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THE STABILITY OF INFINITE-SERVER
NETWORKS WITH RANDOM ROUTING

S. A. BEREZNER AND
V. A. MALYSHEV * Moscow State University

Abstract

We consider networks with a very large or infinite number of nodes, linked by
cable channels. The request which comes to a node is ordered to occupy a certain
route of successive channels. The functioning of the system is regulated by the
reserving of channels in order of the arrivals of the requests. Under some general
conditions the existence of an ergodic region for such networks is proved. The
practical value of the result lies in the fact that these conditions do not depend on the
size of the graph.

CHANNEL-SWITCHING NETWORKS; GENERALIZED FIFO PROTOCOL; WAITING TIME
PROCESS; LIMITING STATIONARY PROCESS

1. Introduction

The mathematical investigation of complex queueing or communication systems
generally follows two main lines: (i) systems with a small number of servers (nodes);
(ii) systems where the number of nodes is very large. Some of the latter systems are
‘completely integrable’ in some sense (the well-known Jackson networks provide an
example). For the others the general methods of mathematical statistical physics are
available (see [3]-[6]). The method used here is to consider networks with an infinite
number of nodes. Stability for this case implies stability for all finite similar networks.
We consider not necessarily Markovian circuit-switching networks with the FIFO
protocol, which seems to be the most unstable among such protocols. We prove that
stability holds for small intensity of requests uniformly in the number of nodes if the
graph structure of the systems is sufficiently homogeneous.

1.1. The graph T" of the network consists of an at most countable set of vertices C.
Every vertex ¢ €C is linked by no less than 1 and no more than v edges with other
vertices. No other restrictions on the configuration of the graph are assumed. Every edge
between vertices ¢ and ¢’ can be designated (c, ¢’) or (¢’, ¢) according to its direction. An
ordered finite set of directed edges is called the route y(c) from the vertex c, if it satisfies
the following conditions:
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(i) vertex c is the beginning of the first edge;

(ii) the end of every edge (except the last edge) is the beginning of the next one.
We call the number of edges in the route y(c) the length of this route and denote it
[7(c)|. I'. denotes the set of all routes from the vertex c. Two routes y(c) and y(c’)
are defined to intersect (this will be written y(c) N y(c”)), if they pass through the
same vertex.

1.2. The arrival stream U on the vertex c will be introduced in the following way:

(i) The arrival time (from the moment ¢ = 0) of the first request on the vertex cis T¢.

The interval between the arrivals of the nth and (n + 1)th requests is 7%, n €N (the
natural numbers) and n = 2.

(ii) The service time of the nth request on the vertex c is S¢.

(iii) The route of the nth request on the vertex cis I, €T,. The total arrival stream we
denote as U°. We denote the initial conditions W° as a vector of random variables
WOy(c)l for c €EC, y(c)ET.. If all the components of the vector are equal to O the initial
condition is said to be trivial. As we see each request is uniquely determined by the triple
(¢, 5, 7(c)), where ¢ is its arrival time, s its service time, y(c) is its route with the
indication of the vertex of arrival c.

1.3. The functioning of the system is organized according to the discipline, which
is to a certain extent the generalization of the discipline first in, first out (FIFO). Now
we shall describe it. Consider an arbitrary request (¢, s, p(c)). The request (¢’, s*, y(c’))
is called influencing on (¢, s, y(c)) if ¢’<<t and y(c’) N y(c). The service of the
request (Z,s, y(c)) will begin at the moment ¢, =¢, satisfying the following con-
ditions:

(i) all the requests influencing (¢, s, y(c)) have left the network by the time ,.

(i) &= Wy(c))

(iii) 7, is the smallest value satisfying (i) and (ii).

The remainder £, — ¢ is a waiting time W*[y(c)] of the request, during which it will stay in
a queue. At the moment ¢, + s the request will leave the network. The functioning of the
system is correctly defined if the waiting time of each request is finite. The correctness
will be proved below.

