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Abstract. A finite chain (string) is just a sequence of symbols from some finite
alphabet. We consider Markov chains with the state space equal to the set of all
finite strings. In the simplest situation left-sided evolution of the string is defined
by the following one-step transition probabilities: ql(x, ∅) is the probability
that the leftmost symbol of the string is erased, if this equals x; ql(x, y) is
the probability that the leftmost symbol x is substituted by y; ql(x, yz) is the
probability that the leftmost symbol x is substituted by yz.

Right-sided evolution is defined similarly. We consider the case when left
and right evolution occur simultaneously and independently. In the generic
situation we obtain a complete classification of such Markov chains.
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1. Introduction

This paper continues the study of Markov chains that govern the evolution
of finite and semi-infinite sequences of symbols (see [2–5]), but it can be read
independently.

Here we would like to explain the main result without being completely
rigorous. More precise definitions and technical conditions will be given in the
next section and the reader can consult it while reading this introduction.

∗Research supported in part by RFFI grant No. 95–01–00018 and by the French-Russian
Institute at Moscow State University
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A finite chain (string) is just a sequence of symbols from a finite alphabet
S = {1, 2, . . . , r}. We consider Markov chains with the state space equal to the
set of all finite strings. We consider three different types of evolution: one-sided
(left and right) and two-sided. Left-sided evolution of the string is defined by
the following one-step transition probabilities:

• ql(x, ∅) denotes the probability that the leftmost symbol of the string is erased,
if it is equal to x;

• ql(x, y) is the probability that the leftmost symbol x is substituted by y;

• ql(x, yz) is the probability that the leftmost symbol x is substituted by yz.

Of course we assume for all x that

ql(x, ∅) +
∑

y

ql(x, y) +
∑

yz

ql(x, yz) = 1.

The transitions given here depend only on the last symbol. Moreover the lengths
of the string at subsequent moments of time cannot differ by more than 1, but
in the paper we will study a more general evolution. The above parameters do
not define the evolution when the string is empty (otherwise speaking, when its
length equals zero), but we simply assume that the jumps from the empty string
are somehow defined and can only occur to strings of length one (non-degeneracy
conditions are important here).

The evolution is called transient if the length n(t) of the string tends to
infinity a.s. One can then show the following:

• if t→ ∞ then
n(t)

t
→ vl

for some constant vl;

• when n(t) becomes large, the distribution of the symbols inside the string,
but not too close to its ends, tends to those of some stationary random
process with the exponential mixing property. Denote by µl this limiting
distribution.

We consider also left-semi-infinite strings, i.e. sequences α = x1x2 . . . with
values in the same alphabet. Left-hand evolution is defined similarly by the
same parameters ql.

It is more convenient however to view the semi-infinite string as a function
x(i, t) on Z with values in Z ∪ {0}, where 0 corresponds to the “vacuum”. At
time t this function is not equal to 0 on some interval [at,∞] and it is equal
to 0 outside this interval. Here at denotes the position of the leftmost symbol
of the string. At time 0 the string α = x1x2 . . . is identified with the function
equal to xi for i > 0, and to the vacuum for i ≤ 0. If x(at, t) = x then, for
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example, with probability q(x, yz) the next state will be given by x(at, t+1) = z,
x(at − 1, t+ 1) = y and all other values remain the same. Thus at+1 = at − 1
in this case.

We always take the initial distribution µ of semi-infinite strings as the re-
striction to Z+ of some stationary random process on Z. If the corresponding
Markov chain on finite strings is ergodic then at → ∞ a.s., so that

at
t

→ vl,erg(µ).

In a similar way we can define right evolution and we denote the correspond-
ing parameters by

qr, vr, µr, vr,erg(µ)

bt
t
→ −vr,erg(µ),

where bt is the coordinate of the right end.
Two-sided evolution of finite strings is defined by independent evolution of

the left and right ends with corresponding parameters ql, qr. The three pa-
rameters vl, µl, vr,erg(µl) plus their couterparts play a fundamental role in the
classification of two-sided evolution. The most difficult case is when one string,
the left one say, is transient and the right string is ergodic. Our main result is
that in the two-sided evolution the length of the string tends to infinity a.s. if

vl > vr,erg(µl)

and its mean length stays bounded if

vl < vr,erg(µl).

In the next section we will formulate all these and a number of other definitions
and results in a precise way. The other sections contain the proofs of these
results. In the last section we will give an example.

2. Definitions and Main Results

2.1. Two-sided finite strings

Fix a finite set (an alphabet)

S = {1, . . . , r}

consisting of r symbols. A finite string is a finite sequence of symbols from S:

α = x1 . . . xn, xi ∈ S.

We denote by |α| = n the length of the sequence α, and by ∅ the empty string
of length 0.
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For two arbitrary sequences α = x1 . . . xn and β = y1 . . . ym we define their
concatenation (of length m+ n) by

αβ = x1 . . . xny1 . . . ym.

Let

A =

∞
⋃

n=0

Sn

be the set of all finite sequences. For any finite sequence γ let A (γ) be the set
of all sequences α = γρ, ρ ∈ A, and Ak the set of all sequences of length less
than k.

Consider a discrete time homogeneous countable Markov chain L0 on the
set A. Let ξ(t) be the state of the Markov chain L0 at time t.

We assume that the one-step transition probabilities pα,α̃ satisfy the follow-
ing conditions. Fix some natural number d.

Condition 2.1. (Spatial homogeneity). For |α| ≥ 2d, the transition probabil-

ities pα,α̃ 6= 0 only if α = γlργr, α̃ = θlρθr for some γl, γr, θl, θr, ρ with |γl| =
|γr| = d, |θl|, |θr| ≤ 2d. Moreover, the transition probabilities pα,α̃ ≡ pγlργr ,θlρθr

do not depend on ρ but only on γl, γr, θl, θr. By definition we put

q(γl, θl, γr, θr) = pγlργr ,θlρ,θr
. (2.1)

Condition 2.2. (Independence). For |α| ≥ 2d,

q(γl, θl, γr, θr) = ql(γl, θl)qr(γr, θr)

for some parameters ql(γ, θ), qr(γ, θ) ≥ 0 such, that for all γ with |γ| = d

∑

θ:|θ|≤2d

ql(γ, θ) = 1,
∑

θ:|θ|≤2d

qr(γ, θ) = 1.

So the ends are independent of each other. We delete the substring γl from

the left, and instead we append the substring θl with probability ql(γl, θl). We

change the right end with probability qr(γr, θr) in an analogous manner.

Condition 2.3. (Non-degeneracy). Suppose that all probabilities

ql(γ, θ) 6= 0, qr(γ, θ) 6= 0

for all strings γ, θ such that |γ| = d, |θ| ≤ 2d. Assume also positivity of all

transition probabilities pα,α̃ for |α| < 2d, |α̃| = 2d and assume pα,α̃ = 0 for

|α| < 2d, |α̃| − |α| > d.

These conditions imply that all states are essential and that the Markov
chain L0 is irreducible and aperiodic. The central assumptions are homogeneity
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of the transition probabilities for all strings of length greater than 2d and inde-
pendence of the ends. Condition 2.3 is assumed only to simplify formulation.

Together with the above defined countable Markov chain L0, the states of
which are finite strings, we consider a Markov process on marked strings. Define
a marked string as a triplet (α, a, b), where a ≤ b, a, b ∈ Z and α = xa, . . . , xb is
a finite sequence of symbols from S. Denote by C the set of all marked strings.
By α[c,d] we denote the substring α[c,d] = xc . . . xd, a ≤ c ≤ d ≤ b.

Next define the following countable Markov chain L on the set C. Let ξ(t) be
the state of L0 at time t. Then the state of L at time t is the triplet (ξ(t), at, bt),
where at, bt are defined in the following way. Let a0 ∈ Z, b0 = a0 + |ξ(0)|. If
|ξ(t)| ≥ 2d, ξ(t) = γlργr, where |γl| = |γr| = d and ξ(t+ 1) = θlρθr, then define

at+1 = at + |γl| − |θl|,

bt+1 = bt + |θr| − |γr|.

If |ξ(t)| < 2d, then (somewhat arbitrarily) put

at+1 = at,

bt+1 = at+1 + |ξ(t+ 1)|.

Definition 2.1. We say that L is ergodic if L0 is ergodic.

2.2. Semi-infinite strings

Together with the above defined countable Markov chain L, the states of
which are finite strings, we will consider a Markov chain on semi-infinite strings.
Define a semi-infinite string as a pair (α, a), where a ∈ Z and α is an infinite
sequence of symbols from S

α = x1x2 . . . xk . . . , xi ∈ S.

Let
S [a,∞] = {α : α = xaxa+1xa+2 . . . , xi ∈ S}.

Define the Markov chain L∞ on the set
⋃

a∈Z

(

S [a,∞), {a}
)

with the following
dynamics. If at time t the state of the chain L∞ is (η(t), at) and η(t) = γρ,
|γ| = d, then with probability ql(γ, θ) the state at time t+ 1 will be η(t+ 1) =
θρ, at+1 = at + |γ| − |θ|.

We shall denote by
B∞ = S [1,∞)

the set of all semi-infinite sequences. We suppose B∞ to be equipped with the
product topology. So B∞ is a compact, metrisable space.

