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Abstract. We study the dynamics of neural networks introduced by M. Cottrell
for the case of symmetric connections (aij = aji). We study the structure of
images that can be remembered by these networks and prove convergence to
these images starting from approximate images.
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1. Introduction

In this paper we study inhibition models for neural networks. The first
paper to consider such models from a mathematical point of view is [1]. This
paper is the basis of our analysis. We will not address the biological meaning
of the problem (see references in [1]).

Inhibition models are slightly different from the well-known Hopfield–Little
models (see [4], [6]) and also, but less, from the model studied by V. Kryukov
(see [5]). There is no learning mechanism in the model under consideration, but
there is a property that could be called “image restoration from a noisy image”
and/or “recalling an object from its approximation”.

Let us consider a (non-oriented) graph G with V the set of vertices and L
the set of links. There are no loops (i.e. there is no link connecting i with itself).
Denote by D(i) = {j : (j, i) ∈ L} the neighbourhood of i. Note that D(i) does
not contain i itself.
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Foundation.
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Foundation and 93-011-1470 from the Russian Foundation of Fundamental Research.
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Consider the following Markov chain on the state space RV
+ . At time t there

is a potential si(t) associated with point i ∈ V . If si(t) > 0 for all i, then the
si(t) decrease linearly in time with constant speed vi until one of the potentials,
si(t+ t0) say, has become 0. At this moment, t+ t0 say, the sj(t+ t0 +0) are all
increased by a positive amount ηij(t + t0 + 0) respectively, which are mutually
independent random variables that have the same distribution for fixed i, j.
Denote their mean by aij = Eηij(t + t0 + 0), j ∈ V .

We will call this Markov chain M. This chain is non-countable, but in fact
the definitions for recurrence and ergodicity do not differ much from those for
countable chains (see [10]). Note that many definitions from [7] and [8] can also
be easily reformulated for this case. We assume some knowledge of these papers
here.

Further we assume the existence of a density and some moments of the
random variables ηij(t + t0 + 0). All this is in no way compulsary and we
assume this to avoid some unnecessary complications due to the Markov chain
under consideration not being countable: for the difference between ergodicity
and positive recurrence for processes on RN

+ etc. see [10].
For some properties like for example scattering phenomena, the assumption

of an everywhere positive density seems necessary.
Note also that in for example [1] the random variables ηij(t + t0 + 0) are

independent and in particular their values are identical for all j 6= i. All these
modifications are not important because the second vector field can be expressed
in terms of the means Eηij only. These modifications, however, do play a role
in calculating the scattering probabilities.

The paper is organised as follows. In Section 2 we give the main definitions
and we state the main terminological relationships with earlier papers. Also
some simple examples are considered here: low dimensions, symmetric case etc.

Section 3.1 contains the main result, which treats the case of a symmetric
connection matrix. In particular, we give algebraic sufficient conditions for er-
godicity, which are easy to verify. We apply these results to one-dimensional
graphs later in Section 3, where the conditions turn out to be necessary and
sufficient. In Section 4 we introduce tensor products of networks. Using this
technique we are able to get sufficient conditions for ergodicity and transitions
and a partial description of the exit boundary (bounded harmonic functions) in
the transient case for lattices of dimension at least 2. This gives some justifica-
tion for the simulation results by M. Cottrell [1]. Section 5 finally considers a
simple example of an infinite network.

2. Finite networks

2.1. Basic definitions and classification algorithm

Definition 2.1. By the W -restriction of M to the subset W ⊂ V we mean
the Markov chain MW obtained from M by deleting V \W . By deleting we



Stochastic evolution of neural networks 143

mean that the states in the points of V \W do not influence the process in W
anymore, in other words, we get the W -restriction by taking the potentials in
points in V \W to be infinitely large.

We can think of our process s(t) = (s1(t), . . . , sN (t)) ∈ RN
+ as a random walk

in RN
+ and we use the terminology from [7]. In this terminology MW is the

induced chain for the face

Λ(W ) = {(x1, . . . , xN ) : xi = 0, i ∈ W, xj > 0, j 6∈ W} ⊂ RN
+ .

Put W = W (Λ) for Λ = Λ(W ). In this way, Λ and W define each other uniquely.

Lemma-Definition 2.1. Let MW be ergodic and let πW
j , j ∈ W, be equal to

the mean number of times that the random trajectory sW
j (t) of the stationary

Markov chain MW hits 0 in the unit time interval. In other words:

πW
j = lim

T→∞

1

T
#{t : sW

j (t) = 0, t ∈ [0, T ]},

where sW
j (t) is the j-th coordinate of MW at time t. Then the following flow

(or traffic) equations hold

vi =
∑

j∈D(i)∩W

ajiπ
W
j + aiiπ

W
i , i ∈ W, (2.1)

or in shorthand notation (setting πW
i = 0 for i 6∈ W )

PW AπW = PW v, (2.2)

where A is the transposed matrix (aij) and PW the projection operator.