2, Restrictions on the arrival stream

2.1. All the random variables (7%, S¢,I%), n €N, ¢ €C are mutually independent.
Variables (S; ), n €N, ¢ € Chave the same distribution F(s). Variables (T¢),n = 2,c€C
have distribution ¢(¢) and variables (T%), c € C have distribution ¢,(z). Variables (I)
n€N have the same distribution G°(y(c)) = P{I"} = y(c)}, y(c)ET.. Distributions
G°(y(c)) are unique to each vertex c€C.

2.2. We assume F(s) to have exponential decrease of its ‘tail’, that is 3.S,, 4 > 0 such
that Vs = S,

(1) 1— F(s)=P{St >s} < e~.
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2.3. Let ¢(t) be continuous at the point ¢ = 0 and M(T%)? < oo. Then we can define

@ o) = fo (1 — gy

We now introduce some new notions. Let n(z, c), T €R, (non-negative real numbers)
¢ €C be an integer-valued random variable such that

n(T,C)=KEN<=>TY+ cee T;(t,c)<7:<n+ R 71I‘:(1.',c)+l
and n(t,c)=0iff 7{ > 7. Then let T;* = Tt 4n, NEN,
Srf’c = Sr‘;(r,c)+n and r‘:,c = n(r,c)+ns h GN

The corresponding arrival stream we denote by U~. It is well known (see [1], [2]) that for
every 7, T’€R, the processes U and U ™ are equivalent (have the same distributions), if
(2) holds. Also, for every random moment #,, independent of U?, the distance between t
and the nearest preceding request (or the moment ¢ = 0, if this request is absent) has
distribution ¢,(¢).

2.4. The assumptions on G°(y(c)) are the following:
(i) There exists a sequence of positive numbers {a(m)}, m €N, such that for every
c€C, Vy(c) with the length m, G°(y(c)) < g(m).

3) (i) Y mPvrg(m) < .

m=1

2.5. The initial condition W? is supposed to be independent of U°.

3. Process of waiting times. The correctness of the service discipline

3.1. Let us define the waiting-time process W' under a trivial initial condition. We
imagine a fictitious request (¢, s, y(c)). The corresponding waiting time is Wy(c)).
The vector W' = {W'[y(c)]}, cEC, y(c)€ET. is a vector of fictitious waiting times.
We need now to prove that all finite-dimensional distributions are proper that occur iff
Ve, Vy(c)ET,, W'[y(c)] is finite almost certainly. The process of waiting times which
corresponds to the initial conditions W7} will be designated W'(W?). It is easy to see
(cf. [1], [2]) that if W{= W~ then

wiee 4 W' (W?) (these processes have the same distributions).

3.2. Before proving correctness we shall introduce some convenient notions. We
fix a request (%, o, ¥(c)) and give all definitions with respect to it. Consider an or-
dered set of vertices ¢, - -, ¢, and routes y(c,),- - -, 7(c,). We say that they form a plane
chain y(¢)=(y(c), - -, ¥(c,)) if y(c)Ny(csy), i=0,1,---,n—1. The set of
such chains of length n is designated I,(¢), ¢ =(c,;---c,)EC". For convenience
ai(€) =c¢;, v:,(7(¢) = y(c:).

Consider an ordered set of requests (¢, 5;, 7(c;)), i = 1,- - -, n. We say that they form a
space chain y(k, ¢, ), k =(k,- - -k,)EN", cEC", [ = (¢, - - ‘tL,)ER",iff
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Wt_,zt,i=1,---,n.

(ii) There are k; requests on the vertex ¢; in the interval [t;_,, t,], i =1, - -, n.

(iii) Their routes form a plane chain.

The set of such chains is denoted by T,(k,¢). For convenience c(¢)=c;,
7k, ¢, D)) =y(c,), ki(k)=k;, t;(f) =1,. The set of all requests, any of which can be
included in some space chain, is called an influencing cone (of the request (1, o> 7(cp))).
Let A,(k,c) be an event such that there exists y(k, ¢, ))ETL,(K,¢) and denote
An = UE,L'An(Ea c)

Let A be the upper limit of 4,, 4 =N~ Uz, Ap-

3.3. To prove the correctness we show that the influencing cone is finite. This
automatically implies the finiteness of waiting time and the correctness of service
discipline. According to the Borel-Cantelli lemma P(4)=0if =, _, P(4,) <. Thus
the last inequality proves the correctness and we shall prove it now.