Let P∞ be the set of all probability measures on B∞. We denote by pϕ(γ),
γ ∈ A, the correlation functions (or the finite-dimensional distributions) corre-
sponding to the measure ϕ:

pϕ(γ) = ϕ({α ∈ B∞ : α[1,|γ|] = γ}), (2.2)
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for all γ ∈ A, where α[1,|γ|] is the sequence x1 . . . x|γ|, if α = x1, x2 . . .
Let

(η(t), at) = (η1(t)η2(t) . . . ηk(t) . . . , at), ηk(t) ∈ S,

be the state of L∞ at time t and ϕP (t) ∈ P∞ be the distribution of η(t) under
the condition that the initial state has distribution (ϕ, δ0), ϕ∈ P∞, i.e. a is
fixed to 0 (a0 = 0). We denote by pt(γ | ϕ) the correlation functions of η(t),
given that the initial state has distribution (ϕ, δ0).

Definition 2.2. We say that a measure ϕ ∈ P∞ is invariant with respect to
Markov chain L∞ if ϕP (t) = ϕ.

Let us denote by T the set of all translation invariant measures on B∞, in
other words a measure belongs to T if it is the restriction of some translation
invariant measure on SZ. Furthermore, denote by E ⊂ T the subset of all
ergodic measures on B∞ amongst these.

We can define a process L−∞ on the set
⋃

b∈Z S(−∞,b] with left end a = −∞
and the corresponding sets B−∞ and P−∞ in the same way as before.

2.3. One-sided strings

Suppose that qr(γ, γ) = 1. Then only the left end of the marked string can
change. Let the initial position of the right end be −1; this does not change
over time. The state of the process at time t is hence (ξ(t),−|ξ(t)|), because the
position of the left end is defined by the length of ξ(t).

This Markov chain will be denoted by Ll. In the same way we can assume
that only the right end can change. Denote this Markov chain by Lr.

In the sequel we will also say that the state of Markov chain Ll is ξ(t), since
the other parameters of the string are determined by ξ(t).

Remark 2.1. For the Markov chain Ll (Lr) we assume the following condition
to hold.

Condition 2.4. (Non-degeneracy). ql(γ, θ) 6= 0, (qr(γ, θ) 6= 0) for all strings

γ, θ such that |γ| = d, |θ| ≤ 2d.

2.4. Transient strings

2.4.1. Stabilisation laws for finite strings

Let the Markov chain Ll be transient. For all α ∈ A, α 6= ∅, define the
following correlation functions:

pt(α | β) =
∑

ρ∈A

P{ξ(t) = αρ | ξ(0) = β}. (2.3)
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It is the probability that the left end of string ξ(t) is equal to α at time t under
the condition that the initial state is β. Our aim is to study the long-time
behaviour of these correlation functions.

The following theorem has been proved in [3].

Theorem 2.1. Let Conditions 2.1, 2.4 hold and let Ll be transient. Then the

following assertions hold:

(i) For all α∈ A, α 6= ∅ and for all initial states β ∈ A

lim
t→∞

pt(α | β) = pµ(α), (2.4)

where pµ(α), α∈ A, are the correlation functions of some measure µ ∈ P∞.

Moreover, the convergence in (2.4) is exponentially fast, that is, there is some

χ > 0 such that

|pt(α | β) − pµ(α)| ≤ C(|α|)e−χt, (2.5)

for some constant C(|α|) depending only on |α|.
(ii) For any initial state

lim
t→∞

|ξ(t)|

t
= vl(µ) > 0 (2.6)

in probability, where the “velocity” vl(µ) is given by the formula

vl(µ) =
∑

γ:|γ|=d

pµ(γ)
∑

θ:|θ|≤2d

(|θ| − d) ql(γ, θ). (2.7)

Next we give a formula for the correlation functions pµ(α) of the measure µ;
another formula was given in [2]. Introduce the following notation. For all θ, γ
and θ1 such that |γ| = d, 2d > |θ| ≥ d and 2d > |θ1| ≥ d we define

gt(θγ, θ1)
def
= P

{

ξ(t) = θγ, |ξ(s)| ≥ 2d for all s with t ≥ s ≥ 1 | ξ(0) = θ1
}

.

The probability gt(θγ, θ1) is a taboo probability and the following series is
finite

g(θγ, θ1)
def
=

∑

t

gt(θγ, θ1). (2.8)

Theorem 2.2. For all α =θγ1 . . . γn, with 2d > |θ| ≥ d and |γ1| = · · · = |γn| =
d,

pµ(α) = pµ(θγ1 . . . γn) =
∑

2d>|θi|≥d

g(θγ1, θ1)g(θ1γ2, θ2) . . . g(θn−1γn, θn)pµ(θn).

(2.9)
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This theorem will be proved in Section 3. Formula (2.9) yields a set of
equations for pµ(θ), 2d > |θ| ≥ d. Define the positive matrix

H =
{

h(θ1, θ2) =
∑

|γ|=d

g(θ1γ, θ2)
}

θ1,θ2:2d>|θ1|≥d,
2d>|θ2|≥d

(2.10)

Corollary 2.1. The vector pµ = {pµ(θ), θ : 2d > |θ| ≥ d} is a right eigenvector

of H with eigenvalue 1:

pµ = Hpµ.

To see this, we use (2.9) for n = 1 to write

pµ(θ) =
∑

|γ|=d

pµ(θγ) =
∑

|γ|=d,
2d>|θ1|≥d

g(θγ, θ1) pµ(θ1) =
∑

2d>|θ1|≥d

h(θ, θ1) pµ(θ1).

Remark 2.2. In the transient case the spectral radius of H is equal to 1.

Next we formulate a new stabilisation law for transient strings. Denote by
ξ[m,l](t), where m < l, the subsequence ξm(t) . . . ξl(t) of the sequence ξ(t) =
ξat

(t) . . . ξ−1(t), where at = − | ξ(t) |.

Theorem 2.3. For all α ∈ A, α 6= ∅, and for all initial states β∈ A, the limit

lim
N→∞

lim
t→∞

P{ξ[−N−|α|,−N ](t) = α | ξ(0) = β} = pν(α)

exists, where pν(α), α∈ A, are the correlation functions of some measure ν∈ P∞

different from µ. These correlation functions pν(α) can be determined in the

following way. For all α ∈ A such that α= γ1 . . . γn and |γ1| = · · · = |γn| = d,

pν(α) = pν(γ1 . . . γn) =
∑

2d>|θi|≥d

p̃(θ1)g(θ1γ1, θ2) . . . g(θnγn, θn+1)f(θn+1),

(2.11)
where p̃ = {p̃(θ), θ : 2d > |θ| ≥ d} and f = {f(θ), θ : 2d > |θ| ≥ d} are left and

right eigenvectors of H
p̃ = p̃H, f = Hf,

such that
∑

|θ|=d

p̃(θ)f(θ) = 1.

This theorem will be proved in Section 4.

Remark 2.3. It is evident that from expression (2.11) one can derive the corre-
lation functions pν(α) for strings of arbitrary length.

Corollary 2.2. The measure ν is a translation invariant measure with the ex-

ponentially strong mixing property.

Thus we have defined two measures µ = µ(Ql), ν = ν(Ql), where Ql is the
matrix (ql(γ, δ)), as well as velocity vl(µ). We say that the measure µ = µ(Ql)
is generated by the left end of the string ξ(t).
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2.4.2. Stabilisation law for semi-infinite strings

The results of the previous section can be reformulated for semi-infinite
strings. Consider the Markov process L∞ on the set of all semi-infinite strings.
Suppose that the corresponding Markov chain Ll on the set of all finite strings
is transient. Then there exists a unique invariant measure for L∞ (see Defini-
tion 2.2) and it coincides with the above measure µ defined by Theorem 2.1.

The following theorem has been proved in [3].

Theorem 2.4. Assume Conditions 2.1, 2.4 and assume that the Markov chain

Ll transient. Then the following statements hold.

(i) The Markov chain L∞ has a unique invariant measure that coincides with

the measure µ defined by formula (2.9).
(ii) For any initial distribution ϕ

ϕP (t) → µ, t→ ∞, (2.12)

in the sense of weak convergence on B∞.

(iii) For any initial distribution ϕ, convergence of the correlation functions

in (2.12) is exponentially quickly, i.e.

|pt(α | ϕ) − pµ(α)| ≤ C(|α|)e−χt (2.13)

for some χ > 0 not depending on |α| and some constant C(|α|) depending only

on |α|.

2.4.3. Stabilisation law for semi-infinite strings

Consider the Markov chain L∞ corresponding to the ergodic Markov chain
Ll. Recall that (η(t), at) denotes the state of L∞ at time t. Denote by (ψ, δ0)
the initial distribution of L∞, where ψ ∈ P∞. Note that in the ergodic case
at → ∞ a.s. for any initial distribution.

For any measure ψ ∈ P∞ and for all natural numbers n we define the shifted
measure Θnψ with the following correlation functions

pΘnψ(γ) =
∑

θ: |θ|=n

pψ(θγ).

Define an infinite, strictly increasing sequence of random moments

0 = σ(0) < σ(1) < σ(2) < · · · < σ(n) < · · ·

such that
σ(n) = min(t > σ(n−1) : at > aσ(n−1)).

