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2 Université d’Orleans, UFR sciences, MAPMO 1803, B.P. 6759 45067, Orleans Cedex 2,
France

3 INRIA, Domaine de Voluceau, Rocquencourt, B.P. 105–78153, Le Chesnay Cedex, France

Received August 23, 1996

Abstract. A finite string α = a1a2 . . . an is a sequence of symbols from
some alphabet R = {1, 2, . . . , r}. We define its Markovian evolution by some
transition probabilities, dependent only on the right-most symbol, of erasing
this symbol or of substituting it by two other symbols. In the case that such
chains are null recurrent, we get limit laws for the distribution of the length of
the string, of its right-most symbol and of the number of symbols i in the string
in the large time limit. Applications of these results are random walks on some
non-commutative groups and queues with several customer types.
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1. Main Results

A finite string α = a1a2 . . . an is a sequence of symbols from an alphabet
R = {1, 2, . . . , r}. We shall always enumerate finite strings from left to right,
starting with 1; then n = n(α) = |α| is called the length of the string and an its
right-most symbol. The set of all finite strings, including the empty one ∅, is
denoted by A. Concatenation of two strings α = a1 . . . an and β = b1 . . . bm is
defined by αβ = c1 . . . cn+m, where c1 = a1, . . . , cn = an, cn+1 = b1, . . . , cn+m =
bm.

It is useful to consider also semi-infinite strings. A semi-infinite string is an
infinite sequence α = . . . yn−1yn of symbols from the alphabet with a specified
enumeration. More exactly, semi-infinite strings are defined by pairs (n, α),
where n ∈ Z is called the position of the particle (or the right-most end of the
string) and α is the environment on the left of the particle (which is changed
by the particle), i.e. a function α : (−∞, n] → R, for any n <∞. The set of all
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semi-infinite strings is denoted by A∞. The concatenation ρδ of the semi-infinite
string ρ and the finite string δ is defined similarly.

The evolution of semi-infinite strings is defined by the following transition
probabilities

q(γ, δ) = P{ξt+1 = ρδ | ξt = ργ},
where ρ is a semi-infinite string, and γ and δ are finite with n(γ) = d, n(δ) ≤ 2d.
Note that they do not depend on ρ. The parameter d characterises the “depth”
of the interaction.

For finite strings, one should also specify the transition probabilities pα,β

from strings α of length less or equal to d.
Throughout the paper we shall assume that d = 1. Generalisation to the

case d > 1 seems straightforward, but demands a lot of technical work. Then
q(a, ∅) is the probability of erasing the last symbol x of the environment and
of subsequently moving to the left, q(a, b) is the probability that the particle
does not move but substitutes the right-most symbol of the environment by a,
and q(a, bc) is the probability of a jump to the right whilst substituting a by
the two symbols bc. By L we denote the Markov chain on the state space A
with transition probabilities {q(a, ∅), q(a, b), q(a, bc), q(∅, a), q(∅, ∅)}a,b,c∈R, with
q(∅, a), q(∅, ∅) the transition probabilities for the empty string to jump to a or
to ∅ respectively. By ξt we denote the state of the Markov chain L at time t.

To avoid notational complications, we will always assume that all q(·, ·) are
positive. Let us remind (see [5]) that a necessary and sufficient condition for
null-recurrence of L is

λ = 1, (1.1)

where λ is the maximal eigenvalue of the r × r-matrix A defined by

Aab = q(a, b) +
∑

c

(q(a, bc) + q(a, cb)).

Let e = (e1, . . . , er) be the eigenvector corresponding to λ. Define a Lyapunov
function

f(α) =
r∑

a=1

eana, (1.2)

where na is the number of symbols a in the string α. One can easily check that

(f(ξt+1) | ξt) = f(ξt), if ξt 6= ∅.

To avoid unnecessary complications we consider an even simpler model de-
fined by

pρa,ρab = P{ξt+1 = ρab | ξt = ρa} = qab,

pρa,ρ = P{ξt+1 = ρ | ξt = ρa} = qa.
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We use the special symbol ∗ to denote an empty left end of the string or simply
the empty string. Put q∗ = 0.