Proof. After a long time, T say, we have

sW
j (T ) = −viT +

∑

j

aji #{t : sW
j = 0, t ∈ [0, T ]} + o(T )

by the ergodicity assumption. ✷

Lemma-Definition 2.2. If MW is ergodic, then the second vector field vW

on the face Λ(W ) is defined by

(vW )i = − vi +
∑

j∈D(i)∩W

ajiπ
W
j , i 6∈ W,

(vW )i = 0, i ∈ W ;

(2.3)

in shorthand notation

vW = −PV \W v + PV \W AπW . (2.4)



144 F.I. Karpelevich, V.A. Malyshev and A.N. Rybko

Then in the Euler limit we move locally along the (ergodic) face Λ(W ) with
constant speed vW , that is, if at some time, 0 say, we are on the face Λ(W ),
then for τ sufficiently small

∂m

∂τ
= vW ,

where

m(τ) = lim
N→∞

1

N
s(τN).

The proof is quite standard and so we will not give it here (see [7] and references
therein).

The main simplification of this model with respect to the general random
walks in ZN

+ described in [7], is that we can calculate the second vector field from
a finite system of linear algebraic equations. The problem is that this system
possibly has solutions (spurious solutions) for non-ergodic faces as well. This
means that we cannot get ergodicity conditions by using purely algebraic meth-
ods. One possibility to get the classification is by induction to the dimension.
We define the inductive steps as follows.

• Assume that we already classified all induced chains of dimension less or
equal to k. Then using formula (2.3) we calculate the second vector field
for all ergodic faces of dimension at least N − k.

• Take some induced chain of dimension k + 1. Try to check whether this
chain is ergodic or not, by using some general results from [7] or other
methods.

• If it is ergodic, then we calculate the second vector field for the corre-
sponding face of dimension N − k − 1, etc.

Remark 1. For a given graph denote by Erg the subset of the parameter space,
for which the chain is ergodic. This set is normally open and detA can be equal
to 0 only on a subset of lower dimension. For points for which detA = 0 and
the chain is ergodic (do such cases exist??) the question arises how to calculate
the “physical” solution of the flow equations. The answer is that it can be the
limit of solutions for neighbouring points with detA 6= 0. This is consistent
with the expected continuity of the stationary probabilities with respect to the
parameters. This has not been proved in general (however, for some general
theorems see [2]), and hence this question should be considered separately for
given examples.

Definition 2.2. We will call M completely ergodic, if M and all MW are
ergodic (it then follows that all coordinates of the corresponding second vector
fields are negative, provided that they are non-zero).
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Theorem 2.1. Inductive ergodicity and transience conditions.
For the Markov chain M to be (completely) ergodic it is sufficient that the two
following conditions hold:

(i) All Markov chains MW , | W |<| V |, are completely ergodic;
(ii) for all k ∈ V we have

vk >
∑

j∈D(k)

ajkπ
V \{k}
j .

For the Markov chain M to be transient it is sufficient that the two following
conditions hold:

(i′) The chain MW is ergodic for some W ;
(ii′) for all k 6∈ W we have

vk <
∑

j∈D(k)

ajkπW
j .

Proof. Condition (ii′) means that we go off to ∞ along some (N−k)-dimensional
face. Under condition (ii) ergodicity follows from the general theory in [7]. ✷

Remark 2. An obvious sufficient condition for non-ergodicity in purely alge-
braic terms is as follows. If detA 6= 0 and the (unique) solution of the flow
equations is not positive then the system is not ergodic.

The examples given below will illustrate the applicability of Theorem 2.1.

Proposition 2.1. (High temperature region). Assume aii, v to be fixed. Then
there exists a > 0 such that conditions (i) and (ii) of Theorem 2.1 hold for all
aij < a, i 6= j.

Remark 3. The constant a will be specified in the corollary to Theorem 3.1
below.

Proof of Theorem 2.1. The validity of the assertion is evident, because the sum
in the right-hand side of the formula for the second vector field is small with
respect to min

i
vi. ✷

Proposition 2.2. (Symmetric case, see [1] and [3]). Assume that

vi = v, aii = a, aij = b, i 6= j, a 6= b.

The Markov chain is ergodic if and only if b < a.

Proof. Under the assumption of the theorem ergodicity of the system implies
that the πis are all equal (start from the symmetric distribution; it will remain
symmetric all the time) and for | W |= k we have

πW
i = π =

v

a + b(k − 1)
.
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This follows from the flow equations. Then condition (ii) of Theorem 2.1 is
equivalent to

πbk =
bk

a + b(k − 1)
v < v,

which holds for all parameters and all b < a. This gives ergodicity for b < a by
induction. If b > a then the coordinates of the second vector field on any face
are all positive, and so the system is transient by Proposition 1.2.3 of [7]. ✷

Case a = b is more interesting. We do not consider it here.
The case of symmetric nodes i = 4, 5, . . . , N and arbitrary parameters for

nodes 1,2 and 3 can be considered as well. But we cannot expect complete
ergodicity without any further assumptions.

Theorem 2.2. Under the conditions of Theorem 2.1 the Euler limit

m(τ) = lim
N→∞

1

N
s[xN ]([τN ])

exists for all x ∈ Λ(W ) and all τ > 0. Moreover, it is equal to x + vW τ , where

vW ≡
(

−vi +
∑

j∈D(i)∩W

aji πW
j , i 6∈ W

)

for all x ∈ Λ(W ) and all τ > 0, such that x + vW τ still belongs to the face
Λ(W ).