We have P(4,) = Z,ccn Zgen P(A,(k, ¢)). Let D,(k,¢) be an event such that
there exists a set of requests (4, s, 7(c;})), i=1,---,n satisfying conditions (i)-(ii)
of the definition above. By definition, P(4,(k, ¢)) = P(4,(K, ¢)| D,(k, ¢))- P(D, (K, ¢)).
The probability P(4,(k, ¢)| D,(k, ¢)) does not depend on KEN", which permits
us to introduce one special construction. Consider the Cartesian product N XTI and a
random route I, commencing from each vertex (n,c)EN XTI. The probability
P(4,(k, ¢)| D,(k, ¢)) is equal to the probability P{ 3y(c)ET,(¢)} that I%,... T%
form a plane chain y(¢)ET,(¢), where ¢;(¢) = ¢; (remember that all the definitions
are made with respect to (f, s, (). The probability P(D,(k, ¢)) does not depend
on cEC". It is easy to see that this probability is smaller than P{¢, +ne <1y},
where ¢, is the sum of n random variables with d.f. ¢,(f) and N is the sum of

(k;+ - - + k, — n) random variables with d.f. ¢(¢). All these variables are mutually
independent. Thus

Pu)s| 3 P OO 2 P&+ m<w).

cec” kEN"

Note that the sum in square brackets is the mean value of the random variable I',, which
is defined as a number of all chains of length  for our special model.
For the sum in round brackets we note that since

P{én +”E<t0}§P{€n <t0}'P{r,E<t0}>

this sum is smaller than

P& <) 3 2% T Plre<t).

k=0 k =(k,0,---,0)
Lemma. The mean value of T, is bounded by |y(c,)| M", where

M=73% nn+1pwygn) <o.
n=1

Proof. MT, =2 G%y(c,)))- - -G(y(c,)), where the sum is for all plane chains
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P(¢)ETL,(¢) and ¢ €C", 7,(y(¢)) = y(c;). The number of routes of length m, intersecting
with a fixed route of length m, is smaller than

my - Zz vyt =m(m, + 1)y™.
r=0
So
MT,= X > G (r(c))- - - G (y(c,))

my- - -maEN Y(CYETA(e), | ¥(cdl =m;

A

> > g(my)- - -q(m,,)

my- - -maEN Y(EYET a(E), |¥(c)| =m;

A

vl L m(my 4+ 1Wmg(my)- - -m,(m, + )v™q(m,)

my---meN
= |y(c)| - M".
To evaluate the sum in round brackets we shall prove the following.

Assertion. Let 6, be a sequence of independent identically distributed posi-
tive random variables with P{6, =0} =0. Then for every ¢ >0, IN,EN such
that Vn Z N,

PO+ - +0,<t}<g"
Proof. 3A>0:P{6, <A} <g¥4. Taking N = [2t/A] + 1 we have
VZ NP6+ -+ +6, <t} S[P{6, <A)]"?-2" <q".

Let us choose ¢ > 0 such that g-M < 1. Then there exists such N,EN that for every
n z Ny P{&, <1y} <(iq)" and for every |k| = N, P{n; <t,} <(4)'¥'. Then for n = N,
we have P(4,) <(gM)". Therefore the series T P(A4,) is majorized by the convergent
geometric progression, and this completes the proof of the correctness.

