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Abstract. Here we consider system of infinite number of particles where any
particle cannot escape to infinity. We define what means escape of energy to
infinity and apply this notion to the case when constant force provides energy
to one of the particles.
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1. The Model

Consider the set X∞ of infinite sequences of point particle coordinates on
the real axis

. . . < x−1 < x0 < x1 < . . . < xk−1 < xk < . . . , (1.1)

We assume that the dynamics is defined by Newton’s equations (masses are
assumed to be 1 )

ẍk = ω2(xk+1 − 2xk + xk−1)− ω2
0(xk − ka) + fδk, (1.2)

where δk = 1 for k = 0 and δk = 0 for k 6= 0. That is the dynamics is defined
by the formal potential energy

U =
ω2

2

∑
k∈Z

(xk+1 − xk − a)2 +
ω2
0

2

∑
k∈Z

(xk − ka)2 − fx0.

Here we assume that constants a, ω, ω0 are strictly positive and external
force f is constant.
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It will be convenient to put qk(t) := xk(t) − ka. Then the total energy at
time t can be rewritten as

H(t) = T (t) + U(t), U(t) = W int(t) +W 0(t)

where

T (t) =
∑
k∈Z

v2k(t)

2
, vk(t) =

dxk
dt

,

W int(t)=
ω2

2

∑
k∈Z

(qk+1(t)− qk(t))2 +
ω2
0

2

∑
k∈Z

q2k(t), W 0(t) = −fq0(t). (1.3)

That is the potential energy U is the sum of the interaction energy W int and
the energy of particle 0 in the external field. Then the equations (1.2) become

q̈k = ω2(qk+1 − 2qk + qk−1)− ω2
0qk + fδk (1.4)

Define a matrix V = {vij} with elements

vij =


2ω2 + ω2

0 , i = j

−ω2, |i− j| = 1

0, |i− j| > 1

The matrix V defines a positive definite operator V : l2(Z)→ l2(Z).
We have

W int(t)=
1

2
(V q(t), q(t))

U(t) =
1

2
(V q(t), q(t))− fq0(t)

where q(t) = {qk(t), k ∈ Z}. Equations (1.4) take the form

q̈ = −V q + fe0

where e0 is the vector with coordinates {δk, k ∈ Z}.
We asssume that the initial vector φ(0) = {(qk(0), vk(0)), k ∈ Z} ∈ l2(Z2).

Then H(0) is finite and it is known (see [2,3]), that, for constant f , the solution
φ(t) of the system of equations (1.4) exists in l2(Z2) for 0 ≤ t < ∞, and is
unique. Then for any t the energy H(t) = H(0).

Define the energy of particle k as

Hk(t) = Tk(t) + Uk(t),

where

Tk(t) =
v2k(t)

2
,

Uk(t) =
ω2

4
((qk+1(t)− qk(t))2 + (qk(t)− qk−1(t))2) +

ω2
0

2
q2k(t)− fq0(t)δk.
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Denote HA(t) the energy of particles k for all k ∈ A, that is

HA(t) = TA(t) + UA(t),

UA(t) =
∑
k∈A

Uk(t), TA(t) =
∑
k∈A

Tk(t).

We shall say that all energy escapes to infinity if for any N > 0

lim
t→∞

H[−N,N ](t) = 0. (1.5)

We shall say that no energy escapes to infinity if for any N > 0 there is a bound
uniform in t

H(−∞,−N)(t) +H(N,∞)(t) < CN (1.6)

and such that CN → 0 when N →∞.
If for any k

Hk(t)→ hk

for some fixed hk then only the part

H(0)−
∑
k∈Z

hk

of energy escapes to infinity.

2. Constant external force

Results Here we always consider initial conditions in l2(Z).

Lemma 1. Let f = 0. Then, for any initial conditions we have: for any k

lim
t→∞

qk(t) = 0, lim
t→∞

q̇k(t) = 0

and all energy escapes to infinity in the sense of formula (1.5).

If f 6= 0, consider particular solution {qk(t) = ξk} ∈ l2(Z), vk(t) = 0 of
nonhomogeneous system, which does not depend on time. Here ξk are constants
satisfying the following system of equations

ω2(ξk+1 − 2ξk + ξk−1)− ω2
0ξk + fδk = 0. (2.1)

In the matrix form we have
V ξ = fe0

where vector ξ = {ξk, k ∈ Z}.
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Lemma 2. System (2.1) has unique solution ξ = fV −1e0 ∈ l2(Z with coordi-
nates

ξk =
1

π

∫ π/2

−π/2

f cos(2kϕ)

4ω2 sin2 ϕ+ ω2
0

dϕ. (2.2)

Moreover, for any p > 0 there exists constant C(p) such that for any k

|ξk| ≤ C(p)k−p.