It is interesting to remark, that the null-recurrence condition can also be
written in the following form. Consider two matricesQ = {qab} and Q̂ = {qaδab}
(a diagonal matrix). Then (1.1) becomes the condition that there exists a
positive vector π = {πa}, such that

πQ = πQ̂. (1.3)

This can be interpreted in the following way. For some distribution of the
last (right-most) symbol of the string, the mean drift of the particle (i.e. of n(t),
the length of the string at time t) is zero.

Hereafter in this section we will formulate our main results and we will prove
these in the following sections. Our proofs are a mixture of purely probabilistic
methods and complex variable methods.

Many authors considered random walks on free and similar groups. In the
cases considered, only transient chains appeared (see [12] and references therein).
Transient cases were covered in our previous papers in a more general situation
(see [3], [5], see also review [4]). However, for the null recurrent case, no results
existed in the literature until now.

Other applications are queueing models with several customer types.

1.1. Stabilisation law

Let n(t) = |ξt| be the length of the string at time t and ξt = a1(t) . . . an(t)(t)
the string itself at time t. Let

Lastk(ξt) = an(t)−k+1(t) . . . an(t)(t), k ≤ n(t),

be the right-most substring of ξt of length k at time t. By ξt(k), k ≤ n(t) we
denote ak(t).

Theorem 1.1. Let δ be a string of length k = |δ|. Then there exists a “lim-

iting” probability pLast(δ), such that for any initial state β ∈ A of the Markov

chain L
P{n(t) ≥ k,Lastk(ξt) = δ | ξ0 = β} → pLast(δ),

as t → ∞. This convergence is uniform in the set of all initial strings β ∈ A,

i.e. there exists ψt(δ) → 0 as t→ ∞, such that for any β ∈ A
∣∣P{n(t) ≥ k,Lastk(ξt) = δ | ξ0 = β} − pLast(δ)

∣∣ ≤ ψt(δ).

1.2. Mixing property

Theorem 1.2. Let pt(a1 . . . an) = P{ξt = a1 . . . an | ξ0 = ∗} and

πt,n(a1 . . . an) =
1

Zt,n
pt(a1 . . . an),
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where Zt,n = P{|ξt| = n | ξ0 = ∗}. Let {σ1, . . . , σn} be random variables with

values in R and with distribution P{σ1 = a1, . . . , σk = an} = πt,n(a1 . . . an).
Let Fk be the σ-algebra on our probability space generated by the random

variables {σ1, . . . , σk} and Fk be the σ-algebra generated by the random vari-

ables {σk, . . . , σn}. Then there exist C1 > 0, 0 < C2 < 1, such that for any

0 ≤ k < m ≤ n and any events A ∈ Fk, B ∈ Fm

|P(B | A) − P(B)| < C1C
m−k
2 ,

with the constants C1, C2 not depending on t, n.

1.3. Law of Large Numbers

Let na(t) be the number of symbols a in the current string ξ(t).

Theorem 1.3. There exist positive na such that for any initial condition

na(t)

n(t)

P→ na, as t→ ∞.

1.4. Central Limit Theorem

Theorem 1.4. For some σ > 0

n(t)

σ
√
t

D→ |w|, as t→ ∞,

in distribution, where w is a normally distributed random variable with param-

eters (0, 1).

The next theorem follows as a corollary.

Theorem 1.5. Let ~n(t) = (n1(t), . . . , nr(t)). Then the following limit exists,

~n(t)√
t

D→ |w|~c, as t→ ∞,

where w is normally distributed and the vector ~c is a constant vector.

This result follows easily from the two previous theorems. But we will also
give an independent analytic proof, which is of independent interest.

2. Proofs

First we will prove some auxiliary results.



Null recurrent string 431

Lemma 2.1. Let

pa1...an
(z) =

∞∑

t=0

ztpt(a1 . . . an).