3.4. The main question for networks of this type is the existence of the limiting
distributions of the process W*. As we have indicated above, W'+® & (W). Taking
into accouglt the monotonicity of the process with respect to the initial condition we
have W' = W'**. Therefore the limiting distributions exist if MW [y(c)] < Q < wo
uniformly for tE€R ., c €C. The limiting process W = d -lim, W' will be stationary in
the sense that W!(W) < W, and this is the consequence of the limiting properties. Note
that the existence of the limiting behaviour of W also implies the existence of limiting
distributions of the process Q' = {Q!} ¢ € C where Q! is the length of the queue on the
vertex ¢ at the moment ¢.

Theorem. Let the arrival stream U° satisfy the restrictions of Section 2. Then
there exists 4 > 0 such that the network with the arrival stream U9 = [AT, S5, T
has limiting distributions. One can see that if the distribution of arriving intervals or
service times is exponential, the theorem can be formulated in the term of the load.
The assertion of the theorem means that the dilatation of the service time or the
contraction of the arrival time provides stability of the system. We can also notice that
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the theorem can be formulated for different service and arrival times for each vertex.
Then the conditions (2.2) and (2.3) are assumed to hold uniformly for ¢ €C. Similar
results can be obtained for other definitions of the term ‘route’ (but, of course, for our
type of protocol).

4. A special case (Poisson stream)

4.1. In this section we consider one special model, which satisfies the restrictions of
Section 2, but is essentially easier to investigate. The set of the vertices of the graph is
C = Z' (one-dimensional lattice). All neighbouring vertices are linked by an edge. Only
one type of route is considered from any vertex C — the route j(c), consisting of two
edges (¢, c + 1) and (c + 1, ¢ + 2). Thus G°(9(c)) = 1. The service times have exponen-
tial distribution with parameter u, the interarrival times are exponentially distributed
with parameter 8. The load p = 8/u.

Theorem. There exists py < 1 (we can show that p, > 1/10) such that Vp =< p, there
exists a limiting process of waiting times.

Proof. As we have noticed earlier it is enough to show that Vc,EZ!, V¢, for the
waiting time of the request (£, s;, 7(¢,)) we have MW*[y(c,)] < Q. We shall introduce a
new notion, which will be useful below. The space chain y(k, ¢, {)ET, (K, ¢) is called an
essential space chain iff

(i) for i =0,-- -, n — 1 the request (¢, s;, y(¢;)) will be served immediately after the
request (£, , S+, P(¢; 4 1)) will leave the network.

(i) The request (,, s,, 7(c,)) does not wait. In our special case K, =1, i=1,---,n
and (¢; — ¢;+1))€4 = { — 1,0, 1}. The indicator of the event such that essential space
chain passes through the vertices ¢y, o+ iy, Co+ iy + iy, o+ i+« +1i,
where €4, j=1,---,n, is designated I(i,---i,). For convenience we assume
ty,=1t. Then

W= 5 3 Wil - 1(y- - - 1,)

n=1 i1---is€A4

MW Gy - i) SM(si 4 -+ +5)I(s + -+ +5, > 1 — 1,)

=f0w fuw (s ()" xD(—ﬂS)> (Buy exp( — pu)du
n

n—1)° (n— 1)

TR fom eﬂ(l T +(ns"—“1)!)

n n—1 1 p n+k
i A
B G pF\1+p

2 2n
= const. n? [p <I+_> ] .
p.

The first inequality is the majorization of the probability of the essential space chain by

un—l

e “du

s =ulp (n - 1)'
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the probability of the existence of the space chain of corresponding type. Thus if
p(2/(1 4+ p))? <} (thatis p > 5+ 2./6),

MW= $ 3[p(£7)>] <@<w

uniformly for ¢, =t ER,.

5. Proof of the theorem

Consider a network of general type. Taking ¢ such that 2¢ - M < 1 choose T,E R, such
that

() 0=u(Ty2—Sp)>1.

(i) 8- % <gql2e.

Since ¢(¢) and ¢,(¢) are continuous at ¢t = 0 there exists 4 > 0 such that

P{A4-T; <Ty} = AT/A) < (q/2)?
and

P{AT < Ty} = ¢(Ty/4) <(a/2)>.