We will call the moments σ(n) renewal times. If η(σ(n−1)) = αρ, for some
|α| = d, then for all n the distribution of σ(n) − σ(n−1) depends only on α. By
definition, put

eα = E(σ(n) − σ(n−1) | η(σ(n−1)) = αρ).
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By ergodicity the above expectation is finite.
Consider the imbedded Markov chain L′

∞ defined by

η̃(n) = η(σ(n)).

We will see that the following result holds.

Lemma 2.1. The Markov process L′
∞ has a continuum of extremal invariant

measures, which can be obtained as follows. Let the initial distribution ψ satisfy

the condition

Θnψ → ϕ, n→ ∞,

where ϕ is an ergodic measure on B∞. Then

1

N

N
∑

n=1

ψP̃ (n) → πϕ, (2.14)

in the sense of weak convergence on B∞, where P̃ (n) is the Markov semigroup

on P∞ corresponding to L′
∞.

Remark 2.4. In case d = 1, the distribution of η̃(n) coincides with ϕ for all n
and thus πϕ ≡ ϕ. In case d > 1, this distribution will be obtained below in the
proof of this lemma.

For all α, β and ρ, with |α| = d, |β| ≥ d and ρ ∈ B∞, define

wt(β, α) = P{η(t) = βρ, as ≤ −d, 1 ≤ s ≤ t | η(0) = αρ, a0 = −d}. (2.15)

The probability wt(β, α) is well-defined, since by condition 2.1 the probability
on the right-hand side of (2.15) does not depend on ρ. Define also

w(β, α) =
∞
∑

t=0

wt(β, α) <∞. (2.16)

Let us write
ēϕ =

∑

α: |α|=d

πϕ(α)eα. (2.17)

Then the following result on invariant measures of the Markov process L∞

holds.

Theorem 2.5. Assume that Conditions 2.1, 2.4 hold and that the Markov

chain Ll is ergodic. Then the following assertions hold.

(i) For any initial distribution ψ such that

Θnψ → ϕ, n→ ∞, (2.18)
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with ϕ an ergodic measure on B∞, we have

1

T

T
∑

t=1

ψP (t) → κϕ (2.19)

as T → ∞, in the sense of weak convergence on B∞.

The Markov process L∞ has a continuum of extremal invariant measures.

The correlation functions of κϕ are given by the following formula: for |γ| ≥ d

pκϕ
(γ) =

1

ēϕ

(

∑

α: |α|=d

πϕ(α)
∑

β∈A

w(γβ, α) +
∑

γ′,γ′′:γ=γ′γ′′

|γ′|≥d, γ′′ 6=∅

∑

α: |α|=d

πϕ(αγ′′)w(γ′, α)
)

,

(2.20)
where πϕ is defined by formula (2.14).
(ii) For any initial distribution ψ satisfying condition (2.18)

EaT
T

→ vl(κϕ) > 0, T → ∞,

where

vl(κϕ) =
∑

γ:|γ|=d

pκϕ
(γ)

∑

θ:|θ|≤2d

(|θ| − d) ql(γ, θ). (2.21)

This theorem will be proved in Section 5.

2.5. Strings with independent evolution of both ends

Ergodicity and transience conditions for the Markov chain L can be obtained
from the foregoing results. The above stated stabilisation laws play a main role
in this classification. For example, if the right string is ergodic and the left
string is transient then we need

• the invariant measure µ of the left end and the speed vl(µ) at which the left
string drifts off to infinity;

• the “induced tail measure” κν , defined by the initial distribution ν, which the
left string leaves behind itself (to the right of its left end);

• the speed vr(κν) of the right string in the environment (initial condition) of
this “induced tail process” κν .

Theorem 2.6. The following classification holds.

(i) If both left and right strings are ergodic then L is ergodic.

(ii) If both left and right strings are transient then L is transient.

(iii) Assume that the left string is transient and the right string is ergodic. The

parameters of the left string are µ, vl(µ), the parameters of the right string are

κν , vr(κν). Then L is ergodic if

vl(µ) < vr(κν)
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and transient if

vl(µ) > vr(κν) .

(iv) The case when the left string is ergodic and the right one is transient is

symmetric to the previous one.

This theorem will be proved in Section 6. The intuition behind the theorem
is the following. Suppose that the left end of the string is transient and the right
one is ergodic. Then by Theorem 1 the transient end will move with velocity
vl(µ) and by Theorem 3 it will generate a stationary medium with distribution
ν in the middle of the string. The ergodic end will move in this stationary
medium and by Theorem 6 its velocity will be equal to vr(κν). So we only have
to compare the velocities of the left and right ends. If vl(µ) < vr(κν), the right
end will overtake the left one and hence the string is ergodic. If vl(µ) > vr(κν),
the left end will escape from the right one and so the string is transient.

3. Proof of Theorem 2.2

For P{ξ(t) = α | α0} = P{ξ(t) = α | ξ(0) = α0} we have the following result.

Lemma 3.1. For all θ, γ, ρ and α0 with |γ| = d, 2d > |θ| ≥ d and |ρ| > |α0| ,

P{ξ(t) = θγρ | α0} =
∑

t0+t1=t
2d>|θ1|≥d

gt0(θγ, θ1)P{ξ(t1) = θ1ρ | α0}. (3.1)

Proof. We denote by Γ a trajectory of the Markov chain Ll,

Γ = α(0), . . . , α(t)

and by P (Γ) probability of this trajectory

P (Γ) = pα0α1 . . . pαt−1αt
,

where p· · are the transition probabilities of Ll. In terms of trajectories we have

P{ξ(t) = θγρ | α0} =
∑′

P (Γ),

where the summation is over all trajectories Γ = α(0), . . . , α(t) with

α(0) = α0, α(t) = θγρ.

With each trajectory Γ we can uniquely associate a moment σ(Γ) such that
α(σ(Γ)) = θ1ρ for some θ1 with 2d > |θ1| ≥ d and |α(s)| ≥ 2d + |ρ|, for all
s > σ(Γ).

So the trajectory Γ can be decomposed into two sub-trajectories Γ = Γ0Γ1,
where Γ0 = α(σ(Γ)+1), . . . , α(t) and Γ1 = α(0), . . . , α(σ(Γ)).
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This implies that

∑′
P (Γ) =

∑

Γ=Γ0Γ1

P (Γ0)P (Γ1) =
∑

θ1

[

∑(0)
P (Γ0)

∑(1)
P (Γ1)

]

,

where
∑(0)

is the sum over all Γ0 = α(0), . . . , α(t0) such that

α(0) = θ1ρ, α(t0) = θγρ,

and
|α(s)| ≥ 2d+ |ρ|, for all s > 0,

and
∑(1)

is the sum over all Γ1 = α(0) . . . α(t1) such that

α(0) = α0, α(t1) = θ1ρ.

It is clear that
∑(1)

P (Γ1) = P{ξ(t1) = θ1ρ | α0}.

As the length of strings in trajectory Γ0 is not less than 2d + |ρ| then the

probability P (Γ0) does not depend on ρ. Hence the sum
∑(0)

does not depend
on ρ and

∑(0)
P (Γ0) = gt0(θγ, θ1).

✷

This lemma has the following consequence.

Corollary 3.1. Let |ρ| > |α0| ,2d > |θ| ≥ d and |γ1| = . . . = |γn| = d. Then

P{ξ(t) = θγ1 . . . γnρ | α0} (3.2)

=
∑

t0+···+tn=t,
2d>|θi|≥d

gt0(θγ1, θ1)gt1(θ1γ2, θ2) . . . gtn−1(θn−1γn, θn)P{ξ(tn) = θnρ |α0}.

Using this corollary we obtain the following relation

pt(θγ1 . . . γn | α0)

=
∑

ρ:|ρ|>|α0|

P{ξ(t) = θγ1 . . . γnρ |α0} +
∑

ρ:|ρ|≤|α0|

P{ξ(t) = θγ1 . . . γnρ |α0}

=
∑

ρ:|ρ|>|α0|

P{ξ(t) = θγ1 . . . γnρ |α0} +O(P{|ξ(t)| ≤ |α0| + d(n+ 2) |α0})

=
∑

t0+···+tn=t,
2d>|θi|≥d

gt0(θγ1, θ1)gt1(θ1γ2, θ2) . . . gtn−1(θn−1γn, θn) ×

×
∑

ρ:|ρ|>|α0|

P{ξ(tn) = θnρ |α0} +O(P{|ξ(t)| < |α0| + d(n+ 2)|α0}).

(3.3)
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It is clear that

∑

ρ:|ρ|>|α0|

P{ξ(tn) = θnρ | α0} = ptn(θn | α0) +O(P{|ξ(t)| ≤ |α0| | α0}).

By virtue of Theorem 2.1, the following limit exists for any α

pµ(α) = lim
t→∞

pt(α | α0)

and this limit does not depend on α0. Taking the limit in (3.3) yields (2.9). ✷

4. Proof of Theorem 2.3

We can use (3.2) to determine the probability

p̂t(ρ | α0)
def
= P{ξ(t) = βρ, for some β | ξ0 = α0}.

