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Loss Networks in Thermodynamic Limit

Dimitri Botvich', Guy Fayolle* and Vadim Malyshev?

' Telecommunications, School of Electronic Engineering, Dublin City University,

Glasnevin, Dublin 9, Ireland and
Laboratory of Large Random Systems, Faculty of Mechanics and Mathematics,
Moscow State University, 119899, Moscow, Russia
? INRIA-Domaine de Voluceau, Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France

1 Introduction

1.1 Abstract

The study deals with circuit switched loss networks (LN) in the thermodynamic limit.
The model is the so-called perturbed free loss network. It consists of the superposition
of a free LN and of a second LN, called the perturbation. In the free loss network a
fixed routing is used and cach route consists of only one link and different routes do not
intersect. On the other hand, the perturbation can have a fixed, alternative or adaptive
routing. Moreover, all (arrival) perturbation rates are proportional to some perturbation
parameter € > (. For sufficiently small € > 0, we prove that the limits

lim lim P lim  lim PA
AJRY 1= 00 r—o00 AR

of the time correlation functions exist and are equal. When the perturbations involve
only fixed routing, the limiting measure is the Gibbs one. In general the situation is more
complicated since LNs with alternative or adaptive routing are no longer reversible. To
cope with these more complicated situations, new cluster expansions for the limiting
mcasure are obtained. In particular, limiting semi-groups are shown to depend analyti-
cally on €. Our approach to these problems is based on a diagram estimation technique,
previously applied to handle the dynamics of some quantum systems.

1.2 General Presentation

The aim of this study is o analyze circuit switched loss networks (LN) with fixed, alter-
native and adaptive routing in the thermodynamic limit, i.e. when these systems become
infinitely large. Loss networks with fixed routing are suitable models of cellular radio
systers, while LN with adaptive routing give a fair representation of large telecommu-
nications systems. We note that both fixed and alternative routings are parlicular cases
of adaptive routings, defined in §6. On the other hand, LN provide a special class of
non space homogencous interacting particle systems (e.g., see [12]). In particular, LN
can be considered as spin systems, with a spin taking usually more than two values.
The interaction in these systems is a kind of hard core interaction in the terminology of
statistical mechanics.
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In finite volumes (or areas), LN with fixed routing arc reversible. This means, in
particular, that their stationary measure has a product form, which can be written explic-
itly. In fact, this measure is a Gibbs one and the study of the thermodynamic limit has
an equivalent formulation in terms of Gibbs ficlds. But, in gencral, LN operating with
alternative or adaptive routing are no longer reversible, so that their stationary measures
do not have any tractable analytic expression.

In the thermodynamic limit, the stationary measure of loss networks (as well as the
Gibbs measure) can be non-unique. This case corresponds to phase transition. An exam-
ple of translation invariant LN in dimension two is described in [ 13] (see also the review
[10] for further references). In some cases in dimension one, translation invariant LN
with fixed routing have no phase transition [6]; when they are not translation invariant, a
phase transition phenomenon can exist, and then there are exactly two extreme stationary

mcasures [6]. At this moment, it is worth remarking that the question of uniqueness of

the stationary measure for one-dimensional LN with adaptive routing is still open. This
problem does also arise in similar translation invariant models encountered in statistical
mechanics, where the Gibbs measure in dimension one is unique, but in dimension more

than one there exists a phase transition at sufficiently low temperature (in the context of

LN, the role of the temperature is played by the arrival rates). In [ 10], a one-dimensional
LN with fixed routing has been explicitly solved .

Our contribution here is to construct a new cluster expansion allowing us to analyze,
in the thermodynamic limit, the dynamics and the stationary measure of a large varicty
of LN with adaptive routing and sufficiently small arrival intensitics. This expansion
proves to be extremely useful to deal with this class of problems and relics on an original
approach, which consists in a diagram representation of measures. Similar methods have
been applied to the dynamics of some quantum dynamical systems {2, 3, 5, 7].

The paper is organized as follows: In the next four sections, LN with fixed routing are
considered; we prove several results and estimates (concerning in particular perturbed
Markov chains), which lead to the fundamental Theorem 3 of §4. Then in §6 we introduce
LN with alternative and adaptive routing and we explain why the proposed method works
also in this more complicated situation.

2 Loss Networks and Thermodynamic Approximation

Following [ 11}, inorder todescribe loss networks, we consider G = (V, L) anon-oriented
connected graph, where V is the set of vertices and L is the set of links. Inthe sequel, V and
L arc assumed to be countable. We suppose also that cach link g = (v, v') € L comprises
c(g) € Z, circuits, i.c. each link g has the capacity ¢(g). Let R be a set of routes, where
each route is just a finite subset of L. A call on route R uses nig(g) € Z, circuits [rom
link g. Calls requesting route R arrive according to a Poisson strcam with intensity
Jg > 0. These Poisson streams are assumed to be mutually independent. A call of route
R ={g1,..., gr)} is blocked and lost if, on some link g; € R,i =1, ..., |R|, therc are
less than ng(g;) free circuits on link g;. Otherwise the call is connected and occupies
simultaneously ng(g;) free circuits on g;, for a duration exponentially distributed, with
rate ug > 0. Holding and arrival processes are supposed to be independent, as well as
the successive holding periods. Hence a loss network A can be described lormally by
the array
N =G, R; x5 ¢, n).
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Remark. As well as for interacting particle systems (see [12}), the question of existence
and uniqueness of this stochastic process is not straightforward. This problem will be
considered in Section 4 and we assume for the moment that this process is well defined.

Thermodynamic approximation. It is natural to ask the question of how to approxi-
mate (in some sensc) this process by a simpler one, for example, by a finite Markov chain.
To this end, we introduce a formal scheme of thermodynamic limit or thermodynaniic
approximation of infinite loss networks.

Let be given a sequence of loss networks N i > 1, where G = (VO LWy and
(formally) _ ‘ _

NO = (GO RO QD0 (D iy

so that all sets V@, LD G RY are finite with

v -yt U v =y, L@ ¢ Lu+h U L =],

{ i

R« RU+D U RO =R,

i

and, forail j > i, _ _ _ .
)‘(/)IR"‘ = A /L“)m“‘ = /L('),

)

{ D (j)llen\ =n .

R — nt
Then A will be referred to as the thermodynamic limit of the sequence of loss networks
[N i > 1}. Whenever it is possible to associate each i with a volume A; and to
consider N as a localization of A in A; (written later NVy,), one comes up with the
standard notion of thermodynamic hmit.

