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Unitary Equivalence of Temperature Dynamics
for Ideal and Locally Perturbed Fermi-Gas

D. D. Botvich and V. A. Malyshev
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Abstract. We consider the local perturbation

V=e¢ ) VX Malto)a*(x)a*(pa(y)a(x)
x, yedv
of the ideal Fermi-gas on the lattice Z’, where Q is a finite subset of Z* and g, is
its indicator. The invertibility of Moller morphisms for small ¢ is proven. It
follows that in the cyclic GNS representation with respect to KMS states the
dynamics of ideal and locally perturbed Fermi-gas are unitary equivalent.

Introduction

Two kinds of equilibrium states are usually considered in mathematical physics:
ground (zero temperature) and KMS (nonzero temperature) states. There are
many results concerning spectral decompositions of Hamiltonians (in the GNS-
representation) for the ground state representations which support the so-called
quasi-particle picture: any system is a collection of noninteracting quasiparticles
(we note that asymptotic completeness is not proven even for the ground state
representations).

In Appendix B we explicitly calculate spectral decomposition of H, showing
the quasiparticle picture. We could not find this representation in the literature.

For the KMS-states the only results in this direction are due to Robinson,
Evans etc. [1-3], who proved the existence of Moller morphisms for local
perturbations of quasi-free systems. In this paper we prove the invertibility of these
morphisms. An extension of our method and other results will appear in
subsequent publications.

1. Formulation of the Main Result

Let K=1,(Z") be a complex Hilbert space and A= A(K) be the CAR-algebra over
K. It is well known that its generators a(f), a*(f), feK satisfy the following
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anticommutation relations

a*(g)a(f)+a(f)a*(g)=(f.9),
a(f)alg) + a(g)a(f) =0,

where (f, g) is the scalar product in K antilinear in f and linear in g (see [3]).
We consider the free evolution of the ideal Fermi-gas. It is a strongly
continuous one-parametric group 7, of *-automorphisms of U generated by

t(a(f)=ale"f), t(@*(f)=a*e""), (1.2)

where H= —A+pul, acts in K (lattice Laplacian plus a constant, see [3]).
Let us consider also the perturbed dynamics (local dynamical perturbation

[1])

(1.1)

1/ (A)=1,(4)+ i " ds,...ds

n=1 O=s;=...Ss,5¢

n

[, (M), [z, (W), [ L7, (W), T(A)]... 1] (1.3)

for £20 and in similarly for ¢t <0 with the integration domain: t<s5,2...55, 20.
Here Ve and further on we consider only the case of

V=g ) Vyx,yatata,a,, (1.4)

X, yeZv

where V,(x,y) is a real symmetric function with finite support Q x Q, QCZ’

1, y=x

amad), sm={y 1%

Theorem 1. Méller morphisms

y+(4)= s-lim 77 (c(4)) (1.5)

t—=t oo
exist for any AU, any v=1, eeR, V, Q.

The main result of the paper is the following:

Theorem 2. For v=3 and any V,,, one can find e, =¢,(V, v) such that for any |e| <g,
there exist
¥ (4)= S‘lim T_ (7] (4)) (1.6)
t— T
for any AeU.
Let w, be the unique (z, 5)-KMS-state (0 < f < o0) for the ideal Fermi-gas (see
[3]). Let w, be the unique (see [3, p. 161]) (r[V_B)-KMS-state defined by

wo(T*AT)

wV(A) = wo(r*r) >

(1.7)
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_f (dF(H)+V) ﬂdF(H) .
is given by the convergent

where the co-cycle I’ (formally I'=e
series [3]

B2 sy
=1+ Z (=1 f ds, j‘ds2 j ds, Ty, (V)15 (V). (1.8)

=1
Let Uy(t)=exp{itH,} be the unitary group which is implemented by ! in the

cyclic GNS-representation (#,,, 7, , Q,, ) with respect to w, (V can be equal
to 0 here).

Corollary. Under the conditions of Theorem 2, H, and H,, are unitary equivalent.

Note. The same technique works for the case (n=1, v=3)

V=e¢) Vn(xl,...,xn)<f[ XQ(xi))a*(xl)...a*(x")a(xn)...a(xl).

n=1 x;eZv

The case n=1 is explicitly solvable. It corresponds to the free Fermi-gas in the
exterior field V(x). In this case one finds examples for dimensions v=1, 2 where
bounded states appear [6].