Let |γ| = d and let |ρ| > |α0|. Then

p̂t(γρ |α0) =
∑

2d>|θ|≥d,
n≥0,|γi|=d

pt(θγ1 . . . γnγρ | α0) +
∑

|θ|<d

pt(θγρ |α0)

=
∑

2d>|θ|≥d,
n≥0,|γi|=d

pt(θγ1 . . . γnγρ |α0) +O(P{|ξ(t)| < 2d+ |ρ| | ξ(0) = α0})

=
∑

|θ|,|θ1|≥d,
t0+t1+t2=t

p̃t0(θ)gt1(θγ, θ1)P{ξ(t2) = θ1ρ |α0}

+O(P{|ξ(t)| < 2d+ |ρ| | ξ(0) = α0}), (4.1)

where

p̃t(θ) =
∑

n>0

∑

t0+···+tn=t,
2d>|θi|≥d,

|γi|=d

gt0(θ0γ1, θ1) . . . gtn−1(θn−1γn, θ)

(4.2)

= P{for all l : t ≥ l ≥ 1, |ξ(l)| ≥ 2d | ξ(0) = θ}.

In the transient case the limit exists and is positive:

p̃(θ) = lim
t→∞

p̃t(θ) = P{for all l ≥ 1, |ξ(l)| ≥ 2d | ξ(0) = θ}.

In this case (4.2) implies that p̃(θ) satisfies the equation

p̃(θ) =
∑

2d>|θ1|≥d,
|γ|=d

p̃(θ1) g(θ1γ, θ). (4.3)
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In the transient case clearly the sum

F (ρ | α0) =
∑

t

P{ξ(t) = ρ |α0}

is finite. It follows from (3.1) that

F (θγρ | α0) =
∑

2d>|θ1|≥d

g(θγ, θ1)F (θ1ρ | α0). (4.4)

Taking the limit in (4.1), we obtain

p̂(γρ |α0)= lim
t→∞

p̂(γρ |α0) =
∑

2d>|θi|≥d

p̃(θ)
∑

t1

gt1(θ0γ, θ1)
∑

t2

P{ξ(t2) = θ1ρ |α0}

=
∑

2d>|θi|≥d

p̃(θ0)g(θ0γ, θ1)F (θ1ρ |α0).

Using this fact and formula (4.4), we find for |ρ|>|α0| and |γ1| = · · · = |γn| = d
that

p̂(γ1 . . . γnρ |α0) =
∑

2d>|θi|≥d

p̃(θ1)g(θ1γ1, θ2) . . . g(θnγn, θn+1)F (θn+1ρ|α0).

Choose m > |α0|. Let N = dn+m and |γ| = d. Then

lim
t→∞

P{ξ[−|γ|−N,−N ](t) = γ|ξ(0) = α0} =
∑

|γi|=d,
|ρ|=m

p̂(γγ1 . . . γnρ | α0)

=
∑

2d>|θi|≥d,
|γi|=d

p̃(θ0)g(θ0γ, θ1)g(θ1γ1, θ2) . . . g(θnγn, θn+1)
∑

|ρ|=m

F (θn+1ρ | α0).

The last summation can be expressed in terms of the matrix H and so written
by means

lim
t→∞

P{ξ[−|γ|−N,−N ](t) = γ | ξ(0) = α0}

=
∑

2d>|θi|≥d,
|γi|=d

p̃(θ0) g(θ0γ, θ1)h
(n)
θ1θ2

∑

|ρ|=m

F (θ2ρ | α0).

We already saw that p̃H = p̃ (cf. (4.3)), i.e. the spectral radius of H is equal
to 1. Hence, by Perron-Frobenius’ theorem the following limit exists and does
not depend on α0

lim
N→∞

lim
t→∞

P{ξ[−|γ|−N,−N ](t) = γ | ξ(0) = α0} =
∑

2d>|θi|≥d,

p̃(θ0) g(θ0γ, θ1) f(θ1),

where f = {f(θ), θ : 2d > |θ| ≥ d} is the eigenvector of H that satisfies the
normalisation condition

∑

|θ|=d

p̃(θ) f(θ) = 1.
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5. Proof of Theorem 2.5

Let us prove assertion (i). First we will discuss the issue of invariant measures
of the imbedded Markov chain L′

∞. Suppose that η(0) has distribution ψ ∈ P∞

such, that
Θnψ → ϕ, n→ ∞, (5.1)

where ϕ is some ergodic measure on B∞. We denote by P̃{C | ϕ} the probability
of event C related to the process L′

∞ , if the initial state has distribution ϕ.

Proof of Lemma 2.1. Consider the Markov chain L′
∞. This Markov chain jumps

in one step from state γρ to state θρ, for some γ, ρ, θ with |γ| = d, |θ| < d and
ρ ∈ B∞ . The probability of the transition γρ → θρ does not depend on ρ and
depends only on γ and θ. Denote this probability by p̃(γ, θ). By Condition 2.3
all probabilities p̃(γ, θ) are non-zero. Consider the random moments for the
process L′

∞

0 = σ̃(0) < σ̃(1) < σ̃(2) < · · · < σ̃(k) < · · ·

at which transitions of the type γρ→ ∅ρ occur. The transition γρ→ ∅ρ occurs
with a probability not less than ε = min|γ|=d p̃(γ, ∅) > 0 and the conditional
expectation

ẽρ = E(σ̃(k+1) − σ̃(k) | η̃(σ̃(k)) = ρ) < ε−1

uniformly over ρ ∈ B∞. By (5.1) the distribution of η̃(σ̃(k)) tends to ϕ as
k → ∞, in the sense of weak convergence.

Let

KN =

∞
∑

k=0

1{σ̃(k)≤N}

be the number of moments σ̃(k) during the segment [0, N ] and let

KN (γ) =

∞
∑

k=0

1{σ̃(k)≤N,η̃(σ̃(k))∈A(γ)}.

We will show that with probability 1

KN(γ)

N
→

ϕ(γ)

s̄
, N → ∞, (5.2)

where

s̄ =

∫

B∞

ϕ(dρ)ẽρ.

Let us write
KN(γ)

N
=
KN(γ)

KN

KN

N
.
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First we will prove that with probability 1

KN

N
→

1

s̄
, N → ∞.

Put
τ̃ (k) = σ̃(k) − σ̃(k−1), k ≥ 1.

Then we have

N

KN
=
τ̃ (1) + τ̃ (2) + · · · + τ̃ (KN ) +N − σ̃(KN )

KN
.

Since KN → ∞ almost surely, it follows from the ergodic theorem that

τ̃ (1) + τ̃ (2) + · · · + τ̃ (KN )

KN
→ s̄, a.s.

because we can consider τ̃ (k) as a function of some ergodic process with distri-
bution ϕ. Hence,

KN

N
→

1

s̄
, N → ∞,

since N − σ̃(KN ) < τ̃ (KN +1) and so

N − σ̃(KN )

KN
→ 0.

Furthermore, the distribution of η̃(σ̃(k)) tends to ϕ as k → ∞, where ϕ is ergodic
by assumption. By virtue of the ergodic theorem we have

KN (γ)

KN
→ ϕ(γ), N → ∞.

Write
h̃N (γ | ψ) = EKN(γ).

It follows from (5.2) that

h̃N (γ | ψ)

N
=

EKN(γ)

N
→

ϕ(γ)

s̄
, N → ∞, (5.3)

since KN(γ)/N ≤ 1.
We can now prove the assertion of the lemma. To this end we introduce the

following notation:

ũl(dρ | ψ) =

∞
∑

k=0

P{σ̃(k) = l, η̃(σ̃(k)) ∈ dρ | ψ}.
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By definition, put for all ρ ∈ B∞ and γ ∈ A

w̃l(γ, ρ) = P{η̃(l) ∈ A(γ), τ̃ (1) > l | η̃(0) = ρ}

and

w̃(γ, ρ) =
∞
∑

l=0

w̃l(γ, ρ). (5.4)

Then we get

p̃n(γ | ψ) =
n

∑

l=0

∫

B∞

ũl(dρ | ψ)w̃n−l(γ, ρ).

Consequently

1

N

N
∑

n=0

p̃n(γ | ψ) =
1

N

N
∑

n=0

n
∑

l=0

∫

B∞

ũl(dρ | ψ)w̃n−l(γ, ρ).

Changing the order of the summation in the last formula we have

1

N

N
∑

n=0

p̃n(γ | ψ) =
1

N

N
∑

l=0

∫

B∞

ũl(dρ | ψ)

N
∑

n=l

w̃n−l(γ, ρ).

By the change of variables k = n− l we obtain

1

N

N
∑

n=0

p̃n(γ | ψ) =
1

N

N
∑

l=0

∫

B∞

ũl(dρ | ψ)

N−l
∑

k=0

w̃k(γ, ρ)

=
1

N

N
∑

l=0

∫

B∞

ũl(dρ | ψ)

N
∑

k=0

w̃k(γ, ρ)−
1

N

N
∑

l=0

∫

B∞

ũl(dρ | ψ)

N
∑

k=N−l

w̃k(γ, ρ). (5.5)

The first summation in the right-hand side of the last formula satisfies

1

N

N
∑

l=0

∫

B∞

ũl(dρ | ψ)
N

∑

k=0

w̃k(γ, ρ) =
1

N

∫

B∞

h̃N (dρ | ψ)
N

∑

k=0

w̃k(γ, ρ)

and by formulas (5.3) and (5.4) we have

1

N

∫

B∞

h̃N (dρ | ψ)

N
∑

k=0

w̃k(γ, ρ) →
1

s̄

∫

B∞

ϕ(dρ)w̃(γ, ρ).