Then for all n > 0 and all a1, . . . , an, we have

pa1...an
(z) = znϕ∗(z) q∗a1 ϕa1(z) qa1a2 ϕa2(z) . . . qan−1an

ϕan
(z),

where

ϕa(z) =
∑

t≥0

ztϕt
a, ϕ

t
a = P{ξt = a, |ξk| ≥ 1 for k ≤ t | ξ0 = a}, for a ∈ R,

ϕ∗(z) =
∑

t≥0

zt
P{ξt = ∗ | ξ0 = ∗}.

The functions {ϕa(z)}a∈R∪{∗} satisfy the following system of equations

ϕa(z) = 1 + z2
∑

b∈R

qabqaϕb(z)ϕa(z). (2.1)

Proof. From the Markov property of the process ξt we have

pt(a1 . . . an) =
∑

t1≥0

pt1(a1 . . . an−1)qan−1an
(2.2)

×P{ξt = a1 . . . an, |ξk| ≥ n for k with t ≥ k ≥ t1 + 1 | ξt1+1 = a1 . . . an}.

The third term in the right-hand side of (2.2) does not depend on a1 . . . an−1.
So we can put

ϕt−t1−1
an

= P{ξt = a1 . . . an, |ξk| ≥ n for k

with t ≥ k ≥ t1 + 1 | ξt1+1 = a1 . . . an}
= P{ξt−t1−1 = an, |ξk| ≥ 1 for k ≤ t− t1 − 1, | ξ0 = an}.

We have
pt(a1 . . . an) =

∑

t1+t2+1=t

pt(a1 . . . an−1)qan−1an
ϕt2

an
. (2.3)

Hence,

pt(a1 . . . an) =
∑

t0+t1+···tn+n=t

P{ξt0 = ∗ | ξ0 = ∗}q∗a1ϕ
t1
a1
. . . qan−1an

ϕtn
an
.

It is easy to derive the following equations for ϕt
a

ϕ0
a = 1, (2.4)

ϕt
a =

∑

b,t1+t2+2=t

qabϕ
t1
b qbϕ

t2
a , t > 0.
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The lemma is proved. 2

Remark. We have ϕa =
∑

t ϕ
t
a = 1/qa. Indeed, by the recurrence of the

process ξt we have that

∑

t≥0

ϕt
aqa = P{ξt = ∗ for some t | ξ0 = a} = 1.

It is useful to use a more compact notation. Define for t > 0, a ∈ {∗} ∪ R,
b ∈ R,

ht
ab = qabϕ

t−1
a , hab(z) =

∑

t>0

ztht
ab.

From the previous remark, we have

hab(1) = qab/qa.

By null-recurrence, the maximum eigenvalue of the matrix H = {hab(1)}a,b∈R

equals 1. In terms of hab(z) we get

pa1...an
= ϕ∗h∗a1ha1a2 . . . han−1an

. (2.5)

The following more general recurrent formula can be derived similarly to the
proof of (2.3).

Lemma 2.2. Let a ∈ R, β = b0b1 . . . bk, α ∈ a0a1 . . . an, b0 = a0 = ∗, k, n ≥ 0
and n = |α|. Then

P{ξt = αa | β} = 1αa(b0 . . . bmin(n+1,k))P{mt = n+ 1} (2.6)

+
∑

t1+t2=t

P{ξt1 = α | β}ht2
ana,

where mt = mins≤t |ξs|.

In the following subsections we will prove the main theorems.

2.1. Stabilisation law

Here we will give the proof of Theorem 1.1.

To simplify formulae, let us consider the case that δ = a ∈ R. To demon-
strate the main ideas, we will start with the case ξ0 = ∗.

Let pt
Last(a) = P{Last0(ξt) = a | ξ0 = ∗}. Then

pt
Last(a) =

∑

n≥0

∑

a1,...,an−1∈R,
a0=∗

pt(a0a1 . . . an−1a).
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From (2.6) we get

pt
Last(a) =

∑

b∈R∪{∗},
t1+t2=t

pt1
Last(b)h

t2
ba

= P{ξt = a | ξ0 = ∗}+
∑

b∈R,
t1+t2=t

pt1
Last(b)h

t2
ba. (2.7)

The first term tends to zero by non-ergodicity of the Markov chain. Since
∑

a∈R

pt
Last(a) = 1 − P{ξt = ∗ | ξ0 = ∗},

we similarly obtain

lim
t→∞

∑

a∈R

pt
Last(a) = 1.

