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1 Introduction

Social models with many participants (clients, drivers, agents, . . .) are models where the
collective behaviour of a large social group is derived from the individual behavior (psychology)
of the individuals of this group. There are a lot of such models, for example, queuing models
with large number of customers and queues.

We present here a new kind of models. One can consider them as one instrument (for
example, a stock) market with many participants (called particles), having various activities.
Particle initially at x(0) ∈ R+ is the seller who wants to sell one stock for the price x(0), which
is higher than the existing price β(0) = 0. One should not be confused with negative prices.
By simple shift of 0 one can get positive prices for su�ciently long time period. There are K
groups of sellers characterized by their activity to move towards more realistic (that is existing
now) price. Similarly, the buyers, situated initially on R− would like to buy a stock for the price
lower than β(0).

The main result of the paper is the explicit formula for the asymptotic velocity of the
boundary as the function of 2(K+L) parameters � densities and initial velocities. It appears to
be continuous but not smooth in the points of some hypersurface. This kind of phase transition
has very clear interpretation. At the points where derivatives do not exist the particles with
smaller activities (velocities) cease to participate in the boundary movement � they are always
behind the boundary, that is do not in�uence the market price β(t).

It is important to say that real graphs of the price dependence on time look di�erently on
di�erent time scales. Our main formula corresponds to the time scale when the agent activities
and densities do not change much during some time period.

∗Work of this author was supported by the Russian Foundation of Basic Research (grants 09-01-00761
and 11-01-90421)
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2 Model and the main result

Initial conditions At time t = 0 on the real axis there is a random con�guration of particles,
consisting of (+)-particles and (−)-particles. (+)-particles and (−)-particles di�er also by the
type: denote I+ = {1, 2, . . . , K} the set of types of (+)-particles, and I− = {1, 2, . . . , L} - the
set of types of (−)-particles. Let

0 < x1,k = x1,k(0) < · · · < xj,k = xj,k(0) < · · ·

be the initial con�guration of particles of type k ∈ I+, and

· · · < yj,i = yj,i(0) < · · · < y1,i = y1,i(0) < 0

be the initial con�guration of particles of type i ∈ I−, where the �rst index is the number of the
particle in the con�guration, the second index is its type. Thus all (+)-particles are situated on
R+ and all (−)-particles on R−. Distances between neighbor particles of the same type denote
by

xj,k − xj−1,k = u
(+)
j,k , k ∈ I+, j = 1, 2, . . .

yj−1,i − yj,i = u
(−)
j,i , i ∈ I−, j = 1, 2, . . .

where we put x0,k = y0,i = 0. The random con�gurations corresponding to the particles of
di�erent types are assumed to be independent. The random distances between neighbor particles
of the same type are also assumed to be independent, and moreover identically distributed,
that is random variables u

(−)
j,i , u

(+)
j,k are independent and their distribution depends only on the

upper and second lower indices. Our technical assumption is that all these distribution are

absolutely continuous and have �nite means. Denote µ
(−)
i = Eu

(−)
j,i , ρ

(−)
i =

(
µ
(−)
i

)−1

, i ∈ I− ,

µ
(+)
k = Eu

(+)
j,k , ρ

(+)
k =

(
µ
(−)
k

)−1

, k ∈ I+.

Dynamics We assume that all (+)-particles of the type k ∈ I+ move in the left direction

with the same constant speed v
(+)
k , where v

(+)
1 < v

(+)
2 < ... < v

(+)
K < 0. The (−)-particles of

type i ∈ I− move in the right direction with the same constant speed v
(−)
i , where v

(−)
1 > v

(−)
2 >

... > v
(−)
L > 0. If at some time t a (+)-particle and a (−)-particle are at the same point (we

call this a collision or annihilation event), then both disappear. Collisions between particles of
di�erent types is the only interaction, otherwise they do not see each other. Thus, for example,
at time t the j−th particle of type k ∈ I+ could be at the point

xj,k(t) = xj,k + v
(+)
k t

if it will not collide with some (−)-particle before time t.
We de�ne the boundary β(t) between plus and minus phases to be the coordinate of the last

collision which occured at some time t′ ≤ t. For t = 0 we put β(0) = 0. Thus the trajectories
of the random process β(t) are piecewise constant functions, we shall assume them continuous
from the left. We shall prove the a.e. existence of the limit