Next we show for the second summation in (5.5) that

1

N

N
∑

l=0

∫

B∞

ũl(dρ | ψ)

N
∑

k=N−l

w̃k(γ, ρ) → 0, N → ∞.
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To this end define

W̃N (ρ) =

N
∑

k=0

∑

γ∈A

w̃k(γ, ρ).

Using the obvious estimate

w̃k(γ, ρ) ≤
∑

γ∈A

w̃k(γ, ρ)

we find that

1

N

N
∑

l=0

∫

B∞

ũl(dρ | ψ)

N
∑

k=N−l

w̃k(γ, ρ) ≤
1

N

N
∑

l=0

∫

B∞

ũl(dρ | ψ)(W̃N (ρ) − W̃N−l(ρ))

=
1

N

∫

B∞

h̃N (dρ | ψ)W̃N (ρ) −
1

N

N
∑

l=0

∫

B∞

ũl(dρ | ψ)W̃N−l(ρ).

By virtue of (5.3)
1

N

∫

B∞

h̃N (dρ | ψ)W̃N (ρ) → 1.

Choose ε > 0 arbitrarily small. Then

1

N

N
∑

l=0

∫

B∞

ũl(dρ | ψ)W̃N−l(ρ) ≥
1

N

[N(1−ε)]
∑

l=0

∫

B∞

ũl(dρ | ψ)W̃N−l(ρ)

≥
1

N

∫

B∞

h̃[N(1−ε)](dρ | ψ)W̃[Nε](ρ) → −1 + ε.

Hence

lim sup
1

N

N
∑

l=0

∫

B∞

ũl(dρ | ψ)
N

∑

k=N−l

w̃k(γ, ρ) ≤ ε

uniformly in γ. This completes the proof of the lemma. ✷

Remark 5.1. The correlation functions of πϕ can be written as follows:

pπϕ
(γ) =

1

s̄

∫

B

ϕ(dρ)w̃(γ, ρ), (5.6)

where

s̄ =

∫

B

ϕ(dρ)Eτ̃ρ.
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We will say that a renewal occurs at time s if σ(n) = s for some n. Let us define
the following function:

us(γ | ψ) =

∞
∑

n=0

P{σ(n) = s, η(s) ∈ A(γ) | ψ}, (5.7)

where A(γ) = {β : β = γρ} is the set of strings with left end equal to γ. It
is the probability that a renewal occurs at time s and that simultaneously the
process L∞ hits the set A(γ).

Let us also introduce the following function:

ht(γ | ψ) =

t
∑

s=0

us(γ | ψ). (5.8)

This represents the mean number of renewals before time t starting with initial
distribution ψ.

In the sequel we need the following lemma.

Lemma 5.1. If the initial state of the Markov chain L∞ has distribution ψ
satisfying the condition

Θnψ → ϕ, n→ ∞,

in the sense of weak convergence, then

lim
t→∞

ht(γ | ψ)

t
=
pπϕ

(γ)

ē
, (5.9)

where

ē =
∑

a: |α|=d

πϕ(a)ea, ea = Eτa.

Proof. The proof of the lemma is the same as the proof of (5.2) and (5.3).
Details are omitted. ✷

Next we can prove

1

T

T
∑

t=0

P{η(t) ∈ A(γ) | ψ} → pκϕ
(γ),

where pκϕ
(γ) is defined in (2.20). The correlation functions at time t are given

by the formula

pt(γ | ψ) = P{η(t) ∈ A(γ) | ψ} =

t
∑

s=0

∑

a: |α|=d

us(a | ψ)
∑

ρ

wt−s(γρ, α)

+
∑

γ′,γ′′:γ=γ′γ′′

us(aγ
′′ | ψ)wt−s(γ

′, α), (5.10)
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where wt−s(β, α) is defined by formula (2.15). Using formula (5.10) we find

1

T

T
∑

t=0

pt(γ | ψ) =
1

T

T
∑

t=0

P{η(t) ∈ A(γ) | ψ}

=
1

T

∑

a: |α|=d

T
∑

t=0

t
∑

s=0

(

us(a | ψ)
∑

ρ

wt−s(γρ, α)

+
∑

γ′,γ′′:γ=γ′γ′′

us(aγ
′′ | ψ)wt−s(γ

′, α)
)

.

Changing the order of the summation we find

1

T

T
∑

t=0

pt(γ | ψ) =
1

T

∑

a: |α|=d

T
∑

s=0

(

us(a | ψ)
∑

ρ

T
∑

t=s

wt−s(γρ, α)

+
∑

γ′,γ′′:γ=γ′γ′′

us(aγ
′′ | ψ)

T
∑

t=s

wt−s(γ
′, α)

)

.

Use the change of variables y = t− s to obtain

1

T

T
∑

t=0

pt(γ | ψ) =
1

T

∑

a: |α|=d

T
∑

s=0

(

us(a | ψ)
∑

ρ

T−s
∑

y=0

wy(γρ, α)

+
∑

γ′,γ′′:γ=γ′γ′′

us(aγ
′′ | ψ)

T−s
∑

y=0

wy(γ
′, α)

)

=
1

T

∑

a: |α|=d

T
∑

s=0

(

us(a | ψ)
∑

ρ

T
∑

y=0

wy(γρ, α)

+
∑

γ′,γ′′:γ=γ′γ′′

us(aγ
′′ | ψ)

T
∑

y=0

wy(γ
′, α)

)

−
1

T

∑

a: |α|=d

T
∑

s=0

(

us(a | ψ)
∑

ρ

T
∑

y=T−s

wy(γρ, α)

+
∑

γ′,γ′′:γ=γ′γ′′

us(aγ
′′ | ψ)

T
∑

y=T−s

wy(γ
′, α)

)

= I1(T, γ) + I2(T, γ).

For the first summand we have the following expression

I1(T, γ) =
∑

a: |α|=d

hT (a | ψ)

T

∑

ρ

T
∑

y=0

wy(γρ, α)
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+
∑

γ′,γ′′:γ=γ′γ′′

∑

a: |α|=d

hT (aγ′′ | ψ)

T

T
∑

y=0

wy(γ
′, α).

By Lemma 5.1, I1(T, γ) tends to pκϕ
(γ), which has been defined in (2.20). We

have to prove that I2(T, γ) tends to 0. To this end we introduce

Ga(t) =

t
∑

s=0

P{τa ≥ s}.

Using the obvious estimate

wy(γ, α) ≤ P{τa ≥ y},

we find

|I2(T, γ)| ≤
1

T

∑

a: |α|=d

T
∑

s=0

us(a | ψ)

T
∑

y=T−s

P{τa ≥ y}

=
1

T

∑

a: |α|=d

T
∑

s=0

us(a | ψ) (Ga(T ) −Ga(T − s))

=
∑

a: |α|=d

hT (a | ψ)

T
Ga(T ) −

1

T

∑

a: |α|=d

T
∑

s=0

us(a | ψ)Ga(T − s)

= I ′1(T ) + I ′2(T ).

By virtue of Lemma 5.1

I ′1(T ) →
∑

a: |α|=d

πϕ(a)

ē
= 1, T → ∞.

Choose ε > 0 arbitrarily small. Then

I ′2(T ) ≤ −
1

T

∑

a: |α|=d

T (1−ε)
∑

s=0

us(a | ψ)Ga(T − s) ≤ −
∑

a: |α|=d

hT (1−ε)(a)

T
Ga(Tε)

= −
T (1 − ε)

T

∑

a: |α|=d

hT (1−ε)(a)

T (1 − ε)
Ga(Tε) → −1 + ε, T → ∞.

Thus we have proved that for arbitrarily small ε > 0

lim sup
T→∞

|I2(T, γ)| ≤ ε

uniformly in γ. This proves the first assertion of the theorem.
The second assertion easily follows from the first. ✷
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6. Proof of Theorem 2.6

Let (ξt, at, bt) be the state of the process L at time t, where ξt is finite string,
ξt ∈ A, at is the leftmost coordinate of the string, at ∈ Z, and bt is rightmost
coordinate, bt ∈ Z. It is clear that bt−at = |ξt|. Note that we use the notation ξt
instead of ξ(t); this is done with the purpose of making formulas more compact.
To prove that process is transient it is sufficient to show that

P{at ≤ ṽtrt− d, bt ≥ ṽergt+ d for all t > 0 | ξ0 = γ−γ+, a0 = −d, b0 = d} > 0,
(6.1)

where −vl(µ) <ṽtr < ṽerg < vr(κν) and |γ−| = |γ+| = d. Denote by (ζt, lt) the
state of the Markov chain Ll at time t and by (ηt, rt) the state of the process
L−∞ at time t.