Hence, for any subsequence tk such that ptk

Last(a) tends to some limit, l0a say, for
all a ∈ R, we have ∑

a∈R

l0a = 1.

We want to prove that l0a = la, where l = {la}a∈R is the left eigenvector of H

lH = l

with
∑

a la = 1.
Indeed, by diagonalisation we can find a subsequence {ptn

Last(a)}a∈R,l>0 such
that for all a ∈ R and k ≥ 0 there exist constants l−k

a with

lim
n→∞

ptn−k
Last (a) = l−k

a

and ∑

a

l−k
a = 1.

Passing to the limit in (2.7) along the subsequence tn, we get for all a, k that

l−k
a =

∑

b,t>0

l−k−t
b ht

ba.

Let {ε(t)}t≥0 be a sequence with

ht
ab ≥ ε(t) ≥ 0,

for all a, b ∈ {1, . . . , r}, t > 0 and

∑

t>0

ε(t) = ε > 0. (2.8)
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Then for any k ≤ 0 we have

|lka − la| =
∣∣∣

∑

b,t>0

(lk−t
b − lb)h

t
ba

∣∣∣

=
∣∣∣

∑

b,t>0

(lk−t
b − lb)(h

t
ba − ε(t)) +

∑

t>0

ε(t)
∑

b

(lk−t
b − lb)

∣∣∣

=
∣∣∣

∑

b,t>0

(lk−t
b − lb)(h

t
ba − ε(t))

∣∣∣

≤
∑

b,t>0

|lk−t
b /lb − 1|lb(ht

ba − ε(t))

≤ la(1 − rε/la) sup
t>0,b∈R

|lk−t
b /lb − 1|.

So for c = maxa∈R(1 − rε/la) < 1 and all k ≤ 0 we have

|lka/la − 1| ≤ c sup
t<k,b∈R

|ltb/lb − 1|. (2.9)

Using this inequality for each term in the right-hand side of (2.9) we get

|lka/la − 1| ≤ c2 sup
t<k−1,b∈R

|ltb/lb − 1|.

And after n such steps we have

|lka/la − 1| ≤ cn+1 sup
t<k−n,b∈R

|ltb/lb − 1|.

It follows that lka = la for all k, a.

This kind of argument is typical also for the more difficult cases that we will
consider later on.

Next we consider the general case. Let β = b0b1 . . . bn be the initial state of
ξt, i.e. ξ0 = β. Define pt

Last(a) = P{Last0(ξt) = a | ξ0 = β}. Then from (2.6)
we have

pt
Last(a) =

n∑

k=0

P{|ξt| = mt = k | ξ0 = β}1a(bk) +
∑

b∈R∪{∗},
t1+t2=t

pt1
Last(b)h

t2
ba

=

n∑

k=0

P{|ξt| = mt = k | ξ0 = β}1a(bk) + P{ξt = a, ξt−1 = ∗ | ξ0 = β}

+
∑

b∈R,t1≤t/2
t1+t2=t

pt1
Last(b)h

t2
ba +

∑

b∈R,t1>t/2
t1+t2=t

pt1
Last(b)h

t2
ba,
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where mt = mins≤t |ξs|. Define

At(β, a) =

n∑

k=0

P{|ξt| = mt = k | ξ0 = β}1a(bk)

+ P{ξt = a, ξt−1 = ∗ | ξ0 = β} +
∑

b∈R,t1≤t/2
t1+t2=t

pt1
Last(b)h

t2
ba.

The next inequality is derived similarly to (2.9)

∣∣∣p
t
Last(a)

la
− 1

∣∣∣ ≤
(
1 − r

la

t/2∑

s=1

ε(s)
)

max
b∈R,

t/2≤s<t

∣∣∣p
s
Last(b)

lb
− 1

∣∣∣

+
1

la
At(β, a) +

1

la

∑

b∈R,s≥t/2

lbh
s
ba. (2.10)

Remark that ε(1) can be chosen positive, since h1
ba = qba > 0 for all b, a ∈ R.