Remark 4. It follows that our “random walk” is acyclic (see [7]) under the
conditions of Theorem 2.1. Moreover, in the ergodic case all vectors of the
“second vector field” have negative coordinates only. Note that negativity of
the coordinates of the second vector field on all faces often implies negativity
of the coordinates of the first vector field (i.e. mean drifts). This allowed Marie
Cottrell to obtain sufficient ergodicity conditions (see Proposition 3.2.3 in [1])
that are closely related to Theorem 3.2, by only using the first vector field. We
refer to the remark following Theorem 3.2.

Dimension 2.

Note that the one-dimensional chain is always ergodic. For two nodes, 1 and
2, and 6 parameters vi, aij we have the following result.

Proposition 2.3. The chain is ergodic if and only if

v1
a22

v2
> a21, v2

a11

v1
> a12.

The chain is transient if and only if there is at least one node i, such that

vi
ajj

vj
< aji, j 6= i.

Otherwise the chain is null recurrent.
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Proof. Both coordinates of the drift vector are negative inside the quarter
plane. When the point reaches axis 1 say (far away from axis 2), it jumps to a
distance a22 from axis 1. The time to reach axis 1 again along the 2-direction
is t = a22/v2. However upon jumping, the point also jumped a distance a21

upward along axis 1, and this amount should be less than tv1 for the point to
have a resulting movement towards the origin. This gives one condition. The
second condition is argued similarly. The formal proof just repeats the proof
for random walks in [2]. ✷

Dimension 3.

We can obtain a complete classification for this case as well. This is analo-
gous to random walks in ZN

+ . However, we will only demonstrate the existence
of cases, in which the network is not strongly acyclic (a random walk is called
strongly acyclic if the corresponding dynamical system has the following prop-
erty: starting from an ergodic face we go to 0 without intersecting non-ergodic
faces). It is sufficient to construct an example of a negative 1-coordinate of
v12 and a positive 3-coordinate of v123. As a result we will necessarily hit the
one-dimensional axis 2, but we will immediately leave it along the face 23.

We also want to show that a cycle is possible for dimension 3. Consider the
second vector field on the two-dimensional faces. On face 23 we go from axis 2
to axis 3, if

v2
a11

v1
> a12, v3

a11

v1
< a13.

Similarly on face 13 we go from axis 3 to 1, and on 12 from 1 to 2, if

v3
a22

v2
> a23, v1

a22

v2
< a21

v1
a33

v3
> a31, v2

a33

v3
< a32.

To construct a cycle we choose vi, aii arbitrarily and we adjust the 6 remaining
parameters aij , i 6= j, to satisfy all these inequalities.

Dimension 4 and more.

We will only mention the existence of parameters for which scattering phe-
nomena (see [7]) occur, as for 4-dimensional random walks. We will see later
that usually in the transient case many ways exist for going to infinity. It follows
that with some positive probability we go to infinity in any possible way. It is
more difficult to show that scattering exists in the ergodic case as well. We will
not prove it here.

Compactification of RN
+ .

For each W , including ∅, we add points

Λ∞(W ) = {(x1, . . . , xN ) : xi ≥ 0, i ∈ W, xj = ∞, j 6∈ W}.
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We denote this compactification by QN
+ , the convergence notion used being

coordinate-wise convergence. The Λ∞(W ) are called faces at ∞. Define the
evolution on these faces as follows: the coordinates equal to ∞ are invariant,
whereas the evolution of the other coordinates occurs as in the Markov chain
MW .

If the basic chain is transient, then this compactification can be used for a
detailed study of its behaviour. In particular, we can define stationary states
for this compactification. These are probability measures µ∞(W ), with support
on the face Λ∞(W ). Stationary states appear, when in the basic chain we go
off to infinity along some face.

Scattering.

Start from some initial condition and let the face Λ(V \W ) be an outgoing
face. Then we converge to a convex combination

∑

W

pW µ∞(W ). If the pW

with pW 6= 0, depend on the initial conditions then, as in [7], we will say that
scattering phenomena occur.

3. Selfadjoint Operators

3.1. General Results.

Scalings.

The behaviour of the system is invariant with respect to the following scalings
of the parameters.

• We leave aij unchanged, but we scale the other parameters

v → vα, t →
t

α
.

In this case the dynamical system does not change at all.

• We do not change t and v, but we take

aij → αaij

and we scale the initial state x(α)(0) = αx(0) = αx. The new dynamical
system is given by m(α)(t) = αm(t/α).

Consider some finite graph G and let aij = 0 if i, j are not connected by
a link. We assume vi, aii, aij = aji to be positive, but otherwise arbitrary.
The resulting operator A is defined on RN . We further use the scalar product

(x, y) =
N
∑

i=1

xiyi in this space.

Theorem 3.1. Assume that the operator A satisfies the two following condi-
tions:
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• A has a positive spectrum;

• the equation
Aπ = ~v

has a positive solution (note that this solution is unique, because detA > 0
by the first condition).

Then the Markov chain is ergodic. Moreover, it has a linear Lyapunov function.

Proof. Consider the following linear function on RN
+ :

f(x) =
∑

i

xiπi.