Denote

Uξ =
∑
k∈Z

Uξ,k, Uξ,k =
ω2

4
(ξk+1 − ξk)2 +

ω2
0

2
ξ2k − fξ0δk

the potential energy of this solution. We have

Uξ =
1

2
(V ξ, ξ)− fξ0 =

1

2
(fe0, ξ)− fξ0 = −1

2
fξ0 = −Cf2 < 0

where

C =
1

2ω0

√
4ω2 + ω2

0

> 0.

Equations (1.4) with initial conditions qk(0), vk(0) have unique solution qk(t)
= ξk + ζk(t), where the vector ζ(t) = {ζk(t)} is the solution of homogeneous
equation

ζ̈ = −V ζ
with initial conditions

ζk(0) = qk(0)− ξk, vk(0). (2.3)

Note that for solution ζk(t) the potential energy is equal to

W int(t) =
1

2
(V ζ(t), ζ(t)) =

1

2
(V (q(t)− ξ), q(t)− ξ) =

=
1

2
(V q(t), q(t))− 1

2
(V q(t), ξ)− 1

2
(q(t), V ξ) +

1

2
(V ξ, V ξ) =

=
1

2
(V q(t), q(t))− (q(t), V ξ) +

1

2
(V ξ, V ξ) =

=
1

2
(V q(t), q(t))− fq0(t) +

1

2
fξ0 = U(t) + Cf2.

In particular, it follows, that

Uξ + Cf2 = 0.

The total energy Hhom(t) of homogeneous system is

Hhom(t) = W int(t) + T (t) = U(t) + T (t) + Cf2 = H(t) + Cf2 (2.4)

as H(t) = U(t) + T (t).
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Theorem 1. Let f 6= 0. Then for all k we have

lim
t→∞

qk(t) = ξk, lim
t→∞

q̇k(t) = 0

and the amount of energy that escapes to infinity is

lim
N→∞

lim
t→∞

(H(−∞,−N)(t) +H(N,∞)(t)) = H(0) + Cf2 = Hhom(0).

So the amount of energy that escapes to infinity is equal to the initial energy of
the homogeneous system with initial conditions (2.3).

In particular, for zero initial conditions qk(0) = 0, vk = 0 this energy is
Cf2, that is equal to minus potential energy of the ξ configuration. For initial
conditions qk(0) = ξk, vk = 0, no energy escapes to infinity.

Proofs The proof of theorem 1 is based on lemmas 1 and 2.

Proof of lemma 2. To get formula (2.2) we define Fourier transform

X(ϕ) =
∑
k∈Z

ξke
ikϕ

and come to Fourier transform in equations (2.1). Then we find

X(ϕ) =
∑
k∈Z

ξke
ikϕ =

f

Ω2(ϕ)

where
Ω2(ϕ) = 2ω2(1− cosϕ) + ω2

0 = 4ω2 sin2 ϕ

2
+ ω2

0 .

So

ξk =
1

2π

∫ π

−π

fe−ikϕ

Ω2(ϕ)
dϕ =

1

2π

∫ π

−π

fe−ikϕ

4ω2 sin2 ϕ
2 + ω2

0

dϕ =

=
1

π

∫ π/2

−π/2

fe−i2kϕ

4ω2 sin2 ϕ+ ω2
0

dϕ.

One can write also

ξk =
1

π

∫ π/2

−π/2

f cos(2kϕ)

4ω2 sin2 ϕ+ ω2
0

dϕ.

Integrating by parts the required number of times and using the periodicity
of the integrand one can get ξk = O(k−p), p > 0. Lemma is proved.
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Proof of lemma 1. Define Fourier transforms

Q(t, ϕ) =
∑
k∈Z

qk(t)eikϕ, Q̇(t, ϕ) =
∑
k∈Z

q̇k(t)eikϕ, ϕ ∈ [−π, π].

We denote by Q̇, Q̈ time derivatives. Coming to Fourier transform in (1.4) with
f = 0 we get the following differential equation

Q̈(t, ϕ) = −Ω2(ϕ)Q(t, ϕ) (2.5)

with initial conditions

Q(0, ϕ) =
∑
k∈Z

qk(0)eikϕ, Q̇(0, ϕ) =
∑
k∈Z

q̇k(0)eikϕ.