Hence,

(1 − r

la

t/2∑

s=1

ε(s)) < c, for all a ∈ R,

for some c < 1. Suppose that there exists a non increasing function Bt with
Bt → 0, as t→ ∞, and for all β ∈ A, a ∈ R

1

la
At(β, a) +

1

la

∑

b∈R,s≥t/2

lbh
s
ba < Bt.

Define

Ct = sup
β

max
a∈R

∣∣∣P{Last0(ξt) = a | ξ0 = β}
la

− 1
∣∣∣.

From (2.10) we get
Ct ≤ Bt + c max

t/2≤s<t
Cs.

Hence

lim sup
t→∞

Ct ≤ c lim sup
t→∞

max
t/2≤s<t

Cs

≤ c lim
t→∞

sup
s≥t/2

Cs

= c lim sup
t→∞

Ct.

Therefore,
lim sup

t→∞
Ct = 0.
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We should prove therefore that such Bt exists. For some terms this follows
from convergence of

∑
t≥0 h

t
ba and the inequality

∑

b∈R,t1≤t/2
t1+t2=t

pt1
Last(b)h

t2
ba +

1

la

∑

b∈R,s≥t/2

lbh
s
ba < C

∑

b∈R,s≥t/2

hs
ba, for some C > 0.

For other terms this follows from the following lemma.

Lemma 2.3. We have

P{|ξt| = mt | ξ0 = β} → 0, as t→ ∞ uniformly in β ∈ A.

Proof. Let β = b0b1b2 . . . bn, b0 = ∗. Let further τ1, τ2, . . . , τn be the random
moments defined by

τk = min{t : ξt = b0b1b2 . . . bk−1 | ξ0 = b0b1b2 . . . bk−1bk}.

In other words, τk is the time that symbol bk is deleted. It is clear that
τ1, τ2, . . . , τn are independent and have distribution

P{τk = t} = qbk
ϕt−1

bk
, for t ≥ 1,

P{τk = 0} = 0.

Note also, that
P{τk = 2t} = 0, for t ≥ 0. (2.11)

Let σ be the random time defined by

σ = min{t > 0 : ξt = ∗ | ξ0 = ∗}.

So σ is the first time (after 0) of hitting ∗, when starting at ∗. Let σ1, σ2, . . . be a
sequence of identically distributed random moments with the same distribution
as σ. Then

P{σk = 0} = 0,

P{σk = 1} = 0,

P{σk = t} =
∑

a∈R

q∗aqaϕ
t−2
a , for t ≥ 2.

Remark that
P{σk = 2t+ 1} = 0, for t ≥ 0. (2.12)

We can write now

P{|ξt| = mt | ξ0 = β} = P{|ξt| = mt, |β| > mt > 0 | ξ0 = β}
+ P{|ξt| = mt = 0 | ξ0 = β}. (2.13)



Null recurrent string 437

Let us show that the first term in the right-hand side tends to 0, uniformly in β.

P{|ξt| = mt > 0 | ξ0 = β}

=
n∑

k=2

∑

t1+t2=t

P{τn + · · · + τk = t1}ϕt2
bk−1

=

n∑

k=2

1

qbk−1

∑

t1+t2=t

P{τn + · · · + τk + τk−1 = t+ 1}

≤ max
b∈R

{1/qb}P{τn + · · · + τk = t+ 1, for some k ≥ 1}. (2.14)

Corollary 3.1 implies that the distributions of τn, . . . , τ1 satisfy the conditions
of Theorem 4.1 in the Appendix. This theorem immediately implies that (2.14)
converges uniformly in β.

The second term in (2.13) can be bounded similarly. Rewrite

P{|ξt| = mt = 0 | ξ0 = β}
= P{there exists k ≥ 0 : τn + · · · + τ1 + σ1 + · · · + σk = 1}. (2.15)

The conditions of Theorem 4.1 do not hold because of (2.11) and (2.12). There-
fore, we can not use this theorem directly and we should rewrite (2.15) in the
following way

P{|ξt| = mt = 0 | ξ0 = β}
= P{(τn + 1) + · · · + (τ1 + 1) + σ1 + · · · + σk = 1 + n, for some k ≥ 0}.