Markovian description of loss networks. An admissible route configuration for aloss
network A is a function 5 : R = Z, such that

> nRm(g) < @), (1

ReR:geR

for all g € G, where n(R) > 0 denoles the number of calls requiring route R € R. By
definition, 7(R) = 0 mcans that there are no calls needing route R for the configuration
1. Correspondingly, an admissible route configuration in volume A in a loss nctwork
Ny is a function n® : cal Rp — 7., such that

Y M (Rmg(g) < c(g). Ve eGa. (2)

ReRp:gER

Denote by A (resp. Ay) the ser of all admissible route configurations (resp. in volume
AN). Let

m={n(R), ReR}, rekR,,
respectively

71,’\ = {I}IA(R), ReRp), teRy
be the Markov process describing A (resp. AVy). Thus, for any tinite volume A, nisa
continuous time homogencous Markov chain with finite state space Ax.
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Generators of finite loss networks. Let H, be the generator of the‘Markov chain .
Then the probability IP’,A(UA) of 17,“ of being in state 1, at time ¢ is given by

PMna) = P§ exp(t Ha)(na) .

for any initial distribution P{. -
Let B(A,) denote the finite dimensional space B(A, ) of real functions f : 4 — R.
The generator H, has the following local structure:

Hy= Y (V@ + V3", 3)
ReRA

where V,ie“, V@' are bounded linear operators : B(Ax) — B(A,), corrcsponding respec-
tively to arrivals and services of calls on route R. For cach admissible route configuration
n™ the operator Vi transforms the §-measure

‘Su"(') = 5( - 77/\)
into the measure

AR(Syaysp — Opn) T ™ + 8k € An, @
0 otherwise,

and all other §-measures into 0, where, by definition, we put

sy =" K=k
REY=10 Rar,
and
AR if R =R
A AN ,7 (R ) + I ! ) (5)
(" + 3 (R) = InA(R’) otherwise.
Analogously, VU transforms 8, (-) into the measure
NNRY 1k (s = 60)  iENM(R) > 0. ©
0 otherwise,
and all other §-measures into 0.
In other words, we have
A _ A e A .
vinf(nA) — )"R(f(" +8R) f('7 )) if n +8R € A/\ (7)
k 0 otherwise,
and
MR UR(f(™ = 8r) — f(1™)) iTn™(R) > 0, ®

u Ay
V' F(t) = [0 otherwisc.
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Time correlation functions. For any finite set A C R and any admissible route con-
figuration € A, the quantity 54 = (sg = n(R) 2 0, R € A) is called a (finite) route
subconfiguration in n. For a given sq, we introduce the fime correlation function (or
simply correlation function) given by

Pi(sa) = PY(s4) = PO} (R) = sp. R € A), 1 €Ry, ®)

for some initial distribution ]P(')v Accordingly, the time correlation function in volume A
is given by

Prsa) =P (sa) =PMR) =sp Re A). 1€eR,, (10)
for some initial distribution P2 and A C R,.

Remark. The Markov process n/* describing a loss network with fixed routing in volume
A is reversible and its stationary measure is given by, after selling pg = 2&

1R’
") = BAGM) = lim PAGY) = 27 [T O (1
®© =00 ! A rer, AR

for each n® € A,, where Z, is the normalizing constant (or partition function)

_ (pr)"®
S o (12

nheAy RER,

Therefore, when 1 — o0, the correlation function has a limit given by

n™MR)

. - (0r)
veo= oo =2ty I Gha |- @

nhedy. ReR,
nA (R)=sg.ReA

where 7% (s4) is the stationary probability of having a finitc route subconfiguration s 4
in a route configuration.

3 Loss Networks in R”

Here we introduce a class of loss networks which can be naturally localized in R.

Let v,d € Z, be fixed. Denote by 'y the set of non-oriented connected graphs
G =(V, L) with afinite or countable number of vertices such that each vertex v € V has
at most d adjacent links € L. For fixed parameters 0 < Dy < D, < 00, let "y (Dy, Dy)
be a subset of I’y such that, for each G = (V, L) € T} (D, Dy), there is a function
X 1V — R satisfying the following properties: (x, = X (v), v € V)

Loflxy —xell = Dy Lif v #£ 0
2.10f |lxy — xyll = Dy then (v, v) &L,
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where x, = X(v),Yv € Vand, Vx = (x;,...,x,) € R,

flx] = max |x;].
t

Thus T (D), D,) consists of graphs from I'y, for which there is a function X such that
the set of points {x,, v € V} has the hard core Dy > () and that there arc no links longer

than D,.

Example 1. The regular lattice Z" belongs to I';(Dy, D2), withd = 2v and Dy, D; are
constants subject to the inequalities 0 < Dy < I, Dy > 1.

Next we fix a graph G = (V, L) € I"}j(D, D) together with a function X satisfying
the above conditions. To define the thermodynamiic limit in a convenient way, we also
fix some vertex vg € V, remarking that the limiting LN will not depend on the choice

of vg.

Graphs and boundary conditions in finite volumes. For a finitc volume (an open
bounded set) A C R, wedenote by G = (V,, L) the maximal connected component
of the restriction of the graph G to the volume A containing x,,,. Next, we chosce the set of
routes R 5 of AV as follows: R s consists of routes R = {g), ..., gz} such thatg; € L,
foreachi = 1,...,{R]. In fact, this choice, for each A, of the set R corresponds to
the choice of a boundary condition for a LN in a finite volume. Other (more general)
boundary conditions will not be considered in this study, although the same methods

could also be applied.

Thermodynamic limit of loss networks. A loss nctwork A, in volume A can be
described by
Na ={Gp, Ra; A% s chont),

where A%, u™ and ¢ and n” are given by the corresponding restrictions of X, j, ¢, n.
Given a sequence of volumes A} C A, C --- C A; C...,suchthatx, € A;, Vi > |

and
o0

i=

we say that AV is the thermodynamic limit of the sequence (N, i > 1}.
In the sequel, we shall impose some technical conditions on these loss networks.
Condition 1. The function ¢ : L — Z, is uniformly bounded:

llclloo = sup c(g) < 0. (14)
gel

Condition 2. The arrival intensities are uniformly bounded:

supAp < 00.
ReR

e e e e e e o e o e et P, s .

S

PR
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Condition 3. The routes are uniformly bounded: there exists a constant D > 0, such
that [R| < D, forall R € R.

Condition 3*. The arrival intensitics have an exponential decay with parameter r > 0:

o

Il = sup [ D e > ar| < oo (15)

geL \ x=y RigeR
iR{=k

Condition 4. The output intensities are uniformly positive and bounded:

sup [Lg < 00,

, = inf :
oap typ = Infgip > 0 (16)

Clearly, Condition 3* follows from Conditions 2-3.