If we can prove that for any ergodic face W and for ǫ > 0 sufficiently small we
have

f(x + ǫvW (x)) − f(x) < −δ,

then we can use Theorem 2.1 from [8] to prove that the Markov chain is ergodic.
So, for any ergodic W we have to prove that

∑

i6∈W

πiv
W
i = (π, vW ) < −δ.

From (2.4) and (2.2) we get

vW = −~v + AπW .

As v = Aπ, we have
vW = −π + πW .

Hence
(π, A(−π + πW )) = (π − πW , A(−π + πW )),

since vW and πW are perpendicular. Then

(π − πW , A(−π + πW )) = −(r, Ar) < 0,

where r = π − πW . Clearly r 6= 0, as πx > 0 for all x and πW
x = 0 for x 6∈ W

by the definition of πW . This completes the proof of the theorem, as there are
only finitely many non-zero vectors r. ✷

Consider the family of matrices Aθ = A + θE with entries aij(θ) = aij ,
if i 6= j, and aij + θ otherwise. For θ sufficiently large it is clear (see the
high temperature region example above) that our process is ergodic. Define
θ∗ = inf{θ : the process is ergodic ∀ θ1 > θ}.

Next we state a simple corollary providing sufficient conditions for a face to
be ergodic.
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Corollary 3.1. Let A be self-adjoint.

• If the conditions of Theorem 3.1 hold, then for the ergodicity of Λ = Λ(W )
it is sufficient that πW

i > 0 for all i ∈ W . We would like to point out that
this condition is “almost” necessary: only the case that πW

i = 0 for some
i and πW

j > 0 for all other j is omitted.

• If the spectrum of PW APW is positive and Λ is ergodic, then there exists a
non-negative linear Lyapunov function f(y) =

∑

i∈W πW
i yi for the induced

chain MW , yi ≥ 0, i ∈ W . This yields the ergodicity of the induced chain
MW .

Proof. If the spectrum of A is positive, then the spectrum of PW APW is also
positive and so the conditions of Theorem 3.1 hold for the induced chain. This
proves the first assertion. The two other assertions can be proved similarly to
the proof of Theorem 3.1. ✷

Definition 3.1. The network with a self-adjoint corresponding operator A is
said to be in the generic situation, if the vector ~v is not perpendicular to the
eigenvector ξ1 corresponding to the minimal eigenvalue of A.

Corollary 3.2. If A is in the generic situation, then

θ∗ = inf{θ : ∀i, ∀θ′ > θ, πi(θ
′) > 0}

where πi(θ) is the i th coordinate of the solution πθ to the equation

Aθπθ = ~v.

Proof. The eigenvectors of Aθ and A are equal and they form an orthonormal
basis of RN . The eigenvalues λi(θ) of Aθ are given by

λi(θ) = λi + θ, i = 1, . . . , N,

for λi the eigenvalues of A. For ~v and πθ satisfying

Aθπθ = ~v,

it follows that

πθ =

N
∑

i=1

ci

θ + λi
ξi,

where ci = (ξi, ~v), i = 1, . . . , N, are the coefficients of the expansion of ~v into
eigenvectors ξi of A:

~v =

N
∑

i=1

ciξi.
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So, if ci 6= 0, then the vector function πθ has a simple pole at the point θ = −λi.
In particular, πθ has a simple pole at θ = −λ1. Consequently, at least one of
the coordinates of the vector function πθ changes sign in the neighbourhood of
the point θ = −λ1. Let us define

θ0 = inf{θ : ∀ i, ∀ θ′ > θ, πi(θ
′) > 0}.

Then θ0 ≥ −λ1. Futhermore, it is clear that θ∗ ≥ θ0. On the other hand, if
θ > θ0 then both conditions of Theorem 3.1 hold. Consequently, the process is
ergodic. So θ∗ ≤ θ0. This completes the proof. ✷

Remark 5. We do not know of any examples where the conditions of Theo-
rem 3.1 are not necessary for the ergodicity of s(t). In other words, do θ < θ∗

exist for which the process corresponding to Aθ is ergodic? Is it true that this
is impossible for generic A?

Consider the following class of graphs G. Let ri =| D(i) | and r = max
i

ri.

Further let aii = a and aij = 1 for i 6= j for which i, j are connected by a link:
this is the “self-adjoint” case. We denote by A = D + aE the operator defined
by the right-hand side of equation (2.1) for W = V . Note that A and D are
self-adjoint with respect to the scalar product (f, g) =

∑

figi in RN
+ .

In the sequel we will assume that vi = v. Furthermore, we assume that there
is a maximal “cross” C in G: it is the set of vertices D(i), for which ri = r and
j1 6∈ D(j2) for any j1, j2 ∈ D(i). For this class of graphs the following assertion
holds.

Theorem 3.2. For the Markov chain to be completely ergodic it is necessary
and sufficient that a > r.