Again Corollary 3.1 implies that the random variables τn+1, . . . , τ1+1, σ1, σ2, . . .
satisfy the conditions of Theorem 4.1. Hence, there exist functions ψt with
limt→∞ ψt = 0 and for any β

P{|ξt| = mt = 0 | ξ0 = β} ≤ ψt+|β| = sup
s≥t

ψs = ψ̃t.

Obviously limt→∞ ψ̃t = 0. This proves Lemma 2.3 and hence also Theorem 1.1.
2

2.2. Mixing property

Next we prove Theorem 1.2.
By definition

πt,n(a1 . . . an) =
1

Zt,n
pt(a1 . . . an)

=
1

Zt,n

∑

t0+···+tn=t

ϕt0
∗ h

t1
∗a1
ht2

a1a2
. . . htn

an−1an

=
1

Zt,n

∑

t0+···+tn=t

Zt0,t1,...,tn

1

Zt0,t1,...,tn

ϕt0
∗ h

t1
∗a1
ht2

a1a2
. . . htn

an−1an
,
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where

Zt0t1...tn
=

∑

a0,...,an

ϕt0
∗ h

t1
∗a1
ht2

a1a2
. . . htn

an−1an
.

So it is sufficient to prove that the correlations (defined similarly to Theorem
1.2) of the measures

πt0,t1,...,tn
(a1 . . . an) =

1

Zt0,t1,...,tn

ϕt0
∗ h

t1
∗a1
ht2

a1a2
. . . htn

an−1an
,

decay exponentially quickly, uniformly in t0, t1, . . . , tn. Let {σ1, . . . , σn} be ran-
dom variables with values in R and with distribution πt0,t1,...,tn

. This sequence
can be interpreted as an inhomogeneous Markov chain on the state space R
evolving till time n. Its transition probabilities at time k ≥ 1 can be easily
calculated: for a, b ∈ R, k ≥ 1, we have

P{σk = b | σk−1 = a} =

htk

ab

∑
ak+1,...,an

h
tk+1

bak+1
. . . htn

an−1an

∑
ak

htk
aak

∑
ak+1,...,an

h
tk+1
akak+1 . . . h

tn
an−1an

. (2.16)

In Section 3 we will derive the existence of ε > 0, such that for all a, b, c, d ∈ R,
k = 1, . . . , n,

htk

ab/h
tk

cd > ε. (2.17)

Then (2.17) and (2.16) imply the following estimates for these transition prob-
abilities: for any k ≥ 1, a, b ∈ R,

P{σk = b | σk−1 = a} > ε2/r. (2.18)

So this chain has the exponential mixing property as defined in the statement
of Theorem 1.2.

Recall the notation of this theorem. Then by virtue of (2.18) there exist
C1 > 0, 0 < C2 < 1, such that for any 0 ≤ k < m ≤ n and any events A ∈ Fk,
B ∈ Fm

∣∣P(A | B) − P (A)
∣∣ < C1C

m−k
2 .

The coefficients C1, C2 depend on ε but do not depend on t0, t1, . . . , tn. 2

2.3. Law of Large Numbers

This subsection will prove Theorem 1.3.
First we will prove convergence of the expectation of na(t)/n(t) to some

limit. Then we will show that the variance of na(t)/n(t) tends to 0. We use
the same method as in the proof of Theorem 1.1: we will derive some equations
for the limit points of the sequence E(na(t)/n(t)), and then we will check that
these equations have a unique solution.
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Lemma 2.4.

lim
t→∞

E
na(t)

n(t)
= larb,

where l = {la}a∈R, r = {ra}a∈R are left and right eigenvectors of the matrix

H = {hab(1)}a,b∈R

lH = l,

Hr = r,

with
∑

a lara = 1.

Proof. Let us write

na(t) =

n(t)∑

k=1

1{ξt(k) = a}.

Define

nab(t) =

n(t)−1∑

k=1

1{ξt(k) = a, ξt(k + 1) = b},

then
na(t)

n(t)
=

∑

b

nab(t)

n(t) − 1
+O(

1

n(t)
).