W = lim
t→∞

β(t)

t
(1)

which we call the asymptotical speed of the boundary. However our main goal is explicit
calculation of W .
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Main result For any pair (J−, J+) of subsets , J− ⊆ I−, J+ ⊆ I+, de�ne the number

V (J−, J+) =

∑
i∈J− v

(−)
i ρ

(−)
i +

∑
k∈J+ v

(+)
k ρ

(+)
k∑

i∈J− ρ
(−)
i +

∑
k∈J+ ρ

(+)
k

, V (I−, I+) = V

The following condition is assumed

{V (J−, J+) : J− ̸= ∅, J+ = ∅} ∩ {v(−)
1 , ..., v

(−)
L , v

(+)
1 , . . . , v

(+)
K } = ∅ (2)

If the limit W = lim
t→∞

β(t)

t
exists a.e., we call it the asymptotic speed of the boundary.

Theorem 1

The asymptotic velocity of the boundary exists and is equal to

W = V ({1, . . . , L1}, {1, . . . , K1})

where

L1 = argmax
l∈I−

V ({1, . . . , l}, I+) = max
{
l ∈ {1, . . . , L} : v

(−)
l > V ({1, . . . , l}, I+)

}
,

K1 = argmin
k∈I+

V (I−, {1, . . . , k}) = max
{
k ∈ {1, . . . , K} : v

(+)
k < V (I−, {1, . . . , k})

}
.

Now we will explain this result in more detail. It is always true that v
(+)
K < 0 < v

(−)
L and

there can be 3 possible ordering of the numbers v
(−)
L , v

(+)
K , V :

1. v
(+)
K < V < v

(−)
L . In this case

K1 = K, L1 = L, W = V.

2. If v
(−)
L < V then V > 0 and K1 = K, L1 < L. Moreover

W = V ({1, . . . , L1}, I+) = max
l∈I−

V ({1, . . . , l}, I+) > V > 0.

3. If v
(+)
K > V then V < 0 and K1 < K, L1 = L. Moreover

W = V ({1, . . . , L}, {1, . . . , K1}) = min
k∈I+

V ({1, . . . , L}, {1, . . . , k}) < V < 0.

Another scaling Normally the minimal di�erence between consecutive prices (a tick) is very
small. Moreover one customer can have many units of commodities. That is why it is natural
to consider scaled densities

ρ
(+),ϵ
j = ϵ−1ρ

(+)
j , ρ

(−),ϵ
j = ϵ−1ρ

(−)
j

for some �xed constants ρ
(+)
j , ρ

(−)
j . Then also the phase boundary trajectory β(ϵ)(t) will depend

on ϵ. The results will look even more natural. Namely, there exists the following limit in
probability

W 0 = lim
ϵ→0

W ϵ = lim
ϵ→0

β(ϵ)(t)

t
.
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3 Phase transition and method of proof

No phase transition if activities are the same The case K = L = 1, that is when the
activities of (+)-particles are the same (and similarly for (−)-particles), is very simple. There
is no phase transition in this case. The boundary velocity

w =
v
(+)
1 ρ

(+)
1 + v

(−)
1 ρ

(−)
1

ρ
(+)
1 + ρ

(−)
1

(3)

depends analytically on the activities and densities. This is very easy to prove because the n-th
collision time is given by the simple formula

tn =
x
(+)
n (0)− x

(−)
n (0)

−v
(+)
1 + v

(−)
1

(4)

and n-th collision point is given by

x(+)
n (0) + tnv

(+)
1 = x(−)

n (0) + tnv
(−)
1 . (5)

More complicated situation was considered in [3]. There the movement of (+)-particles has

constant drift v
(+)
1 ̸= 0 but also jumps in both directions (and similarly for (−)-particles). In [3]

the order of particles of the same type can be changed with time. There are no such simple
formula as (4) and (5) in this case. The result is however the same as in (3).

