_ _ |, m
fT,(X)—' I expl AUA}X)} il a ., T expl |Xt| 1 (13)
i PETi

v
(t,t )GTi t.Gl"i
where the product i runs over all fragments belonging
AET,
i
to Ti R Iis is meant over all links (t,t')EQ be-
(t,t')eT,
i
longing to Ti , and
2 2k _=(v+e)

u, (x) = ToU,,  (xo.x,,) = I AR SHLAE S
A £ tven £t ETE ¢ then £t Tee

So, we have constructed acollection of clusters F],...,Fn

which corresponds to the fixed configuration x and fixed
QCT(x) , and defined the "weights" fT of these clusters.
i

Consider an arbitrary collection F1,...,F of pair-

wise disjoint subsets FiC A, 1I=1,...,n (I‘i ?s not ne-
cessarily connected). Let X(F1,...,Fn)CRA be the set,
consisting of configurations x with the following proper-
ty: there exists QCT(x) such that Tareeesly is just the
collection of clusters corresponding to (x,0) . Note that
restriction of any XEX(F1,...,Fn) on A\.§ Fi belongs to
nury i=1

(-B,B]

ted as a direct product

, hence, the set X(F1,...,Tn) can be represen-

MNUT,
n i b
x(r1,...,rn) = [ x X, ] x [-B,B]
i=1 i
T,
where XF is exactly the set of configurations x€R 1 such

i

that for any xexF there exists QiCIT(x) such that the
i

pair (X’Qi) generates Fi .

For any finite rcz’ denote

ko = % £r(x )dx (14)

I
XT
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where XI.C:RF is the set of such configurations Xp that
there exists QC:T(xF) such that the pair (XF'Q) gener-

ates just the cluster T , the sum ] runs over all such

Q
Q , and fT(XF) is dgflned in (13), dxF =tgrdxt .
We assume KF=0 if Xr=¢ . Taking into account (14)
we obtain the expansion (4) with

B 1
c = Jexp(-ly/™ay = s exp(-ly|™dy » 2e T
-B -1
Indeed,
¢ (

z, = ) 7 T exp (=M, )expt-k ) u .
Ajreaaidy bnA1,.”,A£} i=1 1 -

. exp[—tZ {xt[dex .
€A

The sum is meant over all collections of pairwise disjoint

(not necessarily connected) sets A1,...,A£ , AiCA , i=

=1,...,2 and integration is over the set of configurations

xERA such that A1""'A£ are exactly all fragments, gen-

erated by x , T = (AxA)~ U (AiXAi) .
i=1

Using now (11) for exp PA utt'} we obtain
(t,t") T
) ) n
Z2, = i I exp(-Al, ) I a .,
A A1,..., v T {X:A1,...,A£} i=1 Ai (t,t')eQ tt

. exp{—x volx, M™ax .

tén °

Since a collection A1,...,A£ together with Q de-
termines uniquely the clusters {F1,...,Fn} ; We may repre-

sent a summation as follows:

2
ZA:F L r_ {a : a,,0} {x:A ! a,} i§1exp(_qui) .
1,...,n 11---1 /@r '1/"'I£ -
. 1 Apys exp(—x ) ]xt]m dx} .
(t,t')e€Q U e

Here the summation runs over all collections {F1,...,Fn}
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of pairwise disjoint clusters F1,...,Fn , then over all
fragments A1""'A£ and over all collections

Qc (AxA) ~ U (AiXAi) of links, such that the collection
i=1
of supports of maximal connected subcollections of the col-

lection {A1,...,A£ , 0} coincides with {F1,...,Fn} .
Performing now the integration over Xy ,tEA\.91Fi

and taking into account the definition of XF , wel;et:

ANy |

n
Z,= ) n s )y £ (x,)dx
A L i=1 X 0. i Ty T

= z C K
F1,...,Fn 1 n

Proof of the theorem. Cluster estimate

First of all we obtain the cluster estimate for clus-
ters, consisting only of fragments but not of links.

Let us fix the cardinality of T : [T|{=N . We regard
only the clusters I containing the origin: [s0 .

Moreover, let us assume at first that T is a v -di-
mensional spherical neighbourhood of some t . Then, obvi-

ously, ixt[ >B . We will show now that
expl-+1x, ™ < (DY . (15)

Let 0 be a v -dimensional sphere having radius R ,

and N - the number of points in 0 : N =]zvﬂO| . There
exist some constants = and <, (depending on v ) such
that
v v
czR s N < c1R (16)
and therefore it is sufficient to show that
v
C1Rt

exP(—%\Xt\m) < (VX)

or, taking the logarithm and using (8)

-1 2kv/ (v+e)
(xt-B ) < (=1n X)
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Together with (7) it leads to

m{v+e) ~2kv

x| ore) AVAVRE) oy

3
t 23 %
If (3) holds and X is sufficiently small, the last
inequality holds, too. Consequently, if T is a sphere and
[T|=N , then

Kpl s 3 [ exp {-% N ]xt[m} I ax, < e/l (17)
ter t

where the constant ¢ depends on m

¢ is a

spherical neighbourhood of t . Note that T is connected

Now, let T Dbe a drop, i.e. T =U0t where 0
t

in this case. Let us choose McT a subset of the centers

of spherical neighbourhoods for which T = U 0t . (It can
teM
be done in at most 2N different ways.) For any te€eM sim-

ilarly to (15) we have

and since l }Otiz IT1 =N we have (17) with another con-

stant C . (C denotes different constants not depending on
AL)

Note that T is connected, |[T|=N is fixed and Ts0
The number of different sets I'cZ’ with these properties
does not exceed CN for some constant C , depending on
v . Therefore, taking into account (17), we get (6) for
connected T

Now we are going to prove the cluster estimate in the
case when T is not connected. Then, according to our con-
struction, if [ contains no links it consists only of one
fragment. We regard at first fragments containing only two
drops, i.e. I' is the union of two connected sets. Let us
denote these drogs by 01 and Dz and let 0130 . Let us
fix D, and let jD1§:N1 . We fix also t €0, such that

| = max |x,. = b, .
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Since the drops 01 and Dz form one fragment, there

exists t2€D2 such that
2k, 2k _—(v+g)
VX b1 A 1
172

where b, :lth} . That is, if t,, b, and b, are fixed,
ts belongs to the spherical neighbourhood of t1 having
radius (b1b2)2K/(v+E), so that the number of different

ways of fixing t2

Denoting N2 =N—N1

2xkv/(v+e)
c1(b1b2) .

and summing through all connected D2 ’

does not exceed

having cardinality N2 and containing fixed t2 , similar-
ly to (17) we have:

T Jexp(-Al, ) I Tox ™ ax, <
Dptet, 0 gy Tl g E S

272%%2 2 2772
D, =N
2t 2 (18)
N
< exp(=2 D)+ (/D) .

The left hand side
figurations on Dz
fixed.

Similarly,

2
< exp(-§

where the sum runs
N1 and containing
of

xt1Eb1 is fixed.

Consequently,

such configurations on D

integral is over the set of such con-

, that Dz tzEb2

is a drop and x is

- 1 " 1 ax s
teD, Jtev1\t

m N1

b)) (c/%)

over all connected 01 having cardinality

the origin, integration is over the set

that D1 is a drop and

1
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) lepl s/ db,db, ] ) {fexp(—AUD )
r:T30 D,30 t, €D 1
TN 1 1591
. exp{— I Ix ‘m] dx J I I {.fexp(-kuv )-
£€D, teDey e, Dost, 2
10, 1=N-1, |
cepl- T e M ax,|
t€D, t€02\t2

Substituting (18) and (19) into the last inequality we
obtain

) ]rr[ < (C/T)N s b12Kv/<v+€) exp(—%b?) .
T B
|

Now we shall examine the case when a fragment contains

an arbitrary number s of drops. Let us fix 0130 and

t1€D1 - For each fragment there exists a tree YV with ver-
tices t.,t,,...,t . , t. €2 such that t.€D., and a line
1772 S i i~"i
between ti and tj meaning that
2k 2k _—=(v+g)
AL Xe, Tep ozl (20)
1 J 13
Let us denote bi=xt , 1=1,...,5s . Let us fix t2,...,
i
,ts, b1""'bs , bizB for each i , and a tree V , satis-

fying (20). Let us fix integers N1""’Ns ;, such that

ZNi= N (i.e. we fix the cardinalities of the drops D1,...,
,DS , of a fragment). Obviously,

) )

f f
FXP(_XUDiyeXprigpiXt‘JJ.(21)

s
' ‘m}
exp(-Al )exp|- ] x| IE iz

tel 1

i

Using (18) for each i=2,...,8 we have
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Y exp (M), )-exp(— ) ixt|m1 ht ax, <
Di:Diati i b eeD, SN
10 [=Ny (22)
2 .m — Ni
< exp(—§ bi)(C/A) .
Let us keep b1""’bs fixed and estimate the number

of trees VY , containing a fixed vertex t1 and satisfy-
ing (20). We shall describe an algorithm, which enumerates
all such trees VY .