First we note that for any T > 0 and ρ ∈ B−∞

P{at ≤ ṽtrt− d, bt ≥ ṽergt+ d, for all t, T ≥ t > 0 | ξ0 = γ−γ+, a0 = −d, b0 = d}

=
∑

α

P{ζT = α, lt ≤ ṽtrt− d, for all t, T ≥ t > 0|ζ0 = γ−}

× P{rt ≥ ṽergt+ d, for all t, T ≥ t > 0 | η0 = ραγ+, r0 = d}

= P{lt ≤ ṽtrt− d, for all t, T ≥ t > 0|ζ0 = γ−}

×
∑

α

P{ζT = α, lt ≤ ṽtrt− d, for all t, T ≥ t > 0|ζ0 = γ−}

P{ lt ≤ ṽtrt− d, for all t, T ≥ t > 0|ζ0 = γ−}

× P{rt ≥ ṽergt+ d, for all t, T ≥ t > 0 | η0 = ραγ+, r0 = d}.

Define the measure ν̃ by the following correlation functions

Pν̃(α[N,N + |γ|] = γ)

= P{ζ∞[N,N + |γ|] = γ | lt ≤ ṽtrt− d, for all t > 0, ζ0 = γ−},

for any γ ∈ A and N < 0, where ζ∞[N,N + |γ|] = limt→∞ ζt[N,N + |γ|]. Here
ζt[N,N + |γ|] is the restriction of ζt to the coordinates N,N + 1, . . . , N + |γ|;
α[N,N + |γ|] is defined analogously.

Passing to the limit we get

P{at ≤ ṽtrt− d, bt ≥ ṽergt+ d, for all t > 0 | ξ0 = γ−γ+, a0 = −d, b0 = d}

= P{ lt ≤ ṽtrt− d, for all t > 0 | ζ0 = γ−}

× P{rt ≥ ṽergt+ d , for all t, t > 0 | (ν̃, δd)}.

If for any γ (6.2) (it will be proved later) holds,

lim
N→−∞

pν̃(α[N,N+|γ|] = γ) = pν(γ), (6.2)

then the following result is valid.
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Lemma 6.1. Suppose that (6.2) holds, then

P{rt ≥ ṽergt+ d, for all t, t > 0 | (ν̃, δd) } > 0.

Proof. Define random moments of time τn, n = 1, 2, . . . by

τ1 = min{t : rt < d},

τk = min{t : rt < −d(k − 2)} − τk−1, k = 2, 3 . . .

By virtue of

P{rt ≥ ṽergt+ d, for all t, t > 0| (ν̃, δd)}

≥ P
{

τ1 + · · · + τn ≥ n
d

ṽerg
for all n

}

. (6.3)

It is sufficient to show that

P
{

τ1 + · · · + τn ≥ n
d

ṽerg
for all n

}

> 0 (6.4)

is true.
By condition (6.2) we have

lim
n→∞

Eτn =
d

ve
>

d

ṽerg
.

Note, that the following lemma holds.

Lemma 6.2. Denote by Fn the σ-algebra generated by {τ0, . . . , τn}. Then

E(τk+s | Fk) − E(τk+s) = O(e−c1s)

for some c1 > 0.

Hence Lemma 6.1 follows from Theorem 2.1.9 (see [1]). ✷

Proof of Lemma 6.2. Let α ∈ S[−∞,d] denote the initial state of ηt. We will
prove that E(τk+s | Fk) − E(τk+s) = O(e−c1s) uniformly in α. Let us rewrite
α = ργn . . . γ1, where |γi| = d. The state of the process at moment τk can be
written in the form ργn . . . γk+1χk+1,where χk+1 is a random string such that
|χk+1| < d. We put χ1 = ∅. The distribution of τk and χk+1 depends only on
γkχk. Hence,

|E(τk+s | Fk) − E(τk+s)|

≤
∑

δk+s

E(τk+s | χk+s = δk+s)
∣

∣P{χk+s = δk+s | Fk} − P{χk+s = δk+s}
∣

∣

=
∑

δk+s

E(τk+s | χk+s = δk+s)
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×
∣

∣

∣

∑

δk+1

P{χk+s = δk+s|χk+1 = δk+1}P{χk+1 = δk+1|Fk} − P{χk+s = δk+s}
∣

∣

∣

≤
∑

δk+s

E(τk+s | χk+s = δk+s)

×
[

∑

δk+1

∣

∣P{χk+s = δk+s|χk+1 = δk+1}−P{χk+s = δk+s}
∣

∣P{χk+1 = δk+1|Fk}
]

≤ max
δk+s

E(τk+s | χk+s = δk+s)

× max
δk+s,δk+1

∣

∣P{χk+s = δk+s | χk+1 = δk+1} − P{χk+s = δk+s}
∣

∣.

So it is sufficient to prove that

max
δk+s,δk

∣

∣P{χk+s = δk+s | χk = δk} − P{χk+s = δk+s}
∣

∣ = O(e−c1s).

One can show the following relation

P{χk+1 = δk+1} =
∑

δk:|δk|<d

P{χk = δk} pγk
(δk, δk+1), (6.5)

where pγk
(δk, δk+1) = P{χk+1 = δk+1|χk = δk}. By virtue of (6.5) we have

P{χk+s = δk+s} =
∑

δk+i:|δk+i|<d

P{χk = δk}pγk
(δk, δk+1) . . . pγk+s−1

(δk+s−1, δk+s).

Note that there exists ε > 0, such that pγ(δ, δ̃) > ε for all γ, δ and δ̃ and

∑

δ̃

pγ(δ, δ̃) = 1.

We can hence interpret χt as the state of a non-homogeneous Markov chain.
Consequently,

∣

∣P{χk+s = δ | χk} − P{χk+s = δ | χk}
∣

∣ = O(e−c1s),

because all transition probabilities of this chain are uniformly bounded away 0.
Theorem 2.1 implies that

P{ lt ≤ ṽtrt− d, for all t > 0 | ζ0 = γ−} > 0,

and so inequality (6.1) holds.
It remains to check (6.2). To this end we will use the coupling method.

Introduce new random processes ζ̃t such that

P{ζ̃t1 = x1,ζ̃t2 = x2, . . . , ζ̃tn = xn}

= P{ζt1 = x1,ζt2 = x2, . . . , ζtn = xn|At},
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for all t1, . . . , tn ≤ t, x1, . . . , xn, where At is the event {ls ≤ ṽtrs − d, for all
t ≥ s > 0}. Obviously this process generates the measure ν̃. Denote by l̃t the
leftmost coordinate of the string ζ̃t.

Let us note that |γρ| ≥ ṽtrt+ 2d, if α = γρ and |γ| = d. Then

P{ζ̃t+1 = θρ | ζ̃t = γρ} =
P{ζ̃t+1 = θρ, ζ̃t = γρ}

P{ζ̃t = γρ}

=
P{ζt+1 = θρ, ζt = γρ | At+1}

P{ζt = γρ | At}

= P{ζt+1 = θρ | ζt = γρ}
P{ζt = γρ | At+1}

P{ζt = γρ | At}

= q(γ, θ)
P{ζt = γρ | At+1}

P{ζt = γρ | At}

= q(γ, θ).

The last equality is true, since lt ≤ ṽtrt− 2d implies |ζt+1| ≤ ṽtrt− d.
As a consequence, the transition probabilities of the processes ζ̃t and ζt are

equal if l̃t ≤ ṽtrt− 2d. We can prove he following relation.

P{there exists T : for all t > T, l̃t ≥ ṽtrt− 2d | ζ̃T = α, l̃T ≤ ṽtrT − 2d}

= P{there exists T : for all t > T : lt ≥ ṽtrt− 2d | ζT = α, lT ≤ ṽtrT − 2d}

> ε > 0. (6.6)

We construct a coupled process (ζt, ζ̃t) as follows:

0) (ζ0, ζ̃0) = (γ−, γ−);

1) for
l̃t ≥ ṽtrt− 2d , lt ≥ ṽtrt− 2d , ζ̃t[l̃t, l̃t + d] = ζt[lt, lt + d] (6.7)

the processes ζ̃t and ζt move together according to the transition law of
ζt, this means that

P{ζ̃t+1 = θρ̃, ζt+1 = θρ | ζ̃t = γρ̃, ζt = γρ} = q(γ, θ),

if ζ̃t = γρ̃ and ζt = γρ for |γ| = d, then for any θ with |θ| ≤ 2d;

2) otherwise ζ̃t and ζt move independently:

P{ζ̃t+1 = ρ̃, ζt+1 = ρ | ζ̃t, ζt} = P{ζ̃t+1 = ρ̃ | ζ̃t}P{ζt+1 = ρ | ζt}.

So the lemma is proved, if we can prove that with probability 1 there exists
a moment T , such that ζt = ζ̃t, for all t > T . Let us define coupling time τ in
the following way

τ = min{T : for all t > T,

ζ̃t[l̃t, l̃t + d] = ζt[lt, lt + d, lt ≤ ṽtrt− 2d, l̃t ≤ ṽtrt− 2d}.
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Transience of the process ζt together with (6.6) imply that

P{τ <∞} = 1.

This easily implies (6.2). ✷

6.1. Proof of Theorem 2.6 (ergodicity)

Denote by ξt the process with two evolving ends, and by at and bt the
leftmost and rightmost coordinates respectively. The initial state of the process
is x0 = (α, 0, |α|), i.e. a0 = 0, ξ0 = α, b0 = |α|. Write

vtr = vl(µ),

ve = vr(κν),

Ex{·}
def
= E{· | (ξ0, a0, b0) = x}.