The solution of equation (2.5) is

Q(t, ϕ) = Q(0, ϕ) cos(Ωt) + Q̇(0, ϕ)
sin(Ωt)

Ω
, (2.6)

Q̇(t, ϕ) = −Q(0, ϕ)Ω sin(Ωt) + Q̇(0, ϕ) cos(Ωt),

where

Ω = Ω(ϕ) =

√
4ω2 sin2 ϕ

2
+ ω2

0 .

Inverting Fourier transform (2.6) we get

qk(t) =
1

2π

∫ π

−π
(Q(0, ϕ) cos(Ωt) + Q̇(0, ϕ)

sin(Ωt)

Ω
)e−ikϕdϕ,

or after the change of variable we have

ζk(t) =
1

π

∫ π/2

−π/2
(Q(0, 2ϕ) cos(Ω(2ϕ)t) + Q̇(0, 2ϕ)

sin(Ω(2ϕ)t)

Ω(2ϕ)
)e−i2kϕdϕ.

To finish the proof we need the following result.

Lemma 3. The following asymptotic formula holds

ζk(t) =
1√
t
(C1 cos(tω0 +

π

4
) + (−1)kC2 cos(t

√
4ω2 + ω2

0 −
π

4
))+

+
1√
t
(S1 sin(tω0 +

π

4
) + (−1)kS2 sin(t

√
4ω2 + ω2

0 −
π

4
)) +O(t−

3
2 )

where

C1 =

√
ω0

2πω2
Q(0, 0), C2 =

√√
4ω2 + ω2

0

2πω2
Q(0, π)

S1 =

√
1

2πωω0
Q̇(0, 0), S2 =

√
1

2πω
√

4ω2 + ω2
0

Q̇(0, π)

as t→∞.
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Proof. It was proved in [1]. We will give the proof for completeness.
We will use the stationary phase method. (See Fedoruk, p. 102). In our case

phase function is

S(ϕ) = Ω(2ϕ) =

√
4ω2 sin2 ϕ+ ω2

0 , ϕ ∈ [−π
2
,
π

2
]

where

ω0 ≤ S(ϕ) ≤
√

4ω2 + ω2
0 .

We have stationary points 0,±π2 and

Sϕϕ(0) =
4ω2

ω0
,

Sϕϕ(
π

2
) = − 4ω2√

4ω2 + ω2
0

.

For

ak(t) =
1

π

∫ π/2

−π/2
Q(0, 2ϕ) cos(S(ϕ)t)e−i2kϕdϕ

due to periodicity of the integrand (with period π) we get

ak(t) =
1

π

∫ π/2+ε

−π/2+ε
Q(0, 2ϕ) cos(tS(ϕ))e−i2kϕdϕ.

So we have two stationary points 0, π2 inside the segment [−π2 +ε, π2 +ε]. Further
on, we write

ak(t) =
1

2π

∫ π/2+ε

−π/2+ε
Q(0, 2ϕ)(eitS(ϕ) + e−itS(ϕ))e−i2kϕdϕ,

and apply formula from Fedoruk (p. 102). This gives

ak(t) =
1√
t
(C1 cos(tω0 +

π

4
) + (−1)kC2 cos(t

√
4ω2 + ω2

0 −
π

4
)) +O(t−

3
2 ).

Similar for

bk(t) =
1

π

∫ π/2+ε

−π/2+ε
Q̇(0, 2ϕ)

sin(S(ϕ)t)

S(ϕ)
e−i2kϕdϕ

we have asymptotic formula

bk(t) =
1√
t
(S1 sin(tω0 +

π

4
) + (−1)kS2 sin(t

√
4ω2 + ω2

0 −
π

4
)) +O(t−

3
2 ).

The lemma is proved. 2
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So lemma 1 follows from lemma 3.
To finish the proof of the theorem note that by lemma 1

lim
t→∞

H[−N,N ](t) = Uξ,[−N,N ] =
∑

k∈[−N,N ]

Uξ,k.

As H(t) = H(0), then

lim
t→∞

(H(−∞,−N)(t) +H(N,∞)(t)) = H(0)− Uξ,[−N,N ] =

H(0)− Uξ + Uξ,(−∞,−N) + Uξ,(N,∞) = H(0) + Cf2 + Uξ,(−∞,−N) + Uξ,(N,∞)

and
lim
N→∞

(Uξ,(−∞,−N) + Uξ,(N,∞)) = 0.

By (2.4),
H(0) + Cf2 = Hhom(0).
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