Routes. Formally, no further conditions need to be imposed on the routes R, except
Conditions 3 and 3*. But in realistic models it is natural to consider the following
classes of routes: connected routes and connected self-avoiding routes. Connected route
R has the form {g1, ..., gg}, g € L, i = 1,...,|R}|, where the graph with links g; =
(v, vigr), i = 1, ..., |R}and with vertices U}i‘,“ v; is connected. We denote by R the
set of connected routes in the LN and by R¢, g € L, the set of routes containing the link
g. Connected self-avoiding route R have the form {g,, ..., iR} & = (vi,viy) € L,
i =1,...,|R|, where the vertices v|, ..., vg|, Y+ are distinct, Analogously, R*
will denote the set of connected self-avoiding routes. Clearly, R C R, Routings from
R* are used in models of cellular radio networks, while routes from R rather apply to
telephone networks.

4 Main Results

First we will consider the question of existence and uniquencss of the dynamics of a loss
network in an infinite volume. Some general results about cxistence and uniqueness of
the dynamics of interacting particle systems [ 12} will be used.

Let N = {G, R: A, u; c,n). The state space of the Markov process 1, is the set A of all
admissible route configurations. Condition 1 is supposed to hold. Let N = |j¢|lo < 00
and let § = {0, 1,..., N} be a topological space endowed with the discrete topology.
Then S™ is a compact metric space with the product topology. Since A is closed in §%,
A C S® is also a compact metric space with the induced topology. Denote by C(.A) the
set of continuous functions on .4, regarded as a Banach space with the norm

A1 =sup L f(mI.
neA
For f € C(A)and R € R, let
Ap(Ry= " sup  |fo)— f0n)].

noy €A
HROH=URDYR # R
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This should be thought of as a measure of the extent the function f depends on the
number of calls on route R. Define the set of functions

DA ={feC(A): Y ApR) < oo
ReR
which will play the role of a core for the generator of the Markov process 7, 1 € Ry.
Clearly, D(A) is dense in C(A).
Forn € A, R € R, m € N, denote by

AR it p(Ry =m — land n"* e A,
cr(nym) = (n+ Dpr ifp(R)y=m+1,
0 otherwise,

where R (R) = m and ™ R(R') = n(R"), for all R" # R.

Theorem 1. Let G € I')(Dy, D2), 0 < Dy < Dy < 00. Assume condition I is satisfied
for the loss network N and that

sup max(Ag, jiLg) < 0O. 7
ReR
Then, for f € D(A), the series
Hfm =Y crlnm (fG"F) — f@) (18)
ReR neN

converges uniformly and defines a function in C(A). Moreover, H is a Markov pregen-
erator and its closure H is a Markov generator of a Markov semigroup in C(A) with
the core D(A).

The proof of Theorem 1 is identical to the proof of Proposition 3.2 in Chapter 1 of [12].

Corollary 2. Under the conditions of Theorem I, the dynamics of N (i.e. the Markov
process n,, t € Ry ) is well defined and unique.

Let
dgr =sup n{(R) YReR.
neA

We say that two distinct routes R, R” € R arc independent if there is aroute configuration
n € Asuchthat n(R’) = dg and n(R) > 0.For R € R, we denote by /¢ the number of
routes R’ # R € R which are not independent of R.
Let also

M=sup Y cr(R). (19)

R R#R
where
sup  suplcg(mi,n) —cr(na. )| i R#R,

ny.mped: neN
2 (Ry=1y (R).R#R'

cr(R) =

0 otherwisc.

v e e e
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Clearly, cg(R') can take only the values Ag or 0. More precisely, cp(R’) = 0 if R is
independent of R’ or if supp(R) N supp(R’) = &; in all other cases, cr(R') is equal to
A, otherwise. Thus

M = sup IR)\R .
ReR
Let
g = inf inf

RER u).meAn(Ry#m(R),
MR)Y=ny(R').R'#R

{er(m, 72(R)) + cr(m2, m (R}

It IS casy Lo sce lhil[
€ > lnt A +u .
- ( R L R)

Theorem 3. Assume all conditions of Theorem lare satisfied (including inequality (17))

SJor N If '

sup Igphg < €, (20)
ReR

then the process n, is ergodic.

The proof of Theorem 3 mimics the proof of Theorem 4.1 in Chapter 1 of [12], since
(20) is cquivalent to the condition M < e.

Corollary 4. Under the conditions of Theorem 3, the loss network N is ergodic.
Corollary 5. If the conditions of Theorem 3 hold and (17) is replaced by the inequality

sup Ip < inf(Ag + figr), 210
ReR ReR

then the process n, is ergodic.

Remark. From corollary 5, it follows that, if conditions 1-4 are satisfied then, for A,
R e R sufficiently small, M is ergodic.
4.1 Perturbing a Free Loss Network
A loss network
N =GR, M, ul: o nl) (22)

is said to be free if each route consists of only one link, i.e. R € R/ if R = {g}, for some
& € L. Moreover, in the sequel, we shall always suppose that different links correspond
to different routes.

For two loss networks AVj, A3 having the same graphs capacities, suchthat R, N R, = @,
the sum N = N + N; can be defined in a obvious way. Let

N(e) ={G. R; €k, €oupt; c,n}, (23)

where € = (€in, €0n) € R2.
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Definition 6. Let N/ and A'7 denote respectively a free loss network and a loss network
which has no one-link route. The loss network

NP = N7+ NP(e), (24)

will be referred to as a perturbed free loss network with the perturbation N'7(¢), where
¢ is the perturbation parameter, € = (€&, €out) € Ri. The operator

H{=Y 1® - ®hp® - ®]l (25)

1
ReRy

is the generator of /\f,{ in volume A, where hg (R = {g}) denotes the generator of a
finite Markov chain with state space

|0, nr(g), ..., [HCR((gg))] nR(g)] .

Also let us denote by Hp = H,’\'f6 the generator of a perturbed free loss network in
volume A. Then

Hpe = Hl + eV + €V, (26)
where the generator €, VY (resp. €, V,i\") describes the service mechanism (resp. the
arrival process) of calls in A7 (¢). Let

Hao & HI + equ V2" 27)

be the generator of the Markov process where the arrivals in NP (€) are cut off. Hence
Hpe = Hno+e€nVy (28)

For a finite route subconfiguration s,, |A] < 00, we denote by IP’,A“ (sa) (resp. H”,A‘O(s,\))
the correlation functions of the Markov process with generator Ha  (resp. fa o) and by
wl(sa) = Fogt(sa) = lim P (s4) (29)

the corresponding stationary probabilities.
In order to formulate our main result, we will introduce now the notion of A-

connected diagrams. Let R; = (g(li), ....g,(")). | < i <k, g_/(.') € Lal <= j <
be a given route and denote by
5 ()
Ri = Ugj
j

the support of this route.