Proof. Let a ≤ r. We will consider the face Λ having coordinates equal to 0 in
the vertices of the maximal cross and positive coordinates in all other vertices,
including the centre of the maximal cross. In other words, W = C. We will show
that the second vector field on this face has a positive coordinate in the centre
of the maximal cross. In fact, from the definition of maximal cross it follows
that the zero coordinates for this face are all isolated and that πW

j = va−1 for
j : xj = 0. Hence

vW
i = −v + rπW

j > 0

in the centre of the cross.
Next let a > r. Choose W arbitrarily and use Theorem 3.1 (we will omit

the index W ). All eigenvalues of Da−1 are inside the unit circle, since the row
sums of this matrix are less than 1. Hence the spectrum of Aa−1 = E + Da−1

is positive. We will prove for any W , that the solution π of the corresponding
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flow equations, which is given by

π = va−1(E + D/a)−1~1 =
[

va−1

∞
∑

1

(−1)n

an
Dn

]

~1

= va−1
[

∞
∑

k=0

D2k

a2k
(E − a−1D)

]

~1,

is positive. Indeed, by noting that all components of the vector (E − a−1D)~1
are positive, we find that all terms in the right-hand side of the above equation
are positive. ✷

Remark 6. In the preceding theorem the condition that the aij only take the
values 0, 1, can be weakened by choosing ri =

∑

j:j 6=i

aij instead.

Remark 7. Cottrell [1] notes that the vectors of the first vector field (i.e. the
mean drifts) for the embedded chain look inside the octant for each face, if

aij =







1, if j ∈ D(i),
0, if j 6= i, j 6∈ D(i),
a, if j = i,

and the number of neighbours in each point is less than a. Consequently the
initial process s(t) is ergodic.

3.2. One-dimensional interval

The formulations in this section can also be found in [3].
We will consider intervals [1, N ], where links only connect nearest neigh-

bours. We will always assume N > 1. Further we assume space homogeneity:

aii = a, vi = 1, ai,i+1 = ai,i−1 = 1, i = 2, . . . , N − 1.

Theorem 3.3.

1. The system is completely ergodic if and only if a > 2.

2. If N is odd and a < 2, then the process is transient.

3. If N is even and a < 2 cos(π/(N + 1)), then the process is transient. If
a > 2 cos(π/(N + 1)), then the process is ergodic.

4. The eigenvalues of the operator D are given by

λl = 2 cos
πl

N + 1
, l = 1, . . . , N,
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and the corresponding eigenvectors are

ξl = {sin
πlx

N + 1
, x = 1, . . . , N}, l = 1, . . . , N.

5. The solutions of the flow equations are given by (here it is convenient to
put πx = π(x) )

π(x) = L
(

1 +
rx
1 − rx

2 + rN+1−x
1 − rN+1−x

2

rN+1
2 − rN+1

1

)

,

where L = (2 + a)−1 and r1, r2 are the solutions to the equation

r2 + ar + 1 = 0.

Note that we omit the case a = 2 for odd N and a = 2 cos(π/(N + 1)) for N
even.

Before passing to the proof, let us note that the theorem gives the classi-
fication of all ergodic faces, because any W can be represented as a union of
connected intervals.

Proof of Theorem 3.3. The structure of the proof is as follows. We will deter-
mine a number acr, such that the network is ergodic by Theorems 3.1 or 3.2 for
a > acr. For a < acr it will appear that either π(x) has negative values or there
exists an ergodic face with the second vector field having positive coordinates
only (in the sequel we will call such faces “traps”). The proof will then follow
from Proposition 1.2.3 of [7].

The first assertion follows from Theorem 2.2, because r = 2 in the present
case. We will prove assertions 4 and 5.

We can write the flow equations for the interval [1, N ] = {1, 2, . . . , N} in the
following way:

1 = aπ(x) + π(x + 1) + π(x − 1). (3.1)

To solve these equations we put π(0) = π(N + 1) = 0 and π(x) = L + p(x),
where p(x) satisfies the homogeneous equation

p(x + 1) + p(x − 1) + ap(x) = 0, x = 1, . . . , N (3.2)

with boundary conditions

p(0) = p(N + 1) = −L. (3.3)

Equation (3.1) implies L = (2 + a)−1. The function p(x) = c1r
x
1 + c2r

x
2 with

constant c1, c2 turns out to satisfy (3.2). Constants c1, c2 can be determined
from (3.3). This proves assertion 5. Assertion 4 can be proved similarly.
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We prove assertion 2 by spotting a trap. Let N = 2k + 1, a < 2. The face
Λ(W ), W = {i = 2j+1, j = 0, 1, . . . , k}, is a trap. In this case all flow equations
are one-dimensional. Moreover, πi = a−1 for i odd and vW

i = 2a−1 − 1 > 0 for
i even.

Let us prove assertion 3. First we will show that the process is ergodic, if
a > 2 cos(π/(N + 1)). To this end we will check the conditions of Theorem 3.1.

Note that the minimal eigenvalue s(D) of the operator D satisfies

s(D) = 2 cos
πN

N + 1
= −2 cos

π

N + 1
> −a.

We only have to verify strict positivity of π(x) for all x = 1, . . . , N , but this is
simple. Indeed, assertion 5 implies that

π(x) = L

(

1 − (−1)x sin((N + 1)/2 − x)α

sin(N + 1)/2α

)

, x = 1, . . . , N,

where α = arccos(a/2). Since 0 < α < π/(N + 1), this implies the positivity of
π(x), x = 1, . . . , N.