2. Existence of Moller Morphisms

We shall prove Theorem 1 here. We begin with the case v > 3. The cases v=1, 2 are
slightly different. The proof is a simple modification of similar proofs in [1-3]. It is
sufficient (see Theorem 4 in [1]) to prove that (21, 7) is asymptotically integrable
with respect to V i.e. one must specify a dense subset 91 C 2 such that for any Ae9l
the function ||[z,(V), A]|| is absolutely integrable in t. We put

A={a*(f)a*(fy)...a*(f,)alg,)alg,)...alg,), m20, n20, f, g,
are local, i.e. have finite supports in Z'}.

Let us put A=a(f), f being local, (-, -) is the scalar product in K =1,(Z"). One
has

Lz (4), VI
= [|ILa(e™ ), V]I = Z " Vo(x, y) La(e™f), a¥a%a,a,]
=le Y Volx,y)(—atae*"f)a*a,a

(71,6 Ja}a,a, — a¥ata,a ale"f ))“
<lel Y WValx (™S8, )l +(e"f,6,))). (2.1

x, yef
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There exist C(f) >0 such that uniformly in ze Q2

e 6N = CU) oz 2.2)

1+t

(see Appendix A). It follows from (2.1) and (2.2) that ||[z,(4), V]| is asymptotically
integrable for v=3.

The case A =a*(f) can be treated similarly. As 77, is the homomorphism of A
into itself the operators 7, (A4) exist for any Ael.
Let us consider the case v=1. We choose

A= {a*(f,)a*(f,)...a*(f,)a(g,)alg,).-.a(g,).
m,nz0, f, g€K,}, (2.3)
where
Ko={f:feL,([0,2]), f(0)= f(m)= f(2n)
=f(0)=f'(m)=f'(2m)=0} . (2.4)
It is evident that U is also dense in . We have for feK,

I(e"f;8.) =

f e~ 2it(1 — cos¢)+"uf€u¢d§0

V2n v

_ 1 an f((p)elzq’ ( - 2it(1 ~cos(p)) .
2t)/2r o sing

1 2z l

(2.5)

Let us put

f (®) o0

sin@

g.(p)=

Integrating by parts the integral in the right-hand side of (2.5) and using again
Appendix A in the similar way we prove Theorem 1 for v=1.
For v=2 one can choose

A= {a*(f,)a*(f,)...a*(f,)alg,)alg,).--a(g,),
m, n20, f, gEKo®K0}'

3. Invertibility of Méller Morphisms

We shall prove here Theorem 2. As in Sect. 2, in order to prove the existence of 7,
we must prove that for any Ae f;f, A being dense in A, R, ()=|[zV,(V), A]| is
asymptotically integrable in ¢. Indeed, one can derive Robinson’s equation [1, 3]
for this case

‘%t T (Ay=it_1 [V (V), A)). (3.1)
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(It follows from the explicit calculations in finite volumes.) Again we take

A= {a*(f)a*(fy)..-a*(f,)alg,alg,)...alg,),

m, n20, f, g, are local}.

In order to prove the existence of _ one must show that
j R (D)dt< o0

for any local £, a*(f)=a(f) or a*(f)=a*(f).
We have [1]

TRa#(f)dt— T It vl

[ el
+1> "
n=1

j g ds,...ds,dt

O0=s51<5;=5...Ssp<t<w

La™ () [r,, (W), o, [3, (V) 1,010 H

< j ILa*(f), T,LV)]lide + Z fof  ds,...dsdt

n=10<s1=...Sspst<w

ALa* (), Lo, (W), oo [, (V) 1] 100 (3.2)

Theorem 3. Under the conditions of Theorem 2 there exist constants C =C(V,Q)
>0, not depending on f and C(f)>0 such that for any nelN

a) j ILedV), a* (Nl de S lelC, (), (3.3)
b) (] H[a#(f),[‘csl( V) oo, [, (V) 2(V)]..T1 1 ds, ... ds,dt

0Ss1Z...SspsSt<w
SCACHe (3.4)

1
It is evident that (3.4) implies the absolute convergence of (3.2) for |e|< —.
1

Proof. Let f,, f, b€, (@), i=1,...,k, (f,~, f,)=0. (3.5)
Then the following formula holds:
[a*(f)a*(f)a(alf;) a* hy)...a* ()
= X DT ha*0)...a® e )a" (f)a*(fy)alf)

a* (hyyy)-a®(h)+ ZX )T h)a* (hy)...a*(h,_,)
: *(fl)a#"’(fz)a(fl)a#(hH D--a”(hy), (3.6)
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where
I if a*(h)=a*h) (3.6)
*()= {absence of *, if a*(h)=a(h),
1Ux)=— ¥(absence of *)=1,
= [(fh), #Hh)=*
k)= {(fh # (h) =absence of *.