It is therefore sufficient to prove that

lim
t→∞

E
nab(t)

n(t) − 1
= larb.

From the definition of nab(t) we have

E
nab(t)

n(t)
=

∞∑

n=2

1

n− 1

n−1∑

k=1

P{ξt(k) = a, ξt(k + 1) = b, |ξt| = n}

=

∞∑

n=2

1

n− 1

n−1∑

k=1

∑

a1,...,an

t0+···+tn=t

ϕt0
∗ h

t1
∗a1
ht2

a1a2
. . . htk

ak−1ah
tk+1

ab h
tk+2

bak+2
. . . htn

an−1an
.

Define

gab(t) =
∞∑

n=2

1

n− 1

n−1∑

k=1

∑

a1,...,an

t0+···+tn=t

ϕt0
∗ h

t1
∗a1
ht2

a1a2
. . . htk

ak−1ah
tk+2

bak+2
. . . htn

an−1an
,

(2.19)
and so

E
nab(t)

n(t) − 1
=

∑

t1+t2=t

gab(t1)h
t2
ab.
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We want to prove the existence of the following limit

lim
t→∞

gab(t) = larb.

To this end, we use the same idea as in proof of Theorem 1.1. This means that
we will construct a sequence of limit points satisfying some linear equations.
We will prove subsequently that the solution of these equations is unique.

Remark that

∑

ab

∑

t1+t2=t

gab(t1)h
t2
ab =

∑

ab

E
nab(t)

n(t) − 1
= 1.

Let tk be a subsequence, such that

gab(tk) → g0
ab,

gab(tk−1) → g−1
ab ,

. . .

gab(tk−n) → g−n
ab , for n > 0,

as k → ∞. From the last remark, we have for any t ≤ 0 that
∑

ab

∑

t1+t2=t

gt1
abh

t2
ab = 1. (2.20)

But by the definition of gab(t) we have for any t < 0

gt
ab =

∑

c,d,
t1+t2+t3=t

gt1
cdh

t2
cah

t3
bd.

Using

ht
cabd =

∑

t1+t2=t

ht1
cah

t2
bd,

we can rewrite this as
gt

ab =
∑

c,d,
t1+t2=t

gt1
cdh

t2
cabd.

Let us now prove that gt
ab = larb. To this end, write

∣∣gt
ab − larb

∣∣ =

∣∣∣∣
∑

c,d,
t1+t2=t

(gt1
cd − lcrd)h

t2
cabd

∣∣∣∣.

Using (2.20) we get
∑

t1+t2=t

gt1
cdh

t2
cd =

∑

t1+t2=t

lcrdh
t2
cd = 1,
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and subsequently using Corollary 3.1, we can show the existence of ε > 0, such
that for all a, b, c, d ∈ R, t ≥ 0,

ht
cabd > εht

cd.

Therefore,
∣∣∣∣

∑

c,d,
t1+t2=t

(gt1
cd − lcrd)h

t2
cabd

∣∣∣∣ =

∣∣∣∣
∑

c,d,
t1+t2=t

(gt1
cd − lcrd)(h

t2
cabd − εht2

cd)

∣∣∣∣

≤
∑

c,d,
t1+t2=t

∣∣∣ g
t1
cd

lcrd
− 1

∣∣∣lcrd(ht2
cabd − εht2

cd)

≤ (lalb − ε) max
c,d,
t1<t

∣∣∣ g
t1
cd

lcrd
− 1

∣∣∣.

In other words, we get for some constant c < 1 and any t ≤ 0 that

∣∣∣ g
t
ab

larb
− 1

∣∣∣ ≤ cmax
c,d,
t1<t

∣∣∣ g
t1
cd

lcrd
− 1

∣∣∣.

Hence, gt
ab = larb, for all t ≤ 0. 2

Lemma 2.5.

lim
t→∞

D
na(t)

n(t)
= 0.

Proof. We have to prove that

lim
t→∞

E

(na(t)

n(t)

)2

= (larb)
2.