Example of phase transition The phase transition appears already in case when K = 2,
L = 1 and moreover the (−)-particles stand still, that is v

(−)
i = 0. Denote v

(+)
i = vi, ρ

(+)
i = ρi,

i = 1, 2. Consider the function

V1(v1, ρ1) =
ρ1v1

ρ0 + ρ1
.

It is the asymptotic speed of the boundary in the system where there is no (+)-particles of type
2 at all.

Then the asymptotic velocity is the function

W = V (v1, v2, ρ1, ρ2) =
ρ1v1 + ρ2v2
ρ0 + ρ1 + ρ2

if v2 < V1 and

W = V1(v1, ρ1) =
ρ1v1

ρ0 + ρ1

if v2 > V1. We see that at the point v2 = V1 the function W is not di�erentiable in v2.

Method of proof The proofs are based on the reduction of the considered process to Markov
random walk in the orthant RN

+ with N = KL. Namely, denote b
(−)
i (t) (b

(+)
k (t)) the coordinate

of the extreme right (left), and still existing at time t, that is not annihilated at some time
t′ ≤ t, (−)-particle of type i ∈ I− ((+)-particle of type k ∈ I+).

De�ne the distances di,k(t) = b
(+)
k (t) − b

(−)
i (t) ≥ 0, i ∈ I−, k ∈ I+. The trajectories of the

random processes b
(−)
i (t), b

(+)
k (t), di,k(t) are assumed left continuous, for any indices. Consider

the random process D(t) = (di,k(t), (i, k) ∈ I) ∈ RN
+ , where N = KL. D(t) is a Markov process

due to our assumptions concerning initial distribution.
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Let us describe the trajectoriesD(t) in more detail. The coordinates dm,n(t) decrease linearly

with the speeds v
(−)
m − v

(+)
n correspondingly until one of the coordinates dm,n(t) becomes zero.

Let di,k(t0) = 0 at some time t0. This means that (−)-particle of type i collided with (+)-
particle of type k. Let them have numbers j and l correspondingly. Then the components of
D(t) become:

di,k(t0 + 0) = u
(−)
j+1,i + u

(+)
l+1,k ,

di,m(t0 + 0)− di,m(t0) = u
(−)
j+1,i, m ̸= k ,

dn,k(t0 + 0)− dn,k(t0) = u
(+)
l+1,k, n ̸= i ,

and other components will not change at all, that is do not have jumps. Note that the increments
of the coordinates dn,m(t0 + 0) − dn,m(t0) at the jump time do not depend on the history of

the process before time t0, as the random variables. u
(−)
j,i (u

(+)
j,k ) are independent and equally

distributed for �xed type. Markov property follows from this. Absolute continuity of the distri-
butions of random variables u

(−)
j,i , u

(+)
j,k garanties that the events when more than one coordinate

of D(t) become zero, have zero probability.
Note that the distances di,k(t), for any t, satisfy the following conservation laws

di,k(t) + dn,m(t) = di,m(t) + dn,k(t)

where i ̸= n and k ̸= m. Thus the state space D of our Markov process can be given as the set
of non-negative solutions of the system of (L− 1)(K − 1) linear equations

d1,1 + dn,m = d1,m + dn,1

where n,m ̸= 1. It follows that the dimension of D equals K + L− 1.
To study such kind of random walks, in [1] the Euler scaling was used to construct a special

dynamical systems on the faces of the orthant. Here we also use large time limit to construct
a deterministic dynamical system. The main advantage of our case is that this dynamical
system appears to be the simplest possible. It either hits the �xed point � the origin (this case
corresponds to K1 = K, L1 = L), or escapes to in�nity along some face of RN

+ .
It is of interest also that the same techniques was used in a completely di�erent situation,

see [2] for analysis of some neural networks. There similar reduction was used and the same
kind of dynamical system appeared.
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