Definition7 (A-connected diagrams) . A diagram D is a  sequence
((Ri, 1), ... (R, 1), where R, € R, ti e R, for 1 <i <k.Let A be a set of routes.
The diagram D is said to be A-connected if

RiNo_1(A)#£@, Yi=1,..k,

where . - ~ de
U,-_l(A)ZUO(A)URIU"'URi—vl‘ (IQ(A):A

liig

‘U R
ReA

e g

e ity oy W S - ary ="
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Nowtion. Hcreaﬁer multiple integrals and summations will frequently occur. To render
formulas of a reasonable size, we shall write typically

dSk =dS| dSz...dSk,

o0 o
/ F dt, =/ / Fdr ... dy,
[0.00)" 0 0
f Rt} Sn
/ F(t.s155...5,)ds, =/ / / F(t,s1...8,)dsyds, ... ds,
AL 0 Jo 0

where, for example, 0 <5, < - .-

and

and

=85 =t

Theqrgm 8. Let G e (D), D), 0< Dy < Dy <00 and €our > 0 be fixed. Suppose
conditions 1, 2, 3 (or 3* with a parameter r > 0 sufficiently large) and 4 are satisfied
Jor the networks N and N'P. Then there are constants €0 > 0, C > 0, such that, for
all € = €, € |0, €], the Markov process s, which describes NI s ergodic and, for
each finite route subconfiguration s5 = {sg,, ..., Seh RieR 1 <i <k < oo, the
Sollowing limits exist and are equal: - ’

. . A.G . .
M SR 0) = fi P =G 0
Moreover,

oo
Telsa) =Y €"Cylsa), 31)

k=0
Calsa) =y / mo Vi expty o) ... Vi exp(ty Ho)(s) dt, (32)

g =Rk [0.00)"

'
leizn

where the summations and integrals are taken over all A-connected diagrams
D = ((Rlv 0, ..., (R,. ) .

Moreover the constants C,,(s ) are independent of € and there exists a constant C (s4) >
0, independent of n, such that

[Ca(s)l = C"C(sa). (33)

Thus the series (31) is convergent for |e| < i and m.(sa) depends analytically on .

The proof is given in the next section.

Remark. The existence of the first limit in (30) follows from Theorem 3.
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Remark. When the loss network has a fixed routing, thec Markov process ni ¢ isreversible

and

lim PA <
=00

is the Gibbs measure in A. Therefore, studying the second limit in (30) is cquivalent
1o characterizing the corresponding Gibbs measure in the thermodynamic limit, so that
one can use powerful tools of statistical mechanics. In particular, for the measure 7,
one can construct various cluster expansions (e.g. see [ 16]). On the other hand, the study
of the first limit in (30) is usually more difficult. In fact, we will construct a new cluster
expansion, allowing us to control both limits simultancously and the method works also
in non-reversible situations (e.g. for LNs with alternative or adaptive routing), as will
show the generalization of Theorem 8 in §6.

5 Proof of Theorem 8

We prove this theorem under condition 3, i.¢. when the routes and the input intensities are
uniformly bounded. The case where the input intensitics have an exponential decrcase
(see condition 3*) needs some slight modifications of the proof which will be omitted.
One shall proceed along the following lines. First, using perturbation series (see
(60), Appendix B ) for each finite volume A and route subconfiguration s, C Ra, we
represent P (s4) as a sum of A-connected diagrams in A. Next, an exponential bound
will be proved for each diagram, which in turn will yield a cluster bound for the sum of
all A-connected diagrams. Here a crucial role will be played by the so-called universal
cluster bound (see Appendix A). Similar cluster bounds have been used to handle the
dynamics of some infinite quantum systems (sce ¢.g. [4}). In particular, this will show
that the limits
lim limPM(s4),  lim lim P (s4)
AR 100 100 A SR
exist and are equal, for any sufficiently small € > 0.
It will be convenient to write, up to aslight distortion in the notation, Va4 = Vin Vi =
V,"e" for all A, R. Now, let a finite route subconfiguration s, and the initial measure P()A
be fixed. Then (see (60), Appendix B)

P (sa) = ) €* f K(t, ki si) dsy (34)
k=0 A

where we have set

K(t, k; si) = PP exp (siHao)Va exp ((se-1 — sc)Ha o). Vaexp ((t = 5s1)Ha0)(54) .

Hereafter, a diagram D will often mean a time-dependent k-uple, still denoted by
D=({Ry,s51),....(Re,s)), RieR, with 0<s =---

and its cardinality | D| is equal to k. The k-th term of series in (34) is equal to

<5 =<,

./ P{ exp (s Ha o) Va exp (k-1 = si)Hao) ... Vaexp ((t = s1)Ha ) (s4) dsi
Al

= Z Z / 1(D, 1)(s4) dsy

Rie€RA RieRA [

Z Z T(D, )(sa), (35)

Ri€RA RyeRa
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where, setting D= (R, ..., Ry), with IB[ =k,

(D, 1)(sp) &

POA cxp (Sk I{A,()) VR‘ exp ((Sk_| - Sk)HA'()) Cen VR| exp ((t — S|)H/\‘0) (54),

is called the contribution of the diagram D and

(36)

(D, t)(s4) "éf/ I(D, t)(s4) dsy .
A’

k

For the sake of brevity, we shall often write

> ID,1) = > > I(D,1). (37)

|Dl=k Ri€Ry  RieR,
where the 3~ ), is taken overall D = (R R ot ! '
. d = N )y S [I at i ” X
Ueire (34 Oncchas | k)osuchthat R; € La,forl < <k.
A (e8]

PMe(sa) =P | 1+ 2 Y I(D, 1) | (sa). (38)

k=1 Dea:

|D|=k

Ae
To ﬁryd. P/ (s4) one !ms to sum over all admissible route configurations n* ¢ A
containing the subconfiguration s4. In other words,

IP)]A'((SA) = Z

nheAn:
nA(Ry=sg, YReA

A

PMe (). (39)

Iéemma 9. Let a finite set A C Ry and a finite route subconfiguration s, be fixed. If
=((Ri,51), ..., (Re,s1)), Ri € R, is not an A-connected diagram, then

Y PN =0, (40)

nhedp:
tN(R)=sg. ReA

JorallO <sy < -.. <5 <tand Jor each initial distribution IP’(’)\.