Next assume that N is even and

2 cos
π

N − 1
< a < 2 cos

π

N + 1
. (3.4)

Consider the face Λ = {2}, and so W = {1, 3, 4, . . . , N}. It is an ergodic face,
since the chains corresponding to W ′ = {1} and to W ′′ = {3, 4, . . . , N} are
ergodic (this has been proved in the first part of assertion 3). We will calculate
the second vector field. It has only one component v2 = vW

2 with

v2 = π1(1) + πN−2(1) − 1 =
1

a
+

1

2 + a

(

1 +
sin[α(k − 1 − 1 + 1

2 )]

sin[α(k − 1 + 1
2 )]

)

− 1,

where we used the fact that the roots of the equation r2+ar+1 = 0 are complex
conjugate and are equal to r1 = −eiα, r2 = −e−iα, for a < 2. Note also that
a = 2 cosα, since r1 + r2 = −a. Consequently we can write

v2 =
1

2 cosα
+

1

2(1 + cosα)

sin(k − 1/2)α + sin(k − 3/2)α

sin(k − 1/2)α
− 1.

Hence

v2 =
1

2 cosα
+

2 cos(α/2) · sin(k − 1)α

2 · 2 cos2 α/2 sin(k − 1/2)α
− 1.

Thus

v2 =
1

2 cosα
+

sin(k − 1)α

2 cos(α/2) sin(k − 1/2)α
− 1.
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Note that

sin(k − 1)α = sin[(k − 1/2)α − α/2]

= sin(k − 1/2)α cos(α/2) − sin(α/2) cos(k − 1/2)α.

Consequently,

v2 =
1

2 cosα
+

1

2
−

sin(α/2) cos(k − 1/2)α

2 cos(α/2) sin(k − 1/2)α
− 1.

Further we have

v2 =
1

2 cosα
−

1

2

(

1 +
sin(α/2) cos(k − 1/2)α

cos(α/2) sin(k − 1/2)α

)

.

Let us calculate the expression within brackets:

1 +
sin(α/2) cos(k − 1/2)α

cos(α/2) sin(k − 1/2)α
=

sin kα

cos(α/2) sin(k − 1/2)α
.

We get

v2 =
1

2 cosα
−

sin kα

2 cos(α/2) sin(k − 1/2)α
,

that is,

v2 =
cos(α/2) sin(k − 1/2)α − sin kα cosα

2 cosα cos(α/2) sin(k − 1/2)α

=
sin kα (cos2(α/2) − cosα) − cos(α/2) sin(α/2) cos kα

2 cosα cos(α/2) sin(k − 1/2)α
.

Finally we get

v2 =
sin kα sin2(α/2) − cos(α/2) sin(α/2) cos kα

2 cosα cos(α/2) sin(k − 1/2)α

=
− sin(α/2) cos(k + 1/2)α

2 cosα cos(α/2) sin(k − 1/2)α
.

We have α >
π

N + 1
=

π

2k + 1
, as a < 2 cos

π

N + 1
. Then by (3.4) we find that

(k +
1

2
)α >

π

2
, α(k −

1

2
) <

π

2
and cos(k +

1

2
)α < 0.

It follows that v2 > 0. ✷
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3.3. Traps for the interval

A face with all coordinates of the corresponding second vector-field pos-
itive will be called a trap. In other words, a trap is any face along which we can
go to infinity.

Assume that the system on the interval is not ergodic. We will describe all
traps. Denote an arbitrary face by a sequence of ones (1s correspond to positive
coordinates) and zeroes (0s correspond to zero coordinates).

Proposition 3.1.

1. If a < 1, then there is a one-one correspondence between traps and se-
quences {τi, i = 1, . . . , N}, τi = 0, 1, with the following properties.

a) If τi = 1 then either τi−1 = 0 or τi+1 = 0. In other words, more than
two ones in a row is impossible.

b) If τi = 0 then τi−1 = τi+1 = 1. In other words, two zeroes in a row is
impossible.

c) Two ones in a row at the end-points of the interval is impossible, i.e. any
of τ1 = τ2 = 1 and τN−1 = τN = 1 is impossible.

2. Let a⋆ = 2 for N odd and a⋆ = 2 cos(π/(N + 1)) for N even.

Let 1 ≤ a < a⋆ and let β = [1/2(πα−1 − 1)], where α = arccos(a2−1) ([·]
stands for “integer part”). Then there is a one-one correspondence be-
tween traps and sequences {τi, i = 1, . . . , N}, τi = 0, 1, with the following
properties.

a) τ1 = τN = 0.

b) All ones are isolated: if τi = 1, then τi+1 = τi−1 = 0.

c) The distance between the two closest ones is 2 or 2β+1, i.e. the number
of subsequent zeroes is 1 or at least 2β.

d) If there are 2β zeroes in a row, i.e.

τi1 = τi1+1 = . . . = τi1+2β−1 = 0,

then
τi1−3 = τi1+2β+2 = 1,

if i1 − 3 > 1 and i1 + 2β + 2 < N .

These restrictions constitute all possible restrictions on the sequences {τi}.

Proof. Theorem 3.3 describes all ergodic faces: if a < 1, then the sequence {τi}
corresponds to an ergodic face if and only if each zero is isolated (condition 1b)).
It is easy to see that vW

i > 0 only if 1a) and 1c) are valid.
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If 1 < a < a⋆, then the ergodic faces all correspond to sequences containing
isolated zeroes and subsequences of even length L with 2 cos(π/L + 1) < a. This
can be easily proved by induction.