With some small modifications this can be derived in the same way as calculating
the expectation of na(t)/n(t). First write

(na(t)

n(t)

)2

=
1

(n(t) − 1)2

∑

b,b1

nab(t)nab1(t) +O
( 1

n(t)

)
.

It is convenient to consider a more general case and prove that

E
nab(t)na1b1(t)

(n(t) − 1)2
→ larbla1rb1 as t→ ∞.

From

nab(t)na1b1(t)

=

n(t)−1∑

k=1

n(t)−1∑

m=1

1{ξt(k) = a, ξt(k + 1) = b}1{ξt(m) = a1, ξt(m+ 1) = b1},
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we get

E
nab(t)na1b1(t)

(n(t) − 1)2
=

∑

t1+t2+t3=t

gaba1b1(t1)h
t2
abh

t3
a1b1

,

where gaba1b1 is defined similarly to (2.19). Now we can construct a sequence of
limit points gt

aba1b1
, t ≤ 0, satisfying the equations

gt
aba1b1 =

∑

c,d,c1,d1
t1+t2+t3+t4+t5=t

gt1
cdc1d1

ht2
cah

t3
bdh

t4
ca1
ht5

b1d.

In the same way as we did in the above, it is easy to prove that these equations
have a unique solution, which is given by

gt
aba1b1 = larbla1rb1 .

2

2.4. Central Limit Theorem

Next we prove Theorem 1.4.
The main idea is to prove central limit theorem first for some linear combi-

nation of na(t), where na(t) is the number of symbols a at time t. This can be
achieved using a general form of the central limit theorem for martingales. All
such general theorems have rather restrictive conditions and in order to check
them, we shall essentially use Theorem 1.1. After this, we can easily derive
Theorem 1.4 from Theorem 1.3.

In a null recurrent case (which we consider), there is a positive vector
{ea}a∈R (see (1.2)), such that for the function

f(ξt) =

r∑

a=1

eana(t)

the following identity holds

E(f(ξt+1) | ξt) = f(ξt), if ξt 6= ∅.

So f(ξt) is a martingale “up to” jumps from the empty string. To obtain a
martingale, we can do a symmetrisation by, for example, assigning the sign “−”
or “+” with equal probabilities to the string, each time that ξt jumps from the
empty string. Let νt be the number of times that ξk = ∅ before time t, i.e.

νt = #{k : ξk = ∅, k ≤ t}.

Let {σk} be a sequence of independent random variables with values in {−1, 1},
such that

σk = 1 with probability 1/2.
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Then the sequence of random variables

ηt = σνt

r∑

a=1

eana(t)

is a martingale. We shall use now the central limit theorem for martingales
(see [10] Chapter 7, Section 8, Theorem 1). The first two conditions of this
theorem follow from the boundedness of jumps for the function f(ξt). The
third follows from the stabilisation law (Theorem 1.1) and from the law of large
numbers for weakly dependent random variables (see [9]). Let us consider this
condition in detail. We should check (see [10] Chapter 7, Section 8, Theorem 1,
condition C) that for any 0 < x ≤ 1

[tx]∑

k=1

D
[ηk − ηk−1√

t

∣∣∣Fk−1

]
P→ c2x, as t→ ∞, (2.21)

where c2x ≥ 0 and Fk is the σ-algebra generated by {ξ0, . . . , ξk}. The random
variable D [ηk − ηk−1 | Fk−1] is a positive function of the last symbol of the
string:

D [ηk − ηk−1 | Fk−1] = F (L(ξk−1)),

where L(ξk−1) = an, if ξk−1 = a1 . . . an. So condition (2.21) can be written as

1

t

t∑

k=1

f(L(ξk−1))
P→ c2, as t→ ∞.

For this, it is sufficient to prove that for any a ∈ R

1

t

t∑

k=1

1a(L(ξk))
P→ ca, as t→ ∞. (2.22)

This is just the law of large numbers applied to the sequence of random variables
{ζk = 1a(L(ξk))}k≥1. Hence we should prove that this sequence indeed obeys
the law of large numbers.

By virtue of Theorem 1.1, the sequence ζk has the ∗-mixing property (here
we follow the terminology of [9] