Statistical Physics and Dynamical Systems

Rigorous Results

J. Fritz, A. Jaffe, and D. Szász, editors Progress in Physics Vol. 10

Edited by A. Jaffe, G. Parisi, and D. Ruelle

 $\begin{array}{l} Birkh \ddot{a}user \\ Boston \cdot Basel \cdot Stuttgart \end{array}$

Editors

J. Fritz MTA MKI Realtanoda u. 13-15 H-1053 Budapest (Hungary) A. Jaffe
Dept. of Physics
Lyman Laboratory
Harvard University
Cambridge, MA 02138 (USA)

D. Szász MTA MKI Realtanoda u. 13–15 H–1053 Budapest (Hungary)

Library of Congress Cataloging in Publication Data Main entry under title:

Statistical physics and dynamical systems.

(Progress in physics; vol. 10) »Contains most of the invited papers of the Second Colloquium and Workshop on Random Fields: Rigorous Results in Statistical Mechanics: held in Köszeg, Hungary between August 26 and September 1, 1984« — CIP pref.

Includes bibliographies.

1. Random fields -- Congresses. 2. Statistical mechanics -- Congresses. 3. Quantum field theory --II. Jaffe, Arthur, 1937-Congresses. I. Fritz, J. IV. Colloquium and Workshop on »Random III. Szász, D. Fields: Rigorous Results in Statistical Mechanics« V. Series: Progress (2nd: 1984: Köszeg, Hungary) in physics (Boston, Mass.); v. 10. 85-1235 OC174.85.R36S73 1985 ISBN 0-8176-3300-6

CIP-Kurztitelaufnahme der Deutschen Bibliothek

Statistical physics and dynamical systems: rigorous results / J. Fritz..., ed. - Boston; Basel; Stuttgart: Birkhäuser, 1985.
(Progress in physics; Vol. 10)
ISBN 3-7643-3300-6 (Basel...)
ISBN 0-8176-3300-6 (Boston)
NE: Fritz, Jozsef [Hrsg.]; GT

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

© 1985 Birkhäuser Boston, Inc. Printed in Germany ISBN 0-8176-3300-6 ISBN 3-7643-3300-6

CONTENTS

Preface vii Program of the Workshop ix List of Participants xv

R.A. MINLOS: The Algebra of Many-Particle Operators	1
H. ARAKI and T. MATSUI: C*-Algebra Approach to Ground States of the XY-Model	17
M.Z. GUO and G. PAPANICOLAOU: Bulk Diffusion for Interacting Brownian Particles	41
L.A. PASTUR: Spectral Properties of Random and Almost Periodic Differential and Finite-Difference Operators	49
H. SPOHN: Equilibrium Fluctuations for Some Stochastic Particle Systems	67
A.G. SHUHOV and YU.M. SUHOV: Linear and Related Models of Time Evolution in Quantum Statistical Mechanics	83
P. COLLET: Systems with Random Couplings on Diamond Lattices	105
L.A. BUNIMOVICH: On the Diffusion in Dynamical Systems	127
A. KUPIAINEN: Φ^4_{4} with Negative Coupling	137
C. BOLDRIGHINI, A. DE MASI, A. NOGUERIA and E. PRESUTTI: The Dynamics of a Particle Interacting with Semi-Infinite Ideal Gas is a Bernoulli Flow	153
YA.B. PESIN: A Generalization of Carateodory's Construction for	
Dimensional Characteristic of Dynamic Systems	191
M. MISIUREWICZ and A. ZDUNIK: Convergence of Images of Certain	
Measures	203

R.R. AKHMITZJANOV, V.A. MALYSHEV and E.N. PETROVA: Cluster	
Expansion for Unbounded Non-Finite Potential	221
C. BARDOS, R. CAFLISCH and B. NICOLAENKO: Thermal Layer Solutions	
of the Boltzmann Equation	235
E. PRESUTTI, YA.G. SINAI and M.R. SOLOVIECHIK: Hyperbolicity and	
Möller-Morphism for a Model of Classical Statistical Mechanics	253
L. ACCARDI: Quantum Stochastic Processes	285
P.M. BLECHER and M.V. JAKOBSON: Absolutely Continuous Invariant	
Measures for Some Maps of the Circle	303
C. MARCHIORO: Some Problems in Vortex Theory	317
P.M. BLECHER: The Maxwell Rule and Phase Separation in the	
Hierarchical Vector-Valued ϕ^{4} -Model	329
R.L. DOBRUSHIN and S.B. SHLOSMAN: Constructive Criterion for the	
Uniqueness of Gibbs Field	347
R.L. DOBRUSHIN and S.B. SHLOSMAN: Completely Analytical Gibbs	
Fields	371
P.A. FERRARI, S. GOLDSTEIN and J.L. LEBOWITZ: Diffusion, Mobility	
and the Einstein Relation	405
B. SOUILLARD: Transition from Pure Point to Continuous Spectrum	
for Random Schrödinger Equations: Some Examples	443
M. AIZENMAN: Rigorous Studies of Critical Behavior II	453

CLUSTER EXPANSION FOR UNBOUNDED NON-FINITE POTENTIAL

R. R. Akhmitzjanov, V. A. Malyshev and E. N. Petrova

Let $\bm{z}^{\nu} \subseteq R^{\nu}$, $\nu {\ge} 2$, be the ν -dimensional lattice, r_{++} , the distance between t,t' \in \bm{z}^{ν} .

Let $\Lambda \subseteq \mathbf{Z}^V$ be a finite volume. We consider the Gibbs measure μ_{Λ} on ${\rm I\!R}^{\Lambda}$:

$$\mu_{\Lambda}(\mathbf{x}) = \mathbf{Z}_{\Lambda}^{-1} \exp\{-\lambda \cdot u_{\Lambda}(\mathbf{x}) - \sum_{\mathbf{t} \in \Lambda} |\mathbf{x}_{\mathbf{t}}|^{m}\} d\mathbf{x}$$
 (1)

where $x=\{x_{t},t\in\Lambda\}\in R^{\Lambda}$, $dx=\prod\limits_{t\in\Lambda}dx_{t}$, $\lambda>0$ is small, m>0 , and

$$u_{\Lambda}(\mathbf{x}) = \sum_{\mathsf{t},\mathsf{t}' \in \Lambda} u_{\mathsf{t}\mathsf{t}'}(\mathbf{x}_{\mathsf{t}},\mathbf{x}_{\mathsf{t}'}) = \sum_{\mathsf{t},\mathsf{t}' \in \Lambda} \mathbf{x}_{\mathsf{t}}^{2\kappa} \mathbf{x}_{\mathsf{t}'}^{2\kappa} \mathbf{x}_{\mathsf{t}'}^{-(\nu+\varepsilon)}$$
(2)

 $\kappa\!>\!0$ is an integer, $\epsilon\!>\!0$, the sum runs over all pairs t,t' from Λ .

The partition function is

$$z_{\Lambda} = \int_{\mathbb{R}^{\Lambda}} \exp\{-\lambda u_{\Lambda}(x) - \sum_{t \in \Lambda} |x_t|^m\} dx$$
.

Our main result is the following

Theorem. Let the parameters ν , m, ϵ , κ satisfy the inequality

$$m_V + m_E - 2_{VK} \ge 0$$
 (3)

Then there exists a $\lambda_{O}>0$ such that for each $0<\lambda<\lambda_{O}$ the partition function Z_{Λ} has the cluster expansion

$$z_{\Lambda} = \sum_{\Gamma_{1}, \dots, \Gamma_{n}} c^{\left| \Lambda \setminus \cup_{\Gamma_{1}} \right|} \kappa_{\Gamma_{1}} \dots \kappa_{\Gamma_{n}}$$
(4)

where the sum runs over all collections $\{\Gamma_1,\ldots,\Gamma_n\}$ of

pairwise nonintersecting subsets of $~\Lambda$: $\Gamma_{\bf i}{}^{C}\Lambda$, i=1,...,n , C depends on the parameters $\lambda~$ and ~m , but is bounded from below by an absolute constant:

$$C = C(\lambda, m) \ge 2e^{-1}$$
 (5)

We denote by |A| the cardinality of the set $A \subseteq {\bf Z}^{\vee}$. Moreover, the values of κ_{Γ} satisfy the cluster estimate: for each N

$$\sum_{\Gamma:\Gamma\ni O} |\kappa_{\Gamma}| \quad (\delta(\lambda))^{N}$$

$$|\Gamma|=N$$
(6)

The sum in (6) runs over all sets $\Gamma \subset \mathbf{Z}^{V}$ such that Γ contains the origin and has fixed cardinality N, and $\delta(\lambda) \to 0$ when $\lambda \to 0$.

The potential u_{tt} , in consideration is non-finite and unbounded. In the case of finite unbounded potential the only condition for the existence of the cluster expansions is the boundedness of the potential from below. For non-finite, but bounded from above potential condition $\varepsilon > 0$ is sufficient. Both these results were obtained in [2]. In both of these cases the initial independent measure is arbitrary and not necessarily has the density $\exp\{-\sum_{t\in\Lambda}|\mathbf{x}_t|^m\}$ as we have in (1). Cluster expansion for

non-finite unbounded potential is also established in [1]. In terms of our paper conditions in [1] are as follows: $m>4\kappa$, $\epsilon>5\nu$. We improve these conditions.

The main idea of the expansion is the following. We choose some barrier B and in the case when the values of the random field in consideration are less than B we use the known techniques (see [2]) of expansion and estimation. We build some neighbourhoods of such $t\in \mathbf{Z}^{\vee}$, for which $|\mathbf{x}_t| > B$, and unite them into clusters. In this case we get the cluster estimate because of the smallness of $\exp(-|\mathbf{x}_+|^m)$.

Note that because of (4)

$$\mathbf{z}_{\Lambda} \cdot \mathbf{c}^{-|\Lambda|} = \sum_{\Gamma_{1}, \dots, \Gamma_{n}} \left(\kappa_{\Gamma_{1}} \mathbf{c}^{-|\Gamma_{1}|} \right) \dots \left(\kappa_{\Gamma_{n}} \mathbf{c}^{-|\Gamma_{n}|} \right)$$

and hence the standard cluster techniques can be used only in the presence of an estimate:

$$\sum_{\substack{\Gamma:\Gamma\ni 0\\|\Gamma|=N}} |\kappa_{\Gamma}| C^{-|\Gamma|} \leq (\delta(\lambda))^{N}$$

but since we have (5) it is sufficient to prove (6).

Proof of the theorem. Cluster expansion

We need to formulate some definitions. We call a set $A \subseteq \mathbf{Z}^{\vee}$ connected iff for each t,t' $\in A$ there exists a sequence t_1,\ldots,t_n such that $t_i \in A$, $i=1,\ldots,n$ and $r_{tt_1} = r_{tt_1}$

$$=r_{t_1}t_2=\cdots=r_{t_{n-1}}t_n=r_{t_n}t_i=1$$
.

We say that a collection of sets $T = \{A_1, \dots, A_n\}$, $A_i \subset \mathbf{Z}^{\vee}$, $i=1,\dots,n$ is connected iff for each $\ell,m \in \{1,\dots,n\}$ there exists a sequence i_1,\dots,i_{κ} ; $i_j \in \{1,\dots,n\}$, $j=1,\dots,\kappa$, such that $A_{\ell} \cap A_{i_1} \neq 0$, $A_{i_1} \cap A_{i_2} \neq \emptyset$ for all j and $A_{i_3} \cap A_{i_4} \neq \emptyset$. We call $f(i_1,\dots,i_{\kappa}) \cap f(i_1,\dots,i_{\kappa}) \cap f(i_1,\dots,i_{\kappa})$ $f(i_1,\dots,i_{\kappa}) \cap f(i_1,\dots,i_{\kappa}) \cap f(i_1,\dots,i_{\kappa}) \cap f(i_1,\dots,i_{\kappa})$ $f(i_1,\dots,i_{\kappa}) \cap f(i_1,\dots,i_{\kappa}) \cap f(i_1,\dots,i_{\kappa})$ $f(i_1,\dots,i_{\kappa}) \cap f(i_1,\dots,i_{\kappa}) \cap f(i_1,\dots,i_{\kappa})$ $f(i_1,\dots,i_{\kappa}) \cap f(i_1,\dots,i_{\kappa})$ $f(i_1,\dots,i_{\kappa})$ $f(i_1,\dots,i_{\kappa}) \cap f(i_1,\dots,i_{\kappa})$ $f(i_1,\dots,i_{\kappa})$ $f(i_1,\dots,i_{\kappa})$ $f(i_1,\dots,i_{\kappa})$ $f(i_1,\dots,i_{\kappa})$ $f(i_1,\dots,i_{\kappa})$ $f(i_1,\dots,i_{\kappa})$ $f(i_1,\dots,i_{\kappa})$ $f(i_1,\dots,i_{\kappa})$ $f(i_1,\dots,i_{\kappa}$

Now we shall describe the construction of the expansion (4). First we fix an arbitrary configuration $\mathbf{x} = \{\mathbf{x}_{\mathbf{t}}, \mathbf{t} \in \Lambda\}$ and construct clusters $\Gamma_1, \ldots, \Gamma_n$ corresponding to the fixed configuration.

Let us put

$$B = B(\lambda) = \lambda^{-1/8\kappa} . (7)$$

For each ten with $|x_t|>B$ we construct the ν -dimensional neighbourhood 0 having the center t and radius R_t :

$$R_{t} = (|\mathbf{x}_{t}| \cdot \mathbf{B}^{-1})^{2\kappa/(\nu + \varepsilon)} . \tag{8}$$

Denote $M = \{t \in A: |x_t| > B\}$. Let $\mathcal{D}_1, \ldots, \mathcal{D}_p$ be the maximal connected components of the set $\bigcup_{t \in M} \mathcal{D}_t$. We shall refer to a \mathcal{D}_i as a drop.

Let G be a graph with vertices 1,...,p (note that p is the number of constructed drops), a line connecting i and j , i \neq j , exists iff there exist t $\in \mathcal{D}_i \cap M$ and t' $\in \mathcal{D}_i \cap M$ such that

$$\lambda^{1/2} x_{t}^{2\kappa} x_{t}^{2\kappa} r_{tt}^{-(\nu+\epsilon)} \ge 1$$
 (9)

In general G is not a connected graph. For each maximal connected component \tilde{G} of G consider the union $\begin{tabular}{c} \cup \mathcal{D}_i with i running over all vertices of \tilde{G} . Changing the initial components \tilde{G} we get the sets A_1,\ldots,A_ℓ, \cup A_i = \cup \mathcal{D}_i . We will refer to A_1,\ldots,A_ℓ as $fragments$. So, the number of constructed fragments is equal to the number of connected components of G .$

Let us denote by T=T(x) the collection of such pairs (t,t'), that t and t' do not belong simultaneously to one and the same fragment. Note that for each $(t,t')\in T$

$$\lambda \cdot u_{\mathsf{tt}}(\mathbf{x}_{\mathsf{t}}, \mathbf{x}_{\mathsf{t}}) = \lambda \mathbf{x}_{\mathsf{t}}^{2\kappa} \mathbf{x}_{\mathsf{t}}^{2\kappa} \mathbf{r}_{\mathsf{tt}}^{-(\nu+\varepsilon)} \leq \sqrt{\lambda} . \tag{10}$$

In fact, if $|\mathbf{x}_t| < B$ and $|\mathbf{x}_{t^*}| < B$ (10) follows from (7). If $|\mathbf{x}_t| > B$ and $|\mathbf{x}_{t^*}| > B$, then since t and t' belong to different fragments, (9) is not fulfilled and hence (10) is true. If $|\mathbf{x}_t| > B$ and $|\mathbf{x}_{t^*}| < B$ then since t' $\not\in 0$ t $\mathbf{x}_{t^*} > \mathbf{x}_{t^*}$, so

$$\lambda x_{t}^{2\kappa} \ x_{t}^{2\kappa} \ r_{tt}^{-(\nu+\epsilon)} \leq \lambda \cdot B^{2\kappa} \ x_{t}^{2\kappa} \ R_{t}^{-(\nu+\epsilon)} \leq \lambda \cdot B^{4\kappa} \leq \sqrt{\lambda} \ .$$

The following identity will be useful for us:

$$\exp\left\{-\lambda \sum_{(t,t')\in \mathbf{T}} u_{tt'}\right\} = \sum_{\Omega \subseteq \mathbf{T}} \prod_{(t,t')\in \Omega} a_{tt'}$$
(11)

where the sum runs over all subsets $\mathbb{Q}^{\subset}\mathbb{T}$ (including the empty set) and

$$a_{tt'} = \exp\{-\lambda u_{tt'}\} - 1$$
 (12)

If $Q=\emptyset$ we put the corresponding term equal to 1 .

We call each pair (t,t') a link. Let us fix an arbitrary QCT . Let $\ T$ be the collection of sets, consisting of

all constructed fragments A_1,\ldots,A_ℓ and all links belonging to Q . Let T_1, \dots, T_n be the maximal connected subcollections of T , and respectively $\Gamma_1, \ldots, \Gamma_n$ be their supports. We call each of $\Gamma_1, \dots, \Gamma_n$ a cluster, corresponding to fixed configuration x and QCT(x) and define

$$f_{T_{\underline{i}}}(x) = \prod_{A \in T_{\underline{i}}} \exp\{-\lambda U_{\underline{A}}(x)\} \prod_{(t,t') \in T_{\underline{i}}} a_{tt'} \prod_{t \in \Gamma_{\underline{i}}} \exp\{-|x_{\underline{t}}|^{m}\}$$
(13)

where the product $\ \ \Pi \ \ \$ runs over all fragments belonging $\ \ \mathbf{A}^{\in\mathcal{T}}_{i}$

to T_i , π is meant over all links $(t,t')\in Q$ becomes $(t,t')\in T_i$

longing to T_i , and

$$u_{\mathbf{A}}(\mathbf{x}) = \sum_{\mathsf{t,t'} \in \mathbf{A}} u_{\mathsf{tt'}}(\mathbf{x}_{\mathsf{t}}, \mathbf{x}_{\mathsf{t'}}) = \sum_{\mathsf{t,t'} \in \mathbf{A}} \mathbf{x}_{\mathsf{t}}^{2\kappa} \mathbf{x}_{\mathsf{t'}}^{2\kappa} \mathbf{r}_{\mathsf{tt'}}^{-(v+\varepsilon)}$$

So, we have constructed a collection of clusters $\Gamma_1, \dots, \Gamma_n$ which corresponds to the fixed configuration x and fixed QCT(x) , and defined the "weights" $f_{\mathcal{T}_{\underline{i}}}$ of these clusters.

Consider an arbitrary collection $\Gamma_1, \ldots, \Gamma_n$ of pairwise disjoint subsets $\Gamma_i \subset \Lambda$, i=1,...,n (Γ_i is not necessarily connected). Let $X(\Gamma_1, \ldots, \Gamma_n) \subset \mathbb{R}^{\Lambda}$ be the set, consisting of configurations x with the following property: there exists $Q^{CT}(x)$ such that $\Gamma_1, \dots, \Gamma_n$ is just the collection of clusters corresponding to $(x_{\underline{\iota}}\Omega)$. Note that restriction of any $x \in X(\Gamma_1, ..., \Gamma_n)$ on $\Lambda \cup \Gamma_i$ belongs to

 $[-B,B] \stackrel{\text{$1$}}{=} \text{$i$} \text{ , hence, the set } X(\Gamma_1,\ldots,\Gamma_n) \text{ can be represen-}$ ted as a direct product

$$X(\Gamma_1, ..., \Gamma_n) = \begin{pmatrix} n \\ \times & X_{\Gamma_i} \end{pmatrix} \times [-B, B]^{\Lambda \setminus \bigcup_{i=1}^{\Lambda \setminus \bigcup$$

where $X_{\Gamma_{i}}$ is exactly the set of configurations $x \in R^{\Gamma_{i}}$ that for any $x \in X_{\Gamma_i}$ there exists $Q_i \subseteq T(x)$ such that the pair (x,Q_i) generates Γ_i . For any finite $\Gamma \subseteq \mathbf{Z}^{\vee}$ denote

$$\kappa_{\Gamma} = \int_{X_{\Gamma}} \sum_{Q} f_{T}(x_{\Gamma}) dx_{\Gamma}$$
 (14)

where $\mathbf{X}_{\Gamma} \subset \mathbf{R}^{\Gamma}$ is the set of such configurations \mathbf{x}_{Γ} that there exists $Q \subset T(x_{\Gamma})$ such that the pair (x_{Γ},Q) generates just the cluster Γ , the sum $\sum\limits_{\Omega}$ runs over all such Q , and $f_T(x_{\Gamma})$ is defined in (13), $dx_{\Gamma} = \prod_{t \in \Gamma} dx_t$.

We assume $\kappa_{\Gamma} = 0$ if $X_{\Gamma} = \emptyset$. Taking into account (14) we obtain the expansion (4) with

$$c = \int_{-B}^{B} \exp(-|y|^{m}) dy \ge \int_{-1}^{1} \exp(-|y|^{m}) dy \ge 2e^{-1}$$
.

Indeed.

$$Z_{\Lambda} = \sum_{A_{1}, \dots, A_{\ell}} \int_{\{\mathbf{x}: A_{1}, \dots, A_{\ell}\}} \int_{\mathbf{i}=1}^{\ell} \exp(-\lambda u_{\mathbf{A}_{\mathbf{i}}}) \exp\left(-\lambda \sum_{\{\mathbf{t}, \mathbf{t}'\} \in \mathbf{T}} u_{\mathbf{t}\mathbf{t}'}\right).$$

$$\cdot \exp\left[-\sum_{t\in\Lambda} |x_t|^m\right] dx$$
.

The sum is meant over all collections of pairwise disjoint (not necessarily connected) sets $\mathbf{A}_1,\dots,\mathbf{A}_\ell$, \mathbf{A}_i $\subset \Lambda$, i= =1,..., ℓ and integration is over the set of configurations $x \in \mathbb{R}^{\Lambda}$ such that A_1, \dots, A_{ℓ} are exactly all fragments, generated by x, $T = (\Lambda \times \Lambda) \times U$ $(A_1 \times A_1)$.

Using now (11) for $\exp \left[-\lambda \sum_{(t,t')} U_{tt'} \right]$ we obtain

$$\mathbf{z}_{\Lambda} = \sum_{\mathbf{A}_{1}, \dots, \mathbf{A}_{\ell}} \sum_{\mathbf{Q} = \mathbf{T}} \int_{\{\mathbf{x}: \mathbf{A}_{1}, \dots, \mathbf{A}_{\ell}\}} \frac{\ell}{\mathbf{i} = 1} \exp(-\lambda u_{\mathbf{A}_{1}}) \prod_{(\mathsf{t}, \mathsf{t}') \in \mathbf{Q}} \mathbf{a}_{\mathsf{t} \mathsf{t}'}.$$

•
$$\exp\left[-\lambda \sum_{t \in \Lambda} |x_t|^m\right] dx$$
.

Since a collection A_1, \dots, A_ℓ together with Q determines uniquely the clusters $\{\bar{\Gamma}_1,\dots,\bar{\Gamma}_n\}$, we may represent a summation as follows:

$$\mathbf{Z}_{\Lambda} = \sum_{\Gamma_{1}, \dots, \Gamma_{n}} \{\mathbf{A}_{1}, \dots, \mathbf{A}_{\ell}, \mathbf{Q}\} \{\mathbf{x} : \mathbf{A}_{1}, \dots, \mathbf{A}_{\ell}\} \stackrel{\ell}{\mathbf{i}} = 1 \exp(-\lambda u_{\mathbf{A}_{1}}) \cdot \prod_{(\mathsf{t}, \mathsf{t}') \in \mathbf{Q}} \mathbf{a}_{\mathsf{t}\mathsf{t}}, \exp\left[-\lambda \sum_{\mathsf{t} \in \Lambda} |\mathbf{x}_{\mathsf{t}}|^{\mathsf{m}} d\mathbf{x}\right] \cdot \prod_{\mathsf{t} \in \Lambda} \mathbf{a}_{\mathsf{t}\mathsf{t}} \cdot \mathbf{a}_{\mathsf{t}} \cdot \mathbf{a}_{\mathsf{t}} \cdot \mathbf{a}_{\mathsf{t}\mathsf{t}} \cdot \mathbf{a}_{\mathsf{t}\mathsf{t}\mathsf{t}} \cdot \mathbf{a}_{\mathsf{t}\mathsf{t}} \cdot \mathbf{a}_{\mathsf{t}\mathsf{t}} \cdot \mathbf{a}_{\mathsf{t}\mathsf{t}} \cdot \mathbf{a}_{\mathsf{t}\mathsf{t}} \cdot \mathbf{a}_{\mathsf{t}\mathsf{t}} \cdot \mathbf{a}_{\mathsf{t}\mathsf{t}} \cdot \mathbf{a}_{\mathsf{t}} \cdot \mathbf{a}_{\mathsf{t}\mathsf{t}} \cdot \mathbf{a}_{\mathsf{t}\mathsf{t}} \cdot \mathbf{a}_{\mathsf{t}\mathsf{t}} \cdot \mathbf{a}_{\mathsf{t}\mathsf{t}} \cdot \mathbf{a}_{\mathsf{t}} \cdot \mathbf{a}_{\mathsf{t}}$$

Here the summation runs over all collections $\{\Gamma_1, \ldots, \Gamma_n\}$

of pairwise disjoint clusters Γ_1,\dots,Γ_n , then over all fragments A_1,\dots,A_ℓ and over all collections $Q\subset (\Lambda\times\Lambda) \smallsetminus \bigcup\limits_{i=1}^{\ell} (A_i\times A_i)$ of links, such that the collection of supports of maximal connected subcollections of the collection $\{A_1,\dots,A_\ell\,,\,Q\}$ coincides with $\{\Gamma_1,\dots,\Gamma_n\}$.

Performing now the integration over x_t , $t \in \mathbb{N}$ $v \in \mathbb{N}$ i and taking into account the definition of x_r , we get:

$$z_{\Lambda} = \sum_{\Gamma_{1}, \dots, \Gamma_{n}} c^{\left| \Lambda \setminus \bigcup_{i} \Gamma_{i} \right|} \prod_{\substack{n \\ i=1}}^{n} \sum_{X_{\Gamma_{i}}} Q_{i} f_{\tau_{i}}(x_{\Gamma_{i}}) dx_{\Gamma_{i}} =$$

$$= \sum_{\Gamma_{1}, \dots, \Gamma_{n}} c^{\left| \Lambda \setminus \bigcup_{i} \Gamma_{i} \right|} K_{\Gamma_{1}} \dots K_{\Gamma_{n}}.$$

Proof of the theorem. Cluster estimate

First of all we obtain the cluster estimate for clusters, consisting only of fragments but not of links.

Let us fix the cardinality of Γ : $|\Gamma|=N$. We regard only the clusters Γ containing the origin: F90 .

Moreover, let us assume at first that $\ \Gamma$ is a ν -dimensional spherical neighbourhood of some $\ t$. Then, obviously, $|x_+|>B$. We will show now that

$$\exp\left(-\frac{1}{3}\left|\mathbf{x}_{+}\right|^{m}\right) \leq \left(\sqrt{\lambda}\right)^{N}.$$
 (15)

Let 0 be a ν -dimensional sphere having radius R , and N - the number of points in 0 : N = $|{\bf Z}^{\nu} \cap 0|$. There exist some constants c_1 and c_2 (depending on ν) such that

$$c_2 R^{\vee} \leq N \leq c_1 R^{\vee} \tag{16}$$

and therefore it is sufficient to show that

$$\exp(-\frac{1}{3}|\mathbf{x}_{t}|^{m}) \leq (\sqrt{\lambda})^{c_{1}R_{t}^{\nu}}$$

or, taking the logarithm and using (8)

$$|\mathbf{x}_{t}|^{m} \ge \frac{3}{2} c_{1} (\mathbf{x}_{t} \cdot \mathbf{B}^{-1})^{2\kappa \nu/(\nu+\epsilon)} \cdot (-\ln \lambda)$$
.

Together with (7) it leads to

$$|\mathbf{x}_{t}|^{\frac{m(\nu+\varepsilon)-2\kappa\nu}{(\nu+\varepsilon)}} \geq \frac{3}{2} c_{1} \lambda^{\nu/4(\nu+\varepsilon)} \cdot (-\ln \lambda) .$$

If (3) holds and $~\lambda~$ is sufficiently small, the last inequality holds, too. Consequently, if $~\Gamma~$ is a sphere and $|\Gamma|=N$, then

$$|\kappa_{\Gamma}| \le (\sqrt{\lambda})^N \int \exp\left\{-\frac{1}{3}\sum_{t\in\Gamma}|x_t|^m\right\} \prod_t dx_t \le (C\sqrt{\lambda})^N$$
 (17)

where the constant $\, \, C \, \,$ depends on $\, \, m \, \,$.

Now, let Γ be a drop, i.e. $\Gamma = U0_{t}$ where 0_{t} is a spherical neighbourhood of t. Note that Γ is connected in this case. Let us choose Mc Γ a subset of the centers of spherical neighbourhoods for which $\Gamma = U0_{t}$. (It can be done in at most 2^{N} different ways.) For any $t \in M$ similarly to (15) we have

$$\exp(-\frac{1}{3}|\mathbf{x}_{t}|^{m}) \le (\sqrt{\lambda})^{\lfloor 0_{t} \rfloor}$$

and since $\sum_{t\in M} |0_t| \ge |\Gamma| = N$ we have (17) with another constant C . (C denotes different constants not depending on λ .)

Note that Γ is connected, $|\Gamma|=N$ is fixed and $\Gamma\ni 0$. The number of different sets $\Gamma\subset \mathbf{Z}^{\vee}$ with these properties does not exceed C^N for some constant C, depending on ν . Therefore, taking into account (17), we get (6) for connected Γ .

Now we are going to prove the cluster estimate in the case when Γ is not connected. Then, according to our construction, if Γ contains no links it consists only of one fragment. We regard at first fragments containing only two drops, i.e. Γ is the union of two connected sets. Let us denote these drogs by \mathcal{D}_1 and \mathcal{D}_2 and let $\mathcal{D}_1\ni 0$. Let us fix \mathcal{D}_1 and let $|\mathcal{D}_1|=N_1$. We fix also $\mathsf{t}_1\in\mathcal{D}_1$ such that

$$|\mathbf{x}_{t_1}| = \max_{\mathbf{t} \in \mathcal{D}_1} |\mathbf{x}_{\mathbf{t}}| = b_1$$
.

Since the drops $\,^{\it D}_1\,$ and $\,^{\it D}_2\,$ form one fragment, there exists $\,^{\it t}_2 \in \!^{\it D}_2\,$ such that

$$\sqrt{\lambda} b_1^{2\kappa} b_2^{2\kappa} r_{t_1 t_2}^{-(\nu+\epsilon)} \ge 1$$

where $b_2 = |x_{t_2}|$. That is, if t_1 , b_1 and b_2 are fixed, t_2 belongs to the spherical neighbourhood of t_1 having radius $(b_1b_2)^{2\kappa/(\nu+\epsilon)}$, so that the number of different ways of fixing t_2 does not exceed $c_1(b_1b_2)^{2\kappa\nu/(\nu+\epsilon)}$. Denoting $N_2 = N - N_1$ and summing through all connected \mathcal{D}_2 , having cardinality N_2 and containing fixed t_2 , similarly to (17) we have:

$$\begin{array}{l}
\sum_{2:\mathcal{D}_{2}\ni t_{2}} \int \exp(-\lambda u_{\mathcal{D}_{2}}) \exp\left(-\sum_{t\in\mathcal{D}_{2}} |\mathbf{x}_{t}|^{m}\right) \prod_{t\in\mathcal{D}_{2}:t_{2}} d\mathbf{x}_{t} \leq \\
|\mathcal{D}_{2}| = N_{2}
\end{array}$$

$$\leq \exp\left(-\frac{2}{3} \mathbf{b}_{2}^{m}\right) \cdot \left(\mathbf{C}\sqrt{\lambda}\right)^{N_{2}}.$$
(18)

The left hand side integral is over the set of such configurations on \mathcal{D}_2 , that \mathcal{D}_2 is a drop and $\mathbf{x}_{\mathsf{t}_2}^{\;\;\mathsf{bb}_2}$ is fixed.

Similarly,

where the sum runs over all connected \mathcal{D}_1 having cardinality N_1 and containing the origin, integration is over the set of such configurations on \mathcal{D}_1 that \mathcal{D}_1 is a drop and $\mathbf{x}_{\mathsf{t}_1} = \mathbf{b}_1$ is fixed.

Consequently,

$$\begin{split} & \sum_{\Gamma: \Gamma\ni 0} |\kappa_{\Gamma}| \leq \int db_{1} db_{2} \sum_{\mathcal{D}_{1}\ni 0} \sum_{\mathbf{t}_{1}\in\mathcal{D}_{1}} \left(\operatorname{fexp}(-\lambda u_{\mathcal{D}_{1}}) \cdot \right) \\ & \cdot \exp\left(-\sum_{\mathbf{t}\in\mathcal{D}_{1}} |\mathbf{x}_{\mathbf{t}}|^{m}\right) \prod_{\mathbf{t}\in\mathcal{D}_{1}} d\mathbf{x}_{\mathbf{t}} \right) \sum_{\mathbf{t}_{2}} \sum_{\mathcal{D}_{2}\ni \mathbf{t}_{2}} \left(\operatorname{fexp}(-\lambda u_{\mathcal{D}_{2}}) \cdot \right) \\ & \cdot \exp\left(-\sum_{\mathbf{t}\in\mathcal{D}_{2}} |\mathbf{x}_{\mathbf{t}}|^{m}\right) \prod_{\mathbf{t}\in\mathcal{D}_{2}\setminus\mathbf{t}_{2}} d\mathbf{x}_{\mathbf{t}} \right) \end{split}$$

Substituting (18) and (19) into the last inequality we obtain

$$\begin{array}{c|c} \sum\limits_{\Gamma: \Gamma\ni 0} |\kappa_{\Gamma}| & \leq & (C\sqrt{\lambda})^N \int\limits_{B}^{\infty} b_1^{2\kappa\nu/(\nu+\varepsilon)} & \exp(-\frac{2}{3}b_1^m) \\ |\Gamma| & = N \end{array}$$

$$\cdot \int\limits_{B}^{\infty} b_2^{2\kappa\nu/(\nu+\varepsilon)} \exp(-\frac{2}{3}b_2^m) \, \mathrm{d}b_2 \leq (C\sqrt{\lambda})^N .$$

Now we shall examine the case when a fragment contains an arbitrary number s of drops. Let us fix $\mathcal{D}_1 \ni 0$ and $\mathbf{t}_1 \in \mathcal{D}_1$. For each fragment there exists a tree \mathbf{y} with vertices $\mathbf{t}_1, \mathbf{t}_2, \dots, \mathbf{t}_s$, $\mathbf{t}_i \in \mathbf{Z}^{\vee}$ such that $\mathbf{t}_i \in \mathcal{D}_i$ and a line between \mathbf{t}_i and \mathbf{t}_j meaning that

$$\sqrt{\lambda} x_{t_{i}}^{2\kappa} x_{t_{j}}^{2\kappa} r_{t_{i}t_{j}}^{-(v+\epsilon)} \ge 1$$
 (20)

Let us denote $b_i = x_{t_i}$, $i = 1, \ldots, s$. Let us fix t_2, \ldots, t_s , b_1, \ldots, b_s , $b_i \ge B$ for each i, and a tree y, satisfying (20). Let us fix integers N_1, \ldots, N_s , such that $\sum N_i = N$ (i.e. we fix the cardinalities of the drops p_1, \ldots, p_s , of a fragment). Obviously,

$$\exp\left(-\lambda u_{\Gamma}\right)\exp\left(-\sum_{\mathbf{t}\in\Gamma}\left|\mathbf{x}_{\mathbf{t}}\right|^{m}\right)\leq \prod_{\mathbf{i}=1}^{s}\left(\exp\left(-\lambda u_{\mathcal{D}_{\mathbf{i}}}\right)\cdot\exp\left(-\sum_{\mathbf{t}\in\mathcal{D}_{\mathbf{i}}}\left|\mathbf{x}_{\mathbf{t}}\right|^{m}\right)\right). \tag{21}$$

Using (18) for each i=2,...,s we have

$$\sum_{\mathbf{i}} \int \exp(-\lambda \mathbf{u}_{0_{\mathbf{i}}}) \cdot \exp\left[-\sum_{\mathbf{t} \in \mathcal{D}_{\mathbf{i}}} |\mathbf{x}_{\mathbf{t}}|^{m}\right] \prod_{\mathbf{t} \in \mathcal{D}_{\mathbf{i}} \setminus \mathbf{t}_{\mathbf{i}}} d\mathbf{x}_{\mathbf{t}} \leq \left|\mathcal{D}_{\mathbf{i}}\right| = N_{\mathbf{i}}$$

$$\leq \exp\left(-\frac{2}{3} \mathbf{b}_{\mathbf{i}}^{m}\right) \left(C\sqrt{\lambda}\right)^{N_{\mathbf{i}}}.$$
(22)

Let us keep b_1,\ldots,b_s fixed and estimate the number of trees Y, containing a fixed vertex t_1 and satisfying (20). We shall describe an algorithm, which enumerates all such trees Y.

An algorithm, enumerating the trees

- 1. step. Fix a vector of nonnegative integers $(n_1, ..., n_s)$ such that $n_1 \neq 0$, $n_s = 0$ and $\sum n_i = s-1$. Evidently, it can be done in at most 4^s different ways.
- 2. step. Choose n_1 vectors v_1,\ldots,v_{n_1} , $v_i \in \mathbf{Z}^{\vee}$, $i=1,\ldots,n_1$ satisfying the following conditions: v_i belongs to the spherical neighbourhood of the origin having radius $(b_1b_{i+1})^{2\kappa/(\nu+\epsilon)}$. Construct:

$$\begin{array}{l} t_2 = t_1 + v_1 \\ t_3 = t_1 + v_2 \\ \dots \\ t_{n_1+1} = t_1 + v_{n_1} \end{array}.$$

Construct the lines between t_1 and each of the t_2,\ldots , t_{n_1+1} .