An algorithm, enumerating the trees

1. step. Fix a vector of nonnegative integers (n1,..
.,ng) such that n,#0 , n =0 and Zni=s—1 . Evidently,
it can be done in at most 4° different ways.

v
2. step. Choose n, vectors Vire-erVy s viEEZ ,

i=1,...,n1 satisfying the following conditions: vy be-

longs to the spherical neighbourhood of the origin having

)2K/(\)+E)

radius (b1b Construct:

i+1
t2 = t1 + v1

= +
t t v,

Construct the lines between t, and each of the t,,...
t
14

’

n1+1 -
3. step. Choose the first (in lexicographic order) of
the constructed vertices, excluding t.I . Let this vertex
be tj . If n2¢0 , choose n, vectors vn1+1,...,vn1+n2 ,

viEEZv for each i , such that vi belongs to the spheri-

cal neighbourhood of the origin having radius

(bjbi+1)2K/(v+€) Construct
tho2 = B3 F Vi1
1 1
t = +t. + v
n1+n2+1 J n1+n2

Construct the lines between tj and each of
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tn1+2""’tn no+1 - If n1=0 + pPass to the next step with-

172
out any construction.

We proceed by induction. Let P steps be already per-

1
(p+1) . step. Choose the first (in lexicographic order)

of all vertices having been constructed during the previous

steps excluding those which have been already chosen ear-

lier. Let this vertex be t£ . If np=0 ; pass to the next

formed and n1+n2+...+np_ +1  vertices be constructed.

step without any construction.

If np#O , choose np vectors Vn1+...+np+1""'

Y .
Vn1+...+n ’ ViEEZ for each i , such that vy belongs

to the spherical neighbourhood of the origin having radius
2%/ (v+e)
(bﬁbi+1) .

Construct
t t,+v
n1+ ..+np_1+2 £ n1+.. +np_1+1
n,+...+n +1 tK+Vn +...+n .
1 2} 1

Construct the lines between tﬂ and each of the ver-
tices constructed in this step.
After s steps the construction is finished.

Thus, if b1""’bs , n1,...,ns_1 and Virese,V

are chosen, the graph constructed by our algorithm is
unique. Choosing all possible b]""'bs r Mqseeayn

s-1

s-1 '

Virese,V we can construct among other graphs all pos-—

s-1
sible trees V . Moreover, we construct each tree more times.

Indeed, let T be a tree having s vertices and a root

t1 - Let us denote by n, the number of lines in T in-
cident with t1 ’ (ni+1) - the number of lines in T in-
cident with ti » 1=2,...,5 . Then the tree T is construc-
s
ted by our algorithm at last i (ni!) times.
i=1
In fact, let b1""’bs and v1,...,vs_] be the vec-

tors, generating the tree T . Let us divide a collection

(b1,...,Bs) into subcollections in the following way. The

first subcollection consists of only one element, namely
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51 . The second subcollection consists of n, vectors:

b2,...,bn1+1 ; the third one consists of the next n, vec-

tors, and so on. Consider now a new collection
(51,...,55) , obtained from (51,...,55) by arbitrary
permutations in each of the described subcollections (but

without any permutations between the subcollections). Let

VyresaVg_ g be a collection, obtained from 61,...,65_1
by the same permutations. Obviously, the tree generated by
51,...,55, 51,...,35_1 is T , and there are exactly
H(ni!) such permutations.
The number of different ways of choosing VireeorVgq s
having b1,...,bS and 1 PIIRRNS LI fixed, is
S 2Kn1v/(v+a) s 2k (n.+1) / (v+e)
c® b n b, I (23)
771 . i.
j=2 73

where we have denoted by ij the number of the vertex,
which is chosen as the first one in lexicographic order in
the (j+1)th step of the algorithm, 3j=2,...,s-1 , and
used (16).

Note that
2 {n.+1)/ (v+e) n,
i 1.m i
sgp bi exp(—gbi) < (Cny) . (24)
i
Taking into account (21), (22), (23) and (24) finally
we have:
. N 1 S ni
2 \Krl < (C\/X) Z Z —(ﬁ_-‘_)— 1 (Cni) .
r:rs0 s<N (n,,...,n ) i°’ i=1
- 1 s-1
It |=N
” 1. m N
s exp(—§b.)db. < (C/))
i i
B
Now we must consider the case when T contains links.
Since
4 = (v+e)
) 1att.\ < ) ABTr, < C/a (26)

t'ezg’ t'eg’

the case when T consists only of links is trivial. The
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general case follows from (26) and (25) by induction on the

number of links and fragments in the cluster.
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