We use simple identities

a*(f)a*(falf,)a(f,)ah
=a(h)a fl)a*(fz)a(fz)a(fl) (h, f)a*(fy)a(fr)alf;)
+(h, f)a*(falfy)alf,), a*(f)a*(fa(f)alf)a*(h)
=a*(Wa*(f)a*(falf)a(f)+(f;, Wa*(f)a*(f)a(f,)
—(fo, Wa*(f)a*(falf,), (3.7
and consider now
a*(fya*(fa(fy)alfy)a* (h,)...a* (). (3.8)

Using (3.7) we drag through to the left all a*(h, ), ..., a®(h,) in (3.8) thus proving
(3.6).

Let us put
af(s)¥a (78,).

Lemma. The following estimate holds (t=s, . )
[La*(f), Lak (s,)a} (sy)ay (s )a, (s,) ... [ak (s,)ak (s,)a,,(s,)a, (s,),
'a;km 1(sn+ 1)a;‘"+ 1(5n+ 1)ay"+ l(sn+ 1)ax,.+ 1(sn+ 1)] I

=S D N TP

Jos dts oo n {2 {21} )
'I(elMH&z, mlea )l '|(elsnA1H52",1’elsj"_lHéz'j"Al),
. |(eis,.H52 iSn+ ‘Héz X z)l (39)

where the sum ) si taken over all 2*"*3 ordered sequences z;=x, or y,, Z,=x, or
{zi},{z3)

Vo the sum Y, is over all sequences (jg, j,,....j,) such that for all k 0Sk<j,
Jos s dn
Sn+1 forany l,0=1=<n+1, j, can be equal to | nor more than for four values of i.

Proof. It is convenient to use diagrams (graphs). The vertices of a diagram are the
points s,=0, s,,...,s,, s,., on the real line. The lines are the pairs (s, s;), (s,
Si)s s (8, 1> 8;._ ) (8,5 5,4 ;) Which enter in the right-hand side of (3.9):

the diagrams are connected ;

the number of edges incident to any vertex does not exceed k=4 (if s, <

a)
b)
é é n+1)

ll/\
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To prove (3.9) we use formula (3.6) inductively. From the first commutator we
obtain one edge of the diagram, from the second one we obtain the other edge, and
so on. We have two 23" terms with the same diagrams. The norm of the remaining
operation and annihilation operators is bounded by 1.

Due to Appendix A there exist constants C=C(V,Q)>0 and C,(f)>0 such
that

(e, < Cyf) — L

L+[s|)*’
( ll ) (3.10)
6,658 ) <C—u—10
Cer 0 g
forall z, z,, z,eQ.
Then the upper bound of the right-hand side of (3.9) takes the form
27TIenC,(n Y 1 !
P it (LI, D (Tt fsj, — s, )7
1 1
. 3.11
(15, =8, "2 (L +]s;, —s,))" (3.11)
4. The Proof of the Main Estimate
We prove (3.4) here, i.e.
1 1
jo,jl,z...,jn 0§s1§{:.§.sfnn<w (L1572 (L +]s;, =5, )72
1 ® 1 ntt
vei————————ds....d =C" ——d , 4.1
(Ls,, —s, 72t s = (_fw (1+1sl)? s) @D
where C does not depend on n.
We approximate both sides of (4.1) by Riemannian sums
1 1
ot
jo.;,jn 0<sy <...Z<:sn+1 <o (1 + 'SjUI)V/Z (1 + Isjl - SII)V/Z
1 1 n+1
N sc"(s"*l( —_)
(L+ls;, =5, = r;o (1+[r]y"?
1 1
zcn5n+1 Z (42)

WFo  miTho (A +1r D) T+, 7

In both sides s,, r,€ Z; (one-dimensional d-lattice). The sum in the left-hand side of

(4.2) is dominated by the sum over all admissible diagrams [with the properties a)

and b)] whose vertices are numbered as 0 <s, <s, <...<s,, ;. We denote this sum

by ) I;, where I, is the contribution of the corresponding diagram. The right-
G
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hand sum Y is taken over all arrays (r,,...,r,, ) of edges with the nonzero
ys ry n+ 1
lengths r,,...,7, ¢
We omit "' and want to prove that

2I=Cy. (4.3)

G

To prove (4.3) we use the argument similar to the one used in Sect. 1.5 of [7].
Given an array (r,,...,7,,,) we define the algorithm by which one can
construct not more than C" admissible diagrams with the contribution equal to

1 1
A1 )27 A D72

4.4)

The algorithm consists of not more than 4(n+ 2) steps. We numerate these steps by
0,1),...,(0,4),(1,1),...,(1,4),...,(n+ 1,1),...,(n+1,4).

On the step (0,1) we take r, and construct an edge from 0 to r,. We construct
vertices 0, r; and the line between them. Then we proceed by induction. The lines
oflength r,, ..., r, are already constructed and we are on the step (i, j). The rules of
the algorithm are the following:

1. On each step we decide whether to construct O or 1 line (and so 0 or 1 new
vertex).

2. If on the step (i, j) we decided not to construct a line then on the steps (i, j'),
j<j we also do not construct lines.

3. On the step (i, 1) we choose one of the already constructed vertices ¥, and on
all steps (i, 1), ..., (i,4) we can draw lines only from V,. We call ¥, “used on the step
of i.”

4. The choice of V; is uniquely defined by the rule: V; is the first already
constructed vertex not used in earlier steps.

5. The algorithm stops either on the step (n-+ 1, 4) either when there are no.non-
used vertices or when (n+1)-lines are constructed (ie. all r,,...,r,,, are
exhausted).

It is evident that each G will be constructed and each array (r,, ..., 7, ) is used
not more than (5-24)"*! times.

5. Unitary Equivalence

We shall prove Corollary 1 here. As w, is the unique (z, ,)-KMS state and w,, is the
unique (rt'f 5)-KMS state [3], then by Theorem 2 of [1] (see also [3]) we have

4 (A Ewy(y, (4) = 0o(4) (5.1)
for all AeU. Let us define the operators U, : #, —#, by
U,(r, (ADQ,)=7,,7:(4)2,, . (5.2)
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They are isometric

(U 4 (7,,(A)R2,,,), U 1 (1, (B)Q2,,,))
=@y((y £ (B)*y £ (4)) = 0y (7 . (B*A4))

=wo(B*4)=(m,,(4)Q,,, 7, (B)2,,), (5.3)
and unitary
Ut (m,, (DQ,,) =7,y (A))Q,, . (5.4)
We have
T =y.Ty5t (5.5)

By definition
ei‘H°(nw0(A)Qw0) =7, (1(4))Q

wp ?

e, (A)Q,,) =7, (2 (A)Q,, . G4
It follows that
U,e'oUii(n, (A)Q,)
= U e, (52 (ANR,) = U, (1, (573 (A)2,,)
=7, (¢} (A)Q,, =" (x, (4)Q,,), (5.7)
and so
U.H,U;'=H, (5.8)

Corollary. Under the conditions of Theorem 2 the spectrum of H, (except
nondegenerate eigenvalue 0) is absolutely-continuous.

This follows from Corollary 1 and Appendix B.

Appendix A

Let f be infinitely differentiable on the v-dimensional torus T, v=1, and Q is a
finite subset of Z*. Then there exist C= C(f, 2)>0 such that

1

e (A1)

it(i 3 2(1—cos<pj))} f((p)ei‘x""’dgo’ <C

J

{ exp
TV

for all xeQ, p=(¢,,...,0,).

We must only note that for fixed xe Q (A.1) follows from the stationary phase
method.

From (A.1) it follows evidently that there exists C=C(Q) such that

it( 2(1—cosqoj))] ei("_y"”’d(p‘ <C (A.2)
i=1

,f 1
€X Dy —
2,5 L+ )7

for all x, ye Q.
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Appendix B
We obtain here the spectral decomposition of H, (we follow [4]).

Definition 1. The state w on the CAR-algebra U over K is called (gauge-invariant)
quasi-free state iff

(a*(f,) ... a*(falg,) ... alg,) =4, det((g; Bf)) (B.1)
for all f,g,€K, where B is the linear operator in K such that 0SB=<1, [5].

Definition 2. The Wick monomial is the following polinomial (: : Ly

ra¥(fy) - a*(falfur ) - afs )
k

min(m, n)

= % (~1F Zseno [] ola*(;)als;)
@ (f) o @) e @) oo a*(f)alfor ) o alf) oo alfynsr)s (B2)

where Y is the sum over all permutations c€§,,, , such that
[

0_(1 2...2k—1 2k 2k+1...m+n)
iy Jpeedy Jo o T Tmino ok

for any sequence 1=5i,<i,<...<i,<m, m+1Zj,<m+n, I=1,...,k and any
increasing sequence r, ..., r,, ., ,, of numbers 1,2, ..., m+ n different from i, ..., i,
Jiseeosdie

Lemma 1 (The properties of Wick monomials). Let @ be a quasi-free state. Then

1) (:a*(f}) ... a*(f,)alg,) ... alg,) )*

=:a*(g,)...a*ga(f,) .. alf)): (B.3)
2) o(:a*(f)) ... a*(f)alg,) ... alg,):)=0 if m+n>0, (B.4)
3) o(:a*(f,)...a*(f)alg,) ... alg,): :a*(hy) ... a*(h,)

cau,) ... a(w):)=wla*(f,) ... a*(f)a(u,) ... au)),
wl(alg,) ... alg,)a*(h,) ... a*(hy))
=0,40,, det((u;, Bf))) det((g,, (I — B)h)). (B.5)
Proof of 1) is evident. For a proof of 2) and 3), see [4].

Definition 3. Let ¢"¥ be a unitary group in K. The group 7, of automorphisms of 2
induced by

ta()=a" f), rla*()=a*""f),

will be called the free dynamics.
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Let (£, 7, £2,,) be the cyclic GNS-representation with respect to quasi-free w.
We define H,, by

a7 (4)=7,(t(A4)),
T (A E 1, (4)Q,

Lemma 2. Let B and H commute. Then the subspaces
A =T (1a*(f) ... a*(f)algy) .. alg,):). £ g€ K}, Hp 0 ={Q,}

are mutually orthogonal, invariant with respect to H,, and
o0
H,= D
mn=0

Proof. Orthogonality follows from properties 2) and 3) of Wick monomials.
Invariance follows as

w(a*(eitHf)a(eitHg)) — (eitHg, BeitHf)
=(e"g, e""Bf)=(g, Bf) = w(a*(f)alg))

implies
t(:a¥(fy) ... a*(f)alg,) .. alg,) )= 1t a*(f)) ... a*(f,)alg,) ... alg,):.

Further we shall consider only a Fermi-gas on a lattice. We recall (see [3]) that
in this case

K=L(@), H=—A+u—1,

B=exp(—BH)(1;+exp(—fH)" !, 0<B<oo. (B.6)
Let us put
#, Y(K®..0K*|®[K®..®K)"],
(K, ()0 (K, ()
Theorem 4. There exists the unitary operator
Upon: Hon— Ko,

such that

U, H U \=A4,+...+4,—4,.,—...— A, +un—m). (B.7)

In other words 5, is isomorphic to the tensor product % _ ®%_ of the Fock
space #_ and “anti Fock space” &, and I'(¢"¥) is the second quantities of ¢*¥ and

eitHa, ~ F(eitH)®F(e— itH) . (B8)
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The proof is easily obtained if we put

Up,oTo:a*(f) ... a*(f,)alg,) ... a(gn) 2

£ ((1x—B)'"*,®...0(1,— B)V2f,)"
®(B'?g,®...®B"/2g,)".

Let us note that ImU,, , =, , as BY/? and (1, — B)"/? are invertible.

Corollary (Fourier representation). #,, is isomorphic to L";(T”"‘)@I:";(T "M. Under
this isomorphism H |, is unitary equivalent to the multiplication onto the function

(¢f?e[0,2n])

m v m+n v
(— Y 2l—cospi)+ Y ¥ 2(1—cos<p§"’)+u(n—m)). (B.9)
j=1 k=1 j=m+1 k=1

Thus the spectrum on #,0H#, q is absolutely-continuous.
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