Let us find necessary and sufficient conditions for all coordinates of the
second vector field on an ergodic face to be positive. Note that if τi = τi+2 = 0
and τi−1 = τi+1 = τi+3 = 1, then vi+1 = 2/a−1 > 0. To this end, it is necessary
that either

π(L)(1) + π(L′)(1) > 1 (3.5)

for L and L′ even, or
1

a
+ π(L)(1) > 1 (3.6)

(πL(1) stands for the first coordinate of the vector π(x) for N = L).
This is because in a trap for 1 < a < a⋆ there cannot be two ones in a

row, otherwise we would have an ergodic odd interval for a < 2. Using the
calculation of π(x) in Theorem 3.3 we get

π(L)(1) =
1

2 + a






1 +

sin(α
L − 1

2
)

sin(α
L + 1

2
)






.

Finally verifying the equations above explicitly, it is not difficult to see that
inequality (3.5) is impossible and inequality (3.6) is only possible when L/2 is
the integer part of (π/α − 1)/2. ✷

3.4. One-dimensional circle

The one-dimensional circle with N > 1 points is the interval [0, N ], where
the points 0 and N are identified.

Theorem 3.4.

1. If a > −2 cos 2π[N/2]
N , then the process is ergodic. Note that this condition

is equivalent to a > 2 for N even.

2. If a < −2 cos 2π[N/2]
N , then the process is transient. Note that this condi-

tion is equivalent to a < 2 for N even.

Proof. The calculations are even easier in this case: π(x) ≡ 1/(2a) and ~1 is the
eigenvector of D. The spectrum is

λl = 2 cos
2πl

N
, l = 0, 1, . . . , N − 1.

So assertion 1 follows from Theorem 2.1.
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To prove assertion 2, we first consider the case N = 2k and we prove that
the process is transient, if a < 2. As the initial state for our dynamical system
y(t) we take in this case: yi(0) = 0 for even vertices i and yi(0) > 0 for odd
vertices i. Then, as dyi/dt = 2/a > 1 for odd vertices, the proof follows from
Proposition 1.2.3 of [7].

If N = 2k + 1, we can proceed similarly. ✷

Traps for the circle.

Let b⋆ = −2 cos 2π[N/2]
N . The traps for the circle have the same structure

as the traps for the intervals. We only have to delete the boundary conditions:
condition 1c) for a < 1; condition 2a) for 1 < a < b⋆; in condition 2d) we do
not have to require i1 − 3 > 1 and i1 + 2β + 2 < N .

4. Products of networks

4.1. Tensor products of graphs

In this subsection we assume that the network has an arbitrary self-
adjoint operator A = (aij = aji), where aij = 0 for j 6= i, j 6∈ D(i) and aij > 0
for j ∈ D(i), and also an arbitrary vector ~v = {vi > 0}.

Let two networks be given with parameters (A,~v) and(B, ~u). Note that the
graphs of the networks are uniquely defined by the corresponding operators.

We define the tensor product (A⊗B,~v⊗~u) of these two networks as follows.
The set of vertices of the graph of the product network is the Cartesian product
V = V1 × V2 = {(i, j)}, i ∈ V1, j ∈ V2} of the sets of vertices of the two graphs.

We further define

a(i,j),(i1,j1) = ai,i1aj,j1 , vij = viuj.

Thus two different vertices (i, j) and (i1, j1) are connected in the new graph iff
i is connected with i1 (or i = i1) and j is connected with j1 (or j = j1).

Theorem 4.1.

1. The spectrum of the operator A⊗B consists of all products λiµj of eigen-
values of A and B.

2. The eigenvectors of A ⊗ B are the tensor products of the corresponding
eigenvectors of A and B.

3. Define the tensor product Λ1 ⊗ Λ2 of the faces Λ1 ⊂ RV1

+ and Λ2 ⊂ RV2

+ ,
in the following way. As before we represent the face Λ1 by a function on
the set of vertices V1 taking values 0, 1 only: this function takes the value
1 in a vertex if the corresponding coordinate is positive, and it takes the
value 0 otherwise. The construction for Λ2 is similar.
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We allocate 1 to vertex (i, j) ∈ V , if 1 was allocated to at least one of i
and j. Otherwise we allocate 0. In other words, W ((Λ1⊗Λ2) = W1×W2.

It then follows that the solutions of the flow equations on the face Λ1⊗Λ2

are given by
πW = πW1 ⊗ πW2 .

4. Denote by πA and πB the solutions to the equations

Aπ = ~v, Bπ = ~u

respectively. Let λ1 > 0 (µ1 > 0) be the minimal eigenvalue of A (B),
and let πA > 0, πB > 0 (as functions on the sets of vertices). Then the
network (A ⊗ B,~v ⊗ ~u) is ergodic.

5. Let the networks (A,~v) and (B, ~u) be transient, and let the face Λ1 be a
trap for (A,~v), and Λ2 for (B, ~u). Then Λ1 ⊗Λ2 a trap for (A⊗B,~v⊗ ~u),
if it is an ergodic face.