Proof. From the definition of 1(D, t)(n") given i i
, 1) (17") given in (36), two types of :
Vi and exp (s H, o). Fist, we have ) Ypes oF operators arise:

Snexp(sHpo) = Z Ti(n, 1)y

n'eAx

where T (n, ') is the s-time-transition probability to go from state ntostate . Secondly
for eacf} -measure 8,, 5 € A, the operator Vg produces a positive measure A g, 1.5 an(i
a negative measure Agd, on A, (see Eq. (4) and (6)). These measures are concent:'ated

on route configurations n and n + 8 respectivel i i
, y, which differ onl
(n + 88)(R) = n(R) + 1. Formally, Y onroute R, and

8,V = Ar(8yats, — 8yr) if’lA +8r € An,
0 otherwise.

(41)
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Both measures are conserved by the dynamics of exp (s HA.O), from the very definition
of H/\_().
For R € Ry, let

R = {R' € RE : supp(R') Nsupp(R) # @, (L \ supp(R)) Nsupp(R') # &} .
We first prove the following

Lemma10. Let A C RY and some route R € R be fixed. Then, for each admissible
configuration n = 1y +np € An, 0y € A,f\, ny € AR,

o) = 1x 335 [ Pl Tat, 000,505
k=0 o} Yo (42)

with
(VR'+(’7,),R§ n;).Rv Slzk) - VR'_(U/J,R; ’);I.Rw ‘|ZL)) ® l’R(”I’J"; ”;’J‘” SHei)
forall s > 0, where:

] = e 1 y [te y o uration
(i) Np.r = MRLs Zn}, Zn}, is taken over all sequences of finite subconfigurations

1 k_ o TP . P N N S A,
7;2 = Np.Ro My -5 My = Ny R of routes in Riyg, such that nt' =1, BR(,),’)whete
R(i) isa route in RgR. The subconfiguration np g is a localization of n, in Ryg and
T 0 | . ok —
Ly = (1), roi ps ris -3 Mpa 1) s 1o = 0.
(ii) The conditional probability measures
. — R o —
R (0 ks My o SILk) s and v (p.ri 0y g STL)

(for the process evolving with the generator Hp o) are defined on route configurations
in Reupp(r), under the condition that n, r(r), 0 < r <, satisfies

npR(r) = r;;, on the time interval [ri, riz1), Yi <k —1,

the jumps taking place at the instants r;, 0 < i < k — | and the initial measures
being respectively 8,45, and . _

(iii) A similar definition holds for the measure vR(p.r: Nk S1Le)s which is defined for
the route configurations in Ry ,\supp(r) tnder the same conditions.

(iv) P(np.r, L U;;,R) is the probability density function of the occurrence

n,,‘R(r)zn;,, VO<r<sand 0<i<k-—1,
according to the definition given above in (ii).
The proof follows directly from (41) and from the definition of Hj .

Remark. The following properties take place:

. ! T R,— s T
(i) The measures v+ (1, r: 1, g SILK) and V=185 1, g s|Ly) on one hand,
UR(U,}.R'» n;)',‘,, s|Ly) on the other hand, have non-intersccting supports. Morcover,
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5y pRA — 7 R~ . T

(i) v (n, R AT le'k) and vET (1,85 Ny R s|Ly) have equal masses. The number
of summands in 42 is uniformly bounded by a constant C < oo since, conditions |
and 3, the number of different sequences of route subconfigurations 72, ..., n* in
RY e is uniformly bounded. ’ !

Continuing with the proof of Lemma 9, we note that, if the diagram D is not A-connected,

then there exi.sls R; such that R; Na;_(A) = @, so that, by (41) and Lemma 10, it is
easy o establish by induction that the sum

2

nhedy:
aA(Ry=sg.ReA
gives the variation of the measures
R+ . . Ty, R~ ' 7
VI g R My g,y Siet = SilLe) and vEeT (g, g Ny g, Si—t — SilLg),

respcgtlvely posttive and negative, which both are defined on Rsuppr, and have the same
variation. As the stochastic process with generator Hy o conserves the mass of these
measures, we obtain Lemma 9. o

5.1 Edges and Exponential Contribution of A-Connected Diagrams

We deﬁne the edges of an A-connected diagram D = ((Ri,51), ..., (R, 5)) in the
following way. For each R;, 1 <i <k, let j < i be the smallest integer such that

y(R) N0j(A) # 2.

Then we connect the levels s; and s; with a vertical line. By definition, A corresponds
to the level s = 0. If there is no such j > I, then y(R;) N A # & and we connect the
level s; 1o the level 5o, i.e. to A. Next we fix constants y > 0, K > 0, and define the
exponential contribution of the edge y; = (s;, s;) by

x.y (Ui} = Kexp{—y(s; — 5;)}. (43)

Then the exponential contribution k , (D) of the diagram D is defined by

k
ox.y (D) =[x, o). (44)
i=1

Lemmall. Let a volume A C RY be fixed. Then there exist constants K > 0, y >0
such that

R, . T - ! T ’ !
[V iy, e SIE) = vy ) g SITO |, < Kl exp(=y's),  (45)

forall R e R, s = 0, rg = 0 <r 15 <+ <y < 5 and for each sequence of
. . . . k ' .
adn:tsstb[e configurations n, = nNp.g, My, ..., N, = 1, g of routes in Ry such that
PN ] ) s . 4 .
n, =, + Sy, for some route R(i) from R{,R, i=1,...,k where || - ||, denotes

the variation norm.
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Proof. Let the route R be fixed. On the interval [r;, it ), the measures
VR, 0 1) R s|Ly) and v&=(np.p; T)'p,R,SUJk) evolve accor@ng to the same finite
irreducible Markov chain. The number of different Markov chains and the nu‘mber of
states for each of them are uniformly bounded for all R (see conditions 1,3). Thus, the
bound (45) follows from standard results on the exponential convergence (o steady state
for an irreducible Markov chain, during each time interval [r;, riy1). The paramelers_can
be uniformly chosen, since the number of different sequences of route configurations
..o nk is uniformly bounded and conditions 2,4 are satisfied. o

Lemma 12. There exist positive constants K' and y’ such that, for‘ each A-connected
diagram D = ((Ry,51), ..., (R, 5¢)), Ri € R, 1(D, 1) can be estimated by

k
11D, 0 = CA) [ Tex .y (¥, (46)

i=1
forall A C RY and t > 0, where the constant C(A) > O is independent of A, k, and t.
Proof. This lemma can easily be proved along the same lines as Lemma 9, by using

formula (42) and the probabilistic interpretation of the measures vR+(), v¥-~() and
a
vR().

The following lemma plays a crucial role.

Lemmal3. Foranyy >0, K >0,

> [ enrds st )
D is A-connected A’k

1=

forallk > 1, where C = 4—YK-.

Proof. Ttis an immediate consequence of Lemma 17 in Appendix A | after choosing the
.. D
function g(¢) = K exp (—=yt])-

. /
Lemma 14. Let o, 1l be the stationary measures of the loss networks NI, N3,
respectively. Then there exist positive constants K', y', such that, for each A-connected

diagram N
D=((Ri.s1), .. (Re,s1)), Ri € Ra

k
770 VR, exp(ty Ho) - . . Vi, exp(ti Ho)(sa)| < C(A) _ﬂ ok, (W), (48)

i=1

forall t > 0, where the constant C,(A) > O is independent of k, t and D.
2.

k
|7 Ve, exp(ta HY) . .. Vi, exp(ty H')(sa)| < Ca(A) U oxy (Vi) (49)

forall A C RY and t > 0, where the constant C3(A) > 0 is independent of A, k, t
and D.
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Z/ To Ve exp(tiHo) . .. Vg, exp(leO)(sA)dtk_/ 1(D, 1)(s4) ds;
D s Aco ¥ [0.00)k Al

1Di=k
< G(A)K exp(~y't), (50)

forall A C R" and t > 0, where A, in the sum stands Jor A-connected and the
constant C3(A) > 0 is independent of A, k, t and D.

Proof. 'The bounds (48), (49) are particular cases of Lemma 12 and the bound (50) can
be casily proved by using Lemma 13. See also the proof of (65) in Appendix B. ]

The proof of theorem 8 now follows directly from Lemma 14.

6 Loss Networks with Adaptive Routing

Here we introduce loss networks operating with adaptive (in particular alternative) rout-
ing. It scems useful to give a general formal definition of these LN, since (see e.g. [9]
and references therein) there are of practical importance. In this section, we slightly
modify the notation.

Let R be a set of routes, where a route is a nonordered pair of vertices {v, v’}.
This means we do not distinguish the routes from v to v’ and from v’ to v. Each route
R = {v, v’} has a finite set of subroutes Sg, where any subroute r € Sg is a connected
subgraph G% = (V¢, L) C G,suchthatv, v’ € V}, where V}, L', are respectively sets
of vertices and links. The support of a route R is defined as by

supp(R) = U supp(r).

reSg

Upon arrival at time ¢, a call of route R chooses a subroute from r € Sz and will use
n’(g) € Z, circuits on link g. Calls requesting route R = {v, v’} form a Poisson stream
of intensity Az > 0 and all these Poisson streams are independent.

The scts A (resp. A ) still denote all admissible route configurations (resp. in volume
A). Now, an admissible route configuration for A with adapting routing is a function

1:RxR— Z4, such that Z n(R, ,~)”;a(g) < e(g), 51

RreR:
gesupp(R).resSp

forall g € G, where n(R, r) > 0 denoles the number of calls requesting route R € R
and choosing subroute r € Sg.
Similarly an admissible route configuration in volume A is a function

Na i RaA X Rp — Zy , suchthat Z AR, In(g) <c(g)  (52)

RreRy:
gESupp(RYresSp

forallg € GA,wherena(R, r) > Odenotes the number of calls requestingroute R € R
and choosing subroute r € Sg. By definition, R € R means that supp(R) C G,.
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A subroute is chosen according to the following procedure called adaptive routing.
On the set R x A, one defines two functions K.(-), £ (). For each route R and each
configuration n, Kg(n) is a finite sequence of subroutes from Sk and Er(n) is the
length of this sequence. The function Xg(n) will describe the set of possible alternative
subroutes (the number of which is £g(n)) to connect an arriving call of route R at time
t, when the current route configuration is 7.

The mechanism is as follows: At time ¢, for a configuration n, an arriving call of
route R = {v, v’} tries to use subroutes from Xz (7n), by turns, in the order specified by
Kr(17). A call of route R = {v, v’} can not use a subroute r if, on some link g € L7,
there are less than n(g) circuits free from this link. Otherwise, the call is connected
and simultaneously holds n'(g) free circuits on link g € G%, and the holding time is
exponentially distributed with rate u% > 0 (function of R and r). A call is blocked and
lost if all subroutes from K g (17) are unworkable. As in the preceding sections, all random
variables describing the arrival and service processes are supposed to be independent.

Remark. If |Sg| = 1 and Eg = 1, foreach R € R, then we get a LN with fixed routing.
If the functions Ep(n) and Kg(n) do not depend on 7, then we have the alternative
routing. Thus fixed and alternative routings can be considered as particular cases of
adaptive routing.

In the case of adaptive routing, the following conditions 3a, 3a*, 4a will replace condi-
tions 3, 3%, 4 earlier introduced in §3.

Condition 3a. The routes are uniformly bounded: there exists a constant I < oo such
that |supp(R)| < D forall R € R.

Condition 3a*. The input intensities have an exponential decay, with paramelerd > 0:

o0
Al = sup(>_e™ Y " ar) < oo. (53)
gel ¥y RigeR
|RI=k

Condition 4a. The output intensities are uniformly bounded:

sup g < 00, up = inf inf up > 0.
ReR ReR resSg

Definition 15. The function X.(-) is said to be local (with parameter D > 0), if it
depends only on links belonging to a D-neighbourhood L y(z) of supp(R), where

Ly € (g e L : dist(g, supp(R)) < D}.

Condition 5. The function K.(-) of a loss network with adaptive routing is local with

some finite parameter D.
Let us consider a perturbed free loss network Ny = N/ + N7 (€), € = (€in, €our)s

NP(e) = (G, R; €ink, €quit; K.(-), E(): ¢, n},
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where N/ is a frec loss network with fixed routing and the perturbation A7 is a loss
network with adaptive routing. Before stating a variant of theorem 8, we have to define,
as in §4.1, the operators Vg, R € A and H,.

Let A and y € Ay be fixed. The operator Vg & Vi, supp(R) C Ry, corresponds
to call arrivals of route R. Supposc that Kr(y) = (ry,...,r,), where m = Er(n),
ri € Sgfori =1,...,m. Let Ng(n) be the serial number of the subroute chosen to
connect a call of route R. (In case of blocking, we put Ng(1) = 0). Then for each
admissible route configuration

N:RAXRy—> Zy,
Vg transforms the §-measure

() =8((,)—m
into the measure

AR(Sy4se, — 8y) ilr =rifori = Ng(n),
0 otherwise,

and all other §-measures into 0, where, by definition, we have put

ro R,, -’ | =R =r
0+ Sp )Ry = {1 )T TR = Riand r =17,
n(R',r’) otherwise.

The generator Hy could be defined in a similar manner.

Theorem 16. Let G € T'j(Di, D;), 0 < D) < D; < 00 and €4y is fixed. Suppose
conditions 1, 2, 3a (or 3a* with a parameter d > O sufficiently large), 4a and 5 are
satisfied for the networks N7 and N'P. Then there are constants €5 > 0, C > 0, such
that, for all e = €, € [0, €], the Markov process 5 which describes/\/}"j isergodic and,
for each finite route subconfiguration 54 = {sg,,...,sg,}, Ri € R, | <i <k < o0,
the limits in (30) exist and are equal. Moreover, (31)and (32) hold, with the bound (33},
for some constant C(sp) > 0 independent of n.

Proof. Tt mimics the proof of Theorem 8, since the the main arguments relied on the fact
that the operator Vg was depending only on the support of the route R. But our definition
of supp(R), as well as conditions 3a, 3a*, 4aand 5, ensure that the corresponding lemmas
in the proof of Theorem 8 arc still also valid in this case. O

Appendix A: a Universal Cluster Bound

Consider the class C, of non-oriented graphs, such that each member G of the class be
an —ree, ie. it is connected, has n edges and n + 1 vertices, denoted by v € V =
{0, 1, ..., n}. Moreover, for all t > 0, we associate to any vertex v € V, a real number
t, > 0 (called a v-time), where

fh=0<n<...<t, <t.
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Setting then T = (fo, 1, . - ., I,,), the pair (G, ) will be called a t-diag.ram. Wc_ always
assume that the coordinate fy of vertex 0 is equal to 0. Unlcssplhcrwnsg mentioned, a
n-uple explicitly written 7 will be subject to the above constraints and his components

will be also called coordinates. .
Let us fix some function g : R — R. For a graph G = (V. L) € C,, the quantity

n g(lv - tw')

lel..
I=(ra'y

is called the contribution of the diagram (G. 7).

Lemmal7. Let g : R — R be an even function, Riemann-integrable on any compact
set K C R. Then

Zf dny...dy, [] gt —n) <8 (Igl)" (54)
A;

leG.
GeC I=(v2'y

where llgll, & [21g(s)] ds.

Proof. Ttsuffices to prove (54) for non-negative functions. Clearly, (54) is equivalent to

Z / dty ...dt, 1—1 gty —1y) < 4"(/ g(rydri". (55)
Al —t

1€G.
Gela I=ton's

In fact, we will prove the following inequality:

Y S [l sw—nysas 3 - D0 [leen. 6)

i ryeZs. meds. =1
i<, GeGn o7 Irtce rp #0 Jral<t, rn#0
O<ty<-<tn <t f=(wv')

. def -
forall § > 0, n > 1, where Z;s the one-dimensional §-lattice, Zs = § - Z. Since both

sides of (56) are approximations by Riemann sums of both sides of (55), it suffices to
let § — 0+ to obtain (55).

Notation. [t will be convenient to introduce two types of vectors:
(1)
F=(r,...,r), withr,€Zs, O<lr,/ <t, 1 =i <n, (57)
noting that 7 is not necessarily positive;
(i)

i [ H i =n.(58
G=1{(q0,.--,qn), Wwithg; =0, g €Zy Y1 <1 <n and gq, n.(58)

When the components of a vector belong to Zs, it will be said to satisfy the §-
condition.
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Sketch of proof. For each veclor 7, an algorithm will be given, allowing us to produce at
most 4" different diagrams (G, 7), G e C.and f; € Zs, fori > 1,each diagram having a
contribution equal to [T/, g(r;). More exactly, it will be shown that each diagram (G, 1)
can be constructed from a vector 7 (see the above definition) and, hence, 55 will follow.

Let us fix ¢ > 0, 7 and 7 satistying respectively (57) and (58). The algorithm
A(1,T, G) presented hereafter constructs recursively at most one diagram (G, 7), which
will be denoted by I(¢,7,g) with n + 1 vertices and n edges, such that 7 satisfies the
d-condition and the contribution of (¢, 7, 7) is equal to [T, g(ri). Moreover, it will
appear that

U U Go=Uierp. (59)

GeC, L eZg. ryg
n=0<t) < <tn <t
Since the number of distinct vectors 7, with qgo > 0 does not exceed 4", inequality (56)
follows immediately from (59).
The algorithm consists of at most 2(n + 1) steps cnumerated by the sequence

(Ovl)w--,(ovfl()+1),...,('1,l),...,(n,qn—|—l).

If go = 0, then the algorithm stops at step (0, 1) without constructing any diagram.
Otherwise, it starts with a vertex called vertex 0 and fo = 0. Atstep (0, 1), the vertex 0
is referred to as being current. Then, choosing the number r;, one constructs, from the
current vertex U, an edge leading to a new vertex ry. At this moment, one will say that
the number ry was used at step (0, 1). At the final stage of the algorithm, the new vertex
will be labelled as vertex i, for some i, with I = ri, and we proceed by induction.

Letry, ..., r, be the numbers already used and assume we are at step (i, j). Then
the algorithm works as follows:

(1) Atstep (i, j), take the numberr, 4 and, if ¢; > j,constructan cdgelengthr, | from
the current vertex v; otherwise, change the current vertex from which to construct
an edge of length r,, (sce stages 2 and 3 of the algorithm).

At step (i, 1), choose one of the vertices produced beforchand, say v, call v the

current vertex forsteps (i, 1), ..., (i, g; + 1) and draw edges from v at each of these

steps. The vertex v is said to have been used at step (i, 1).

The choice of v is rendered unique according to the following rule: Among all

previously constructed vertices, not used at previous steps, v is the vertex having

the smallest coordinate. If such vertex does not exist, then our algorithm stops and
does not produce any diagram.

(4) If a vertex is constructed with a coordinate either negative, or strictly greater than ¢,
or if it coincides with a previously constructed vertex, then the algorithm stops and
does not produce any diagram.

(5) The algorithm normally stops at step (n, g, + 1).

2

~—

3

~

When the algorithm stops normally, it produces a graph. Enumerating its vertices
by increasing order of their coordinates, it is easy Lo sce that we have in fact constructed
adiagram (G,7), G € C,, such that 7 satisfics the §-condition and the contribution is
equal to [ 1., g(ri).

So it has just been shown that the algorithm constructs at most 4” different diagrams
(G, 7)., each giving a contribution [T etr).
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It remains to prove that each diagram (G, f) can be constructed by the algorithm
for some (7, 7), and (59) will be established. To that end, we slightly modify the above

construction.
First, set g; = 0, YO < i < n, and call the vertex 0 with coordinate fy current. Then

consider all the links coming out from this vertex and let go be their number. Next, order
these links and let r; be the (signed) length of the ith one. These links arc said to be are
used and the corresponding vertices to be are constructed, except vertex 0, which is also
said to be used. Then, among all the already constructed (but not used) vertices, choose
the one having the smallest coordinate, call it current, consider al! the links coming out
from the current vertex and let g; be the number of these links. Next order these links
and let r;, be the length of the ith link [ = (v, V), counted positively if 7, < #, and
negatively otherwise. Say again that these links are used and the corresponding vertices
are constructed, except the current vertex which is used, and proceed by induction. The
process stops when all the links of diagram (G, 1) are used.

It is easy to see that if one takes the vectors 7, g obtained by the above procedure,
then the algorithm will construct exactly the diagram I(¢,7,q).

Lemma 17 is proved. ]

Appendix B: Perturbation Theory for Stationary Probabilities of a
Markov Chain

Here we derive a useful formula for stationary probabilities of a perturbed Markov chain.

Let Lo, Le, € € Rbe continuous-time-homogeneous Markov chains, with the same
countable state space A, defined by their respective generators Hy and He = Hy +
€V, € € R. We assume that the operators Hg, V are bounded in 1;(A). Then the
probability P (), for the Markov chain L., to be in « at time ¢ can be expressed by the
following formula:

Pi(a) =

oo
Gk/ Py exp(si Ho) V exp((sx—1 — sx)Ho) ... V exp ((t — 51 Ho) (@) dsy ., (60)
k=0 A;
where P; is the initial distribution of L and

Ay =51, 8%0) eRS 0y <o <5 St}

This is a well known formula for the perturbation of a semi-group in a Banach space
(see e.g. [6, Theorem 3.3.33]), which is easy to derive when Hy and V are bounded.
Indeed, we have

P = Poexp(t(Ho+€V)),

and it is possible to define, for all , the following operator, bounded in [ (A),
W(t) = exp (¢t (Ho + eV))exp(—tHop) .

Then
dw ()

o = eW(t)exp(t Ho) Vexp(—t Hy) .
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whence
t
W(t) = W)+ efOW(s)exp(sHo) Vexp(—s Hy) ds

or, equivalently,

exp(tH) = t
p ) =exp(tHy) + e/ocxp(sHe) Vexp((—s + 1) Hy) ds . 61)

Now (60) is obtained by iterating (61). The series (60) converges in [}, since

(o]

k
Z le] /A2 lexp(si Ho)V exp((si—y — sk )Ho) ... V exp((t — s Ho)l dsy

k=0
! [ee]
k
<Y el / VIt dse < expleliiVIL), vieR
k=0 L ’ "

Theorem 18. ] 1
Let Loand L € € R be irreducible time-continuous-Markov chains, with

co ] spac ]
Vuntab[e state space A, defined by their respective generators Hy and H, = H,
€V, € € Ry. Assume also Lq is ergodic and that: ST

A ]/le’e EXIST p(7§l”v5 constants C and (S such lllal, or a given ”ll”al dl.s”lbu”o” 1 y
( ) ¢ f g 14
0

| Poexp (s Ho) — molly < Cexp(—3s); (62)
(B) The operator V is bounded in I,(A).

Then th i itive ¢
ere exist positive constants €o, Cy, , §; such that, for each ¢ € [0, €], the Markov

chain L. is j ] j istribution i
« is ergodic and its stationary distribution is given by the convergent series

Te(@) = ) et E(k)(a) = Jim Pf(a) = lim ie"}'(t,k)(a) (63)
® =0 ’ )

k=0

forany a € A and any initial distribution P, of L, where we set
F(, k) (ay & / P,
o 0 Cxp(sk Ho) V exp((sk—1 — sk) Ho)...V exp((t — 51) Hp) dsy () ,
and

£k & /
) eor moVexp(t Hy) ...V exp(t, Hy) dt;(a) < Cf .

Moreover,

k
€@ = ¢, (64)

and

IEK) = F(t. k)l < Clexp(=811), Yk e Z,. 1 e R, . (65)
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Remark. Conditions A and B in the above Theor.cm ISarc rather slr()'ng. Il' cuin ‘kl)c“sql;oiwnn
that they hold for Markov chains which are either (mlle' or C(‘\u.nlanﬁr ‘}1(nn S‘ll‘]ziin}; Ig[
Doeblin’s condition. For our purpose, it suffices to C(?Ilsldcr finite \ 1Ir .OY |ng (m\ ihc
might be worth noting that, for countable Markov chains, m(.)rc ‘%cnlc,m I]C;S\:J f(mctions
analyticity of stationary distributions can be proved by means ol Lyapounc

(see [8, 14, 17]).
Proof. First one shows that (62) yields
Vexp(s Holli < CIIV Il exp(=ds), Vs € Ry (66)
For each measure x € I;(A), onc can represent xV as (xV)*t — (x V)™, where
(xV)* (@) = max (0,xV) and (xV) (@) = max (0, —xV).
Then
Vi = 1Y)+ 1Y) T V) = 1eV) ™

The last equality proceeds from the fact that V is a difference of gencrators. Also, as
exp(Hps) conserves positive measures, we get

(xV)exp (Hos)(B) = D (xV) (@) pay(s) =, 0
V) Iy + ) V) @) (pag(s) = ), (67)
where p2,(s) is the probability to be in state § at time s, when the initial distribution Py
is 8. Now (66) follows from (67). Indeed,
I V)t — (xV)Dexp(Hos)il =
- ~8s 68
33 (@Y @) = (V) (@) (Plgs) = 7)) < ClIVILexp(=ds), - (68)
B a
for some constant C > 0. Then (62) and (66) yield
770V exp(te Ho) . .. V exp(ty Ho)lly < C* IV I Fexp (=t + -+ 1)8)  (69)
and

I(Po exp(sk Ho) — o)V exp((sk—1 — si) Ho) ... V exp((t — s1) Ho)ls
< CKV I texp (—18),  (T0)

sincef =t — 8, + -+ (Sg—1 — 5x) + 5. Henee, we obtain

chivit N
IEGN =~ an

and

NEW) — FE Bl < an G, ki s dse + fA CHexp(—(t1 + - -+ + 1)8) b

¢t vy
< (CIIVIID exp (=30 +<5 _81) exp(=&i1), (7))
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forallt > 0, where §; is fixed, 0 < §; < 8, G(t, k; s¢) denotes the left-hand side member
of the inequality (70) and

ZL= (tl,....tk)»lizo,l§i§k;zli21}.
i

Now choosing

& — &
€ < ,
ClIVil
(63) and (65) follow from (71) and (72), for positive constants C; and §,, which can
easily be found. Theorem 18 is proved. ]
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