We shall show that for the network with stream U§ the limiting distributions exists. For
convenience let 4 = 1 and consider the original network (thus we assume ¢(7T;) < (¢/2)?
and ¢,(Ty) <(g/2)?). Our aim is to evaluate W[y(c)] of the fictitious request
(2o, So, ¥(co))- (We again consider ¢ = ¢,.) Let I, (K, ¢) be an indicator of the event such that
essential space chain is of the class I',(k, ¢). Then

Wil= X X X Wh)l-L(k,c).

n€N feN" cec”

Consider the variable x; = |t,_, — |, i =1, - -, n, where ¢, = ,(¢) is taken from the
essential space chain y(k, ¢, f). It is the sum of one random variable with distribution
#,(¢) and (k; — 1) random variables with distribution ¢(¢). Thus £, — ¢, is the sum of
(modulo k) independent variables.

Let J(k,¢,m), m=0,1,. - -, n be an indicator of the event that exactly m from all
these |k| variables are greater than T,. We denote / {sit+:--+s,>m-T,} the
indicator of the event {s, + - - - +5, > m - T,}. Then we have

1%
MW () - Lk, o)=M L Wy, (K, c)J(k, ¢, m).

m=0

Notice that W*[y(c)]- I,(k, ¢) > 0, if the essential space chain is y(K, ¢, ), formed by the
requests (4, s;, ¥(¢;)), i = 1,- - -, nforsome ¢,,- - -,c,ECand t,,- - -, t,,, 5, - -, 5, ER,..
It is easy to see that

Wiyl Lk, c) (s, + - - - +5,)-L,(k, ¢)-J(k, ¢, m)-I{s;+ -+« +5,> mT,}.

For the other side I,(k, ¢) < I(k, ¢), where I (k, ¢) is the indicator of the existence
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of an arbitrary space chain of corresponding type (not only essential). Thus we
obtain

Wy(ca)- L(k, ¢)-J(k, ¢, m)
St s )d{s+ - +5,>mT) Ik, ¢, m)-L(k, ¢).

The variables (s,+ --- +s5,){s,+ - +s,>mTy), I,(k,¢) and J(k,c,m) are
independent. Since M7, (K, ¢) < P{ 3y(¢)ET,(¢)} and MJ(K,¢, m) < (g/2)"Cp, we
obtain

MW'[y(co))-I(k, ¢)

13
=P{3dy@)ETl, (o)} - Zo Cr(q/2) F1=mMI (s, + - - - + 5, > mIo}-(s;+ -« +5,)

We divide the sum in the square brackets into two parts: the first sum with m changing
from m = 0 till m = [n/2] and the second part with m changing from m = [n/2] + 1 till
m = |k|. The first sum is smaller than n - Ms,-Z%2, 2/%1(q/2)¥! = const-n?-(q/2)'¥!.
Now let us evaluate the second part. Notice that there exists a representation s, =
si+s%,i=1,---,n, where s; < §; and s = 6,, 6, being distributed exponentially with
parameter u. We have

P{s,+---+s,,>T}§P{s{+---+s,’,>T—nS0}§P{0,+---+0,,>T—nS0}.
Ifm>n/2

()"

M@+ - +s){si+ - +5,>mT,} =n fw(nSO—l-T)-( 5
0 n— :

- e HdT

yle™
=const-n -

n! |y=2mTe2—50
2m)"
=const-n - ( ') e . (fe—0+1)m
n!

=const-n*.(q/2)".

Therefore the second part is smaller than const-n2.(q/2)'¥!. Thus we obtain that

MW'[y(co)]-I,(k, ¢) is smaller than const-n?.(g/2)'¥!. This provides the following
evaluation for MW [y(c))]:

k
MW [y(cp)] =const. Y 3 S n2.P{ 39()ET, ()} (g)l |

n=1 geN"|k|=I=n ¢eC"

© {
=const. » M[,.- ¥ C,’,+,<g>
n=1 =1 2

=const. Y, M"(29)" <Q < w.
n=1

This bound does not depend on ¢ = £, so we have proved the theorem.
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