6. Let the network (A,~v) be transient and let the face Λ1 be a trap for (A,~v).
Let further (B, ~u) be ergodic. Then (A⊗B,~v⊗~u) is transient. Moreover,
Λ1 ⊗ (0B) is a trap for (A⊗B,~v ⊗ ~u) (where 0B is the face corresponding
to the origin in the network (B, ~u)), if it is an ergodic face.

Proof. Assertions 1–3 of the theorem are evident. Assertion 4 follows from
assertion 3 and Theorem 3.1. Assertions 5 and 6 follow from 3. ✷

The following corollary provides a partial explanation of the numerical re-
sults in [1].

Corollary 4.1.

• The tensor product of a number of ergodic one-dimensional networks (in-
tervals or circles) is ergodic.

• If the tensor product of a number of one-dimentional networks (intervals
or circles) contains at least one transient network, then the tensor product
is transient and the traps (not all of them) can be obtained as the tensor
products of traps in the transients factors and of origins in the ergodic
factors.

Proof. The first assertion of the corollary follows from Theorems 3.1, 3.3 and 3.4
and assertions 1, 4 of Theorem 4.1. To prove the second assertion it is sufficient
to prove (similarly to assertions 5 and 6 of Theorem 4.1), that the tensor product
of traps and/or origins is an ergodic face for the tensor product, when all factors
in the tensor product are one-dimensional. ✷

Lemma 4.1. The spectrum of PW APW is the union of the spectra for all con-
nected components of W , for any W in the one-dimensional interval.
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Proof of Lemma 4.1. This follows from Theorems 3.3 and 3.4 and the fact
that the conditions of Theorem 3.1 are necessary and sufficient for ergodicity in
the one-dimensional case. Here we use that PW APW is the direct sum of the
operators corresponding to the connected components of W , since each W is
the union of intervals. ✷

We will continue the proof of the corollary. Let us consider the induced
chain MW1 ⊗ . . .⊗ MWr , where W k = W (Λk) is a trap (or origin) for Ak. It is
sufficient to show that the spectrum of PW1⊗...⊗Wr

(A1 ⊗ . . . ⊗ Ar)PW1⊗...⊗Wr

is positive, since then we can apply the last lemma and Theorems 3.1 and 4.1.
Indeed, the spectrum of some Ak may not be positive, because some of the
factors are transient. But we can write

PW1⊗...⊗Wr
(A1 ⊗ . . . ⊗ Ar)PW1⊗...⊗Wr

= ⊗k[PW (Λk)AkPW (Λk)],

and so we can use the last lemma, since the spectrum of each factor in the
right-hand side is positive. ✷

5. Infinite Networks

The preceding results can be used to study infinite (countable) graphs as
well, although they cannot be automatically transferred to the infinite case. As
an example we will consider only a simple infinite graph: the one-dimensional
infinite lattice V = Z with links L = {(i, i + 1)} and

vi = v, aii = a, aij = 1, i 6= j.

Assume that the potentials can also take infinite values (see the compacti-
fication above), in which case they remain infinite forever. The problem is the
following: if we start with some initial configuration (with finite values in each
vertex), what is the limiting invariant measure?

Let us define an inhibition subset I ⊂ Z as the complement of a subset

. . . < ik < ik+1 < . . . ,

such that are one or two vertices between each pair ik, ik+1 of consecutive points
in this subset. This inhibition subset can be associated with some IMAGE and
the corresponding dynamics could be interpreted as the convergence to a given
image starting from some approximate image. In the following theorem we will
assume a < 1. In this case the sets I, Z\I turn out to have the same structure
as the traps in the first part of Proposition 3.1.

Theorem 5.1. Assume v = 1, a < 1. At time 0 set si(0) = L, i ∈ I, for some
L > 0, and si(0) = 0, i 6∈ I. Call vertex i ∈ I regular if i ∈ I and if si(t) → ∞
a.s., as t → ∞.
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Then the vertex i ∈ I is regular with probability 1 − ǫ, with ǫ = ǫ(L) → 0
as L → ∞.

Any vertex i 6∈ I has the following property: there exists an event F = F (L)
such that the conditional expectation E(si(t) | F ) is uniformly bounded in t
with P(F ) = 1 − ǫ(L), ǫ(L) → 0 as L → ∞.

Proof. Note first that our process is transient for all dimensions N > 1, if a < 1.
We can prove (using standard cluster expansion techniques, see [9]) that for L
sufficiently large there is (with probability 1) an infinite number of finite clusters
Ck ⊂ I (take the distance in the definition of the cluster equal to 2) of I, where
si(t) will not tend to ∞. Any i ∈ I belongs to the union of these clusters with
some probability tending to 0 as L → ∞. ✷

The theorem shows that in the one-dimensional case this model is rich in
phase transitions related to memory. The above theorem shows that there is
a continuum of possible stable configurations. In some sense one can get an
“arbitrary” image in this case: let us consider the following coding of images.
We allocate zeroes to all points of B, we allocate 1s to all separate points of I
and we allocate 2 to all coupled vertices of I. Now (forgetting about zeroes)
one can get any arbitrary sequence of 1s and 2s, constituting an arbitrary one-
dimensional image.
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