Define the following random variables

σ(α) = min{t : |ξt| ≤ K},

τ(α) = min{t : bt ≤ d},

τtr(α) = min{t : for all s ≥ t, as ≤ −K},

t(α) = τ(α) + |ξτ(α)|
c

ve − vtr
, where 0 < c < 1.

Let
At = {|ξs| > K, for all s ≤ t}.

In order to prove that
Ex0σ(α) <∞,

we use Foster’s criterion (see [1]). Let ξ̃t = ξσ(α)∧t. We prove that there exist
ε > 0, N and a random variable k(α) such that

E(|ξ̃k(α)+t| − |ξ̃t| | ξ̃t = α) < −εEk(α)

for all t > 0 and all α with |α| > N . To simplify our formulae we assume that
t = 0, a0 = 0 and b0 = |α|. Then we can rewrite the previous inequality as

Ex0(|ξk(α)| − |ξ0|) < −εEk(α), where k(α) = t(α)1{At(α)}.

This inequality follows from the fact that

Ex01{At(α)}∆t(α) < −εEx0t(α)1{At(α)},

with ∆t(α) = |ξt(α)| − |ξ0.|
The following lemma will be proved in the next section.
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Lemma 6.1. There exist ε > 0, 0 < c < 1, N and K, such that for all α with

|α| > N

i)

Ex0at(α)1{At(α)} = −vtr
(

1 + vtr
c

ve − vtr

)

Ex0τ(α)1{Aτ(α)} +O(1);

ii)

Ex0bt(α)1{At(α)} = −vevtr
c

ve − vtr
Ex0τ(α)1{Aτ(α)} +O(1),

Ex01{At(α)}∆t(α) = (1 − c)vtrEx0τ(α)1{Aτ(α)} − |α| +O(1);

iii)

Ex0t(α)1{At(α)} = Ex0τ(α) + vtr
c

ve − vtr
Ex0τ(α) +O(1).

So we need to prove

(1 − c)vtrEx0τ(α)1{Aτ(α)} − |α| +O(1) < −εEx0t(α)1{At(α)},

or
(

(1 − c)vtr + ε(1 + vtr
c

ve − vtr
)
)

Ex0τ(α)1{Aτ(α)} +O(1) < |α|.

For ergodicity of the process it is hence sufficient to show the following
lemma.

Lemma 6.2. There exists N such that Ex0τ(α)1{Aτ(α)} < N |α|, for all α.

Proof. Define a new process ξ̃t in the following way:

1) (ξ̃t, ãt, b̃t) = (ξt, at, bt), till the moment that |ξt| ≥ K;

2) if |ξt| ≥ K and |ξt+1| < K, then we put ξ̃t+1 = ∅ and b̃t+1 = −K.

It is clear that
Ex0τ(α)1{Aτ(α)} = Ex0 τ̃(α),

where τ̃ (α) = min{t : b̃t ≤ d}. Define also random moments

τ1 = min{t : t > 0, b̃t > b̃0 +K/2 or b̃t < b̃0 −K/2},

τi+1 = min{t : t > τi, b̃t > b̃τi
+K/2 or b̃t < b̃τi

−K/2}.

Using the Lyapounov function from [4], we can show that

Px{b̃i+1 > b̃τi
+K/2} < c1e

−c2K , for some c1, c2 > 0 uniformly in x

and
Exτi+1 <∞, uniformly in x.
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So there exists K such that

Ex0(b̃τi+1 − b̃τi
) < −ε, for some ε > 0 uniformly in x0.

Hence, there exists N such that

Ex0 τ̃ (α) < N |α|.

This completes the proof of the lemma. ✷

6.2. Proof of Lemma 6.1

Let us prove assertion i), the other assertions can be proved in the same way.
One can write the following expression

Ex0at(α)1{At(α)} =
∑

t,θ,β:
2d+K>|θ|≥K

(

Px0{τtr(α) = t, ξt = θβ,At}

× Ex0(at(α)1{At(α)} | τtr(α) = t, ξt = θβ,At)
)

.

Rewrite the conditional expectation in the last formula

Ex0(at(α)1{At(α)} | τtr(α) = t, ξt = θβ,At)

= Ex{at(θβ)1{At(θβ)} | for all s ≥ 0, as ≤ −K),

where x = (θβ,−|θ|, |β|). We use the following notation

Ẽ(·) = Ex(· | for all s ≥ 0, as ≤ −K),

P̃{·} = Px{· | for all s ≥ 0, as ≤ −K}.

The proposition below immediately implies assertion i).

Proposition 6.1.

Ẽ(at(θβ)1{At(θβ)}) = −vtr
(

1 + vtr
c

ve − vtr

)

Ẽ(τ(θβ)1{Aτ(θβ)}) +O(1).

Proof of Proposition 6.1. Split the left-hand side of the above equality into
two parts

Ẽ(at(θβ)1{At(θβ)}) = Ẽ(at(θβ)1{At(θβ)}1{aτ(θβ)∈Uε(−vtrτ(θβ))})

+ Ẽ(at(θβ)1{At(θβ)}1{aτ(θβ) /∈Uε(−vtrτ(θβ))}),

where Uε(t)
def
= {n ∈ Z : |n − t| < εt}, ε > 0. It is not difficult to prove that

the second term in the right-hand side of the above equality is bounded. Let us
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estimate the first term. We need some notation

v = (ve + vtr)/2,

Lt = Uε(−vtrτ(θβ))/2 − v(t− τ(θβ)),

σe = min{t ≥ τ(θβ) : bt ∈ Lt},

σtr = min{t ≥ τ(θβ) : at ∈ Lt},

T (t)
def
= c

(vtr + ε)

ve − vtr
t,

Bt = {at ∈ Uε(−vtrt)}.

This first term reduces to

Ẽ(at(θβ)1{At(θβ)}1{Bτ(θβ)}) = Ẽ(at(θβ)1{At(θβ)}1{Bτ(θβ)}1{σtr∧σe>T (τ(θβ))})

+ Ẽ(at(θβ)1{At(θβ)}1{Bτ(θβ)}1{σtr<σe,σtr<T (τ(θβ))})

+ Ẽ(at(θβ)1{At(θβ)}1{Bτ(θβ)}1{σe<σtr,σe<T (τ(θβ))}).

First we will show that

Ẽ(at(θβ)1{At(θβ)}1{Bτ(θβ)}1{σtr<σe,σtr<T (τ(θβ))}) < ∞,

Ẽ(at(θβ)1{At(θβ)}1{Bτ(θβ)}1{σe<σtr,σe<T (τ(θβ))}) < ∞
(6.8)

uniformly in θβ.
Note that

at(θβ) < c̃τ(θβ),

for some constant c̃.
Then for (6.8) it is sufficient to show the following bounds.

Ẽ(τ(θβ)1{At(θβ)}1{Bτ(θβ)}1{σtr<σe,σtr<T (τ(θβ))}) < ∞, (6.9)

Ẽ(τ(θβ)1{Aτ(θβ)}1{Bτ(θβ)}1{σe<σtr,σe<T (τ(θβ))}) < ∞. (6.10)

The first inequality follows directly from the existence of constants c1, c2, such
that

P̃{σtr < σe, σtr < T (t)|Bt, τ(θβ) = t} < c1e
−c2t.

Let us prove that inequality (6.10). By Chebyshev’s inequality

Ẽ(τ(θβ)1{Aτ(θβ)}1{Bτ(θβ)}1{σe<σtr,σe<T (τ(θβ))})

≤ Ẽ(τ(θβ)1{τ(θβ)>|θβ|2})

+ |θβ|2P̃{Aτ(θβ), Bτ(θβ), σe < σtr, σe < T (τ(θβ))}.
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One can prove that
Ẽ(τ(θβ)1{τ(θβ)>|θβ|2}) <∞

uniformly in θβ. A uniform bound for the second expression in the right-hand
side of the above inequality is obtained from the following lemma.

Lemma 6.3. There exist c1, c2 such that

P̃{Aτ(θβ), Bτ(θβ), σe < σtr, σe < T (t) | τ(θβ) = t} < c1e
−c2t.

Clearly this lemma implies that

|θβ|2P̃{Aτ(θβ), Bτ(θβ), σe < σtr, σe < T (τ(θβ))} < c1|θβ|
2
Ẽe−c2τ(θβ) <∞

uniformly in θβ, since τ(θβ) ≥ |θβ|/d.

Proof of Lemma 6.3. We will use the following estimate

P̃{At, Bt, σe < σtr, σe < T (t) | τ(θβ) = t}≤
∑

t0<T (t)

P̃{σe = t0, σtr ≥ t0 | τ(θβ) = t}.

Note that

P̃{σe = t0, σtr ≥ t0 | τ(θβ) = t}

=
∑

ρ

P̃θ{ζt0 [−vtrt(1 − ε)/2 − v(t− t0)d, d] = ρ}P{σe = t0 | ηt = ρ},

where the processes ζt, ηt have been defined in the proof of the transient case.
Let us estimate the above probability:

P̃θ

{

ζt0 [−vtrt(1 − ε)/2 − v(t− t0)d, d] = ρ
}

= P̃θ

{

ζt0 [−vtrt(1 − ε)/2 − v(t− t0) − d, d] = ρ,

for all t1 ≥ t0, lt1 ≤ −vtrt(1 − ε)/2 − v(t− t0) − 2d
}

+ P̃θ

{

ζt0 [−vtrt(1 − ε)/2 − v(t− t0) − d, d] = ρ,

there exists t1 ≥ t0 : lt1 > −vtrt(1 − ε)/2 − v(t− t0) − 2d
}

= P̃θ

{

ζ∞[−vtrt(1 − ε)/2 − v(t− t0) − d, d] = ρ}

− P̃θ

{

ζt0 [−vtrt(1 − ε)/2 − v(t− t0) − d, d] = ρ

there exists t1 ≥ t0 : lt1 > −vtrt(1 − ε)/2 − v(t− t0) − 2d,

there exists t2 ≥ t0 : ζt2 [−vtrt(1 − ε)/2 − v(t− t0) − d, d] = ρ,

for all t3 ≥ t2, lt3 ≤ −vtrt(1 − ε)/2 − v(t− t0) − 2d
}
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+ P̃θ

{

ζt0 [−vtrt(1 − ε)/2 − v(t− t0) − d, d] = ρ,

there exists t1 ≥ t0 : lt1 > −vtrt(1 − ε)/2 − v(t− t0) − 2d
}

= P̃θ

{

ζ∞[−vtrt(1 − ε)/2 − v(t− t0) − d, d] = ρ
}

+O(P̃θ
{

there exists t1 > t0 : lt1 > −vtrt(1 − ε)/2 − v(t− t0) − d)
}

.

So

P̃{σe = t0, σtr ≥ t0 | τ(θβ) = t}

=
∑

ρ

P̃θ{ζt∞ [−vtrt(1 − ε)/2 − v(t− t0)d, d] = ρ}P{σe = t0 | ηt = ρ}

+O(P̃θ{there exists t1 > t0 : lt1 > −vtrt(1 − ε)/2 − v(t− t0) − d)}.

The second term in the last formula is easily estimated as follows:

P̃θ{there exists t1 > t0 : lt1 > −vtrt(1 − ε)/2 − v(t− t0) − d} < c1e
−c2t,

for some c1, c2 > 0.
We will derive a similar estimate for the first term.
∑

t0<T (t)

∑

ρ

P̃θ{ζt∞ [−vtrt(1 − ε)/2 − v(t− t0)d, d] = ρ}P{σe = t0 | ηt = ρ}

=
∑

t0<T (t)

P{σe = t0 | ν(t)} = P{σe < T (t) | ν(t)},

where ν(t) is the measure generated by the process ζt. Theorem 2.4 together
with Corollary 6.1 below imply that we have that

P{σe < T (t) | ν(t)} < c1e
−c2t.

This proves Lemma 6.3 and thus (6.8). ✷

We have obtained the following result

Ẽ(at(θβ)1{At(θβ)}1{Bτ(θβ)})

= Ẽ(at(θβ)1{At(θβ)}1{Bτ(θβ)}1{σtr∧σe>T (τ(θβ))}) +O(1).

In the second expectation in the above relation the left and right ends of a string
do not interact. Therefore, the evolution of the left end of the string after time
τ(θβ) reduces to the evolution of a string with one end only. It is not difficult
to show that then

Ẽ(at(θβ)1{At(θβ)}1{Bτ(θβ)}1{σtr∧σe>T (τ(θβ))}) +O(1)
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= −vtr(1 + vtr
c

ve − vtr
)Ex0τ(α)1{Aτ(α)} +O(1).

This completes the proof of Theorem 2.6. ✷

To prove Corollary 6.1 we need lemma:

Lemma 6.3. Let ν be a measure on the set of semi-infinite strings S[−∞,0]. Let

(ηt, rt) be an ergodic string with initial distribution (ν, δ0) such that

lim
t→∞

E(rt+1 − rt) = −ve.

Then for any 0 < c < 1 there exist constants c1 and c2 such that

P{there exists t : t ≤ c
N

ve
, rt < −N} < c1e

−c2N for all N.

Corollary 6.1. Suppose that the assumptions of Lemma 6.3 holds. Let 0 <
v < ve. Then for any 0 < c < 1 there exist constants c1 and c2, such that

P{there exists t : t ≤ c
N

ve − v
, rt < −N − vt} < c1e

−c2N for all N > 0.

Proof. Letting τ = min{t : ηt < −N − vt}, we have

P{there exists t : t ≤ c
N

ve − v
, rt < −N − vt} =

∑

t:t≤cN/(ve−v)

P{τ = t}

≤
∑

t:t≤cN/(ve−v)

P{there exists t̃ : t̃ ≤ t, rt̃ < −N − vt}

=
∑

t:t≤cN/(ve−v)

P{there exists t̃ : t̃ ≤
tve

N + vt

N + vt

ve
t, rt̃ < −N − vt}.

For t ≤ c
N

ve − v
,

tve
N + vt

≤
vec

vc+ ve − v
=

vec

vec+ (1 − c)(ve − v)
= c̃ < 1.

Hence, by Lemma 6.3

∑

t:t≤cN/(ve−v)

P{τ = t}

≤
∑

t:t≤cN/(ve−v)

P{there exists t̃ : t̃ ≤ c̃
N + vt

ve
t, rt̃ < −N − vt}

≤
∑

t:t≤cN/(ve−v)

c1e
−c2(N+vt) < c̃1e

−c2N ,
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for some constants c̃1, c2 > 0. This proves the corollary. ✷

Proof of Lemma 6.3. Let N + d = dn + m,n = [N/d] + 1. Define random
moments

τ0 = min{t : rt < −m},

τk = min{t : rt < −dk −m} − τk−1, k = 1, . . . , n.

In terms of these moments we can rewrite the assertion of the lemma as follows

P{there exists t : t ≤ c
N

ve
, rt < −N}

= P{τ0 + · · · + τn ≤ c
N

ve
} ≤ P{τ0 + · · · + τn ≤ cn

d

ve
}. (6.11)

By assumption

lim
n→∞

Eτn =
d

ve
.

Denote by Fn σ-algebra generated by { τ0, . . . , τn }. Lemma 6.2 implies
E(τk+s | Fk) − E(τk+s) = O(e−c1s) and so the assertion of Lemma 6.3 follows
from Theorems 2.1.7 and 2.1.8 (see [1]). ✷

7. Examples

7.1. FIFO queues with several customer types

The queue with FIFO (First-In-First-Out) service discipline is a special case
of strings with two ends. Let us consider the following discrete time example.
Suppose that customers of type a, a ∈ {1, . . . , r}, arrive at the left end of the
queue with probability λa,

∑

a λa < 1. If there is a pair ab of custmomers at the
right end of the queue, this means that the queue can be presented as a string
of the form ρab. Then either this couple is served with probability q2(ab), or
customer b is served with probability q1(ab), where

q2(ab) + q1(ab) < 1.

It follows that
qr(ab, ∅) = q2(ab), qr(ab, a) = q1(ab)

and
q0(ab)

def
= qr(ab, ab) = 1 − q2(ab) − q1(ab).

The objective is to determine ergodicity conditions for this system. First of all,
we have to find the measure ν on the set of semi-infinite strings {1, . . . , r}(−∞,0]

generated by the transient end of the string. In this case it is a Bernoulli measure
ν =

⊗0
−∞ π, where π is the measure on the finite set {1, . . . , r} defined by

πa =
λa

∑

a λa
.
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To compute the “velocity of serving” (it is velocity of the ergodic end) we
determine the distribution of the last two symbols by using formula (2.20). We
have

p(ab) =
1

Z
πaπbw(ab, ab),

Z =
∑

ab

πaπbw(ab, ab),

w(ab, ab) =

∞
∑

t=0

qt0(ab) =
1

q2(ab) + q1(ab)
.

It follows that

p(ab) =
1

Z
πaπb

1

q2(ab) + q1(ab)
.

Hence, the velocity of the ergodic end is equal to

ve =
∑

ab

(2q2(ab) + q1(ab)) p(ab) =
1

Z

∑

ab

πaπb
2q2(ab) + q1(ab)

q2(ab) + q1(ab)
.

The velocity of the transient end is equal to

vtr =
∑

a

λa.

We have obtained that the Markov chain is ergodic, if

∑

a

λa <
1

Z

∑

ab

πaπb
2q2(ab) + q1(ab)

q2(ab) + q1(ab)
.

In the special case that q1(ab) = q(a)(1−q(b)), q2(ab) = q(a) q(b), this ergodicity
condition has a simpler form:

∑

a

λa <

∑

a

λa(1 + q(a))

∑

a

λa
q(a)

.

We cannot explain this formula in terms of “standard laws” of queueing theory
that state that the “load” should be less than 1.

7.2. Communication network with fixed routing

Let the network consist of two lines I and II. Calls arrive and are subsequently
served at these lines. Each line has capacity 1, which means that two different
calls can not use the same line at the same time. There are three types of calls
in the network:
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1) type a calls occupy line I;

2) type b calls occupy line II;

3) type c calls occupy lines I and II simultaneously.

All arriving calls are routed to the same queue and they are served at rates
µa, µb and µc in FIFO order. If at the beginning of the queue type a and b
calls are present, then each of them is served independently at rates µa and µb
respectively. Otherwise only the call at the head of the queue is served.

It follows that the network can be interpreteted as a two-sided string. As
in the previous example it is not difficult to obtain sufficient conditions for
ergodicity.
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