3. step. Choose the first (in lexicographic order) of the constructed vertices, excluding t_1 . Let this vertex be t_j . If $n_2\neq 0$, choose n_2 vectors $v_{n_1+1},\dots,v_{n_1+n_2}$, $v_i\in \mathbf{Z}^{\vee}$ for each i, such that v_i belongs to the spherical neighbourhood of the origin having radius $(b_jb_{j+1})^{2\kappa/(\nu+\epsilon)}$. Construct

$$t_{n_1+2} = t_j + v_{n_1+1}$$
 $...$
 $t_{n_1+n_2+1} = t_j + v_{n_1+n_2}$

Construct the lines between t; and each of

 $^{t}\mathbf{n}_{1}+2,\cdots,^{t}\mathbf{n}_{1}+\mathbf{n}_{2}+1$. If $\mathbf{n}_{1}=\mathbf{0}$, pass to the next step without any construction.

We proceed by induction. Let $\,p\,$ steps be already performed and $\,^n_1+^n_2+\ldots+^n_{p-1}+^1\,$ vertices be constructed.

(p+1). step. Choose the first (in lexicographic order) of all vertices having been constructed during the previous steps excluding those which have been already chosen earlier. Let this vertex be t_ℓ . If $n_p\!=\!0$, pass to the next step without any construction.

If $n_p \neq 0$, choose n_p vectors $v_{n_1} + \ldots + n_p + 1 \cdots$, $v_{n_1} + \ldots + n_p$, $v_i \in \mathbf{Z}^{\,\,\vee}$ for each i, such that v_i belongs to the spherical neighbourhood of the origin having radius $(b_\ell b_{i+1})^{2\kappa/(\nu+\epsilon)}$.

Construct

Construct the lines between $\ \mathbf{t}_{\ell}$ and each of the vertices constructed in this step.

After s steps the construction is finished.

In fact, let $\tilde{b}_1,\dots,\tilde{b}_s$ and $\tilde{v}_1,\dots,\tilde{v}_{s-1}$ be the vectors, generating the tree T. Let us divide a collection $(\tilde{b}_1,\dots,\tilde{b}_s)$ into subcollections in the following way. The first subcollection consists of only one element, namely

 \tilde{b}_1 . The second subcollection consists of n_1 vectors: $\tilde{b}_2,\dots,\tilde{b}_{n_1+1}$; the third one consists of the next n_2 vectors, and so on. Consider now a new collection $(\tilde{b}_1,\dots,\tilde{b}_s)$, obtained from $(\tilde{b}_1,\dots,\tilde{b}_s)$ by arbitrary permutations in each of the described subcollections (but without any permutations between the subcollections). Let $\tilde{v}_1,\dots,\tilde{v}_{s-1}$ be a collection, obtained from $\tilde{v}_1,\dots,\tilde{v}_{s-1}$ by the same permutations. Obviously, the tree generated by $\tilde{b}_1,\dots,\tilde{b}_s,\,\tilde{v}_1,\dots,\tilde{v}_{s-1}$ is T, and there are exactly T_1,\dots,T_{s-1} such permutations.

The number of different ways of choosing v_1, \dots, v_{s-1} , having b_1, \dots, b_s and n_1, \dots, n_{s-1} fixed, is

$$c_{1}^{s} b_{1}^{2\kappa n_{1}\nu/(\nu+\epsilon)} \underset{j=2}{\overset{2\kappa n_{1}\nu/(\nu+\epsilon)}{\prod}} b_{i_{j}}^{2\kappa(n_{j}+1)/(\nu+\epsilon)}$$

$$(23)$$

where we have denoted by i_j the number of the vertex, which is chosen as the first one in lexicographic order in the $(j+1)^{th}$ step of the algorithm, $j=2,\ldots,s-1$, and used (16).

Note that

$$\sup_{b_{i}} b_{i}^{2\kappa (n_{i}+1)/(\nu+\epsilon)} \exp(-\frac{1}{3}b_{i}^{m}) \leq (Cn_{i})^{n_{i}}. \tag{24}$$

Taking into account (21), (22), (23) and (24) finally we have:

$$\begin{array}{c|c} \sum\limits_{\Gamma: \Gamma\ni 0} |\kappa_{\Gamma}| \leq (C\sqrt{\lambda})^{N} \sum\limits_{\mathbf{s}\leq N} \sum\limits_{(\mathbf{n_{1}},\ldots,\mathbf{n_{s-1}})} \frac{1}{(\pi \mathbf{n_{i}}!)} \prod\limits_{\mathbf{i}=1}^{\mathbf{s}} \left[(C\mathbf{n_{i}})^{\mathbf{n_{i}}} \right]^{\mathbf{n_{i}}} \\ |\Gamma| = N \end{array}$$

$$\cdot \int\limits_{B}^{\infty} \exp\left(-\frac{1}{3}b_{\mathbf{i}}^{m}\right) db_{\mathbf{i}} \bigg] \leq \left(C\sqrt{\lambda}\right)^{N} .$$

Now we must consider the case when $\ \Gamma$ contains links. Since

$$\sum_{\mathsf{t'} \in \mathbf{Z}^{\vee}} |a_{\mathsf{tt'}}| \leq \sum_{\mathsf{t'} \in \mathbf{Z}^{\vee}} \lambda B^{\mathsf{4} \kappa} r_{\mathsf{tt'}}^{-(\vee + \varepsilon)} \leq C \sqrt{\lambda}$$
 (26)

the case when I consists only of links is trivial. The

general case follows from (26) and (25) by induction on the number of links and fragments in the cluster.

References

- [1] Cammarota Camilla. Decay of correlations for infiniterange interactions in unbounded spin systems. Commun. Math. Phys. 85, no. 4, 517-528 (1982).
- [2] Malyshev V. A. Semiinvariants of the unlocal functionals of Gibbs random fields. Matem. Zametky 34, no. 3, 443-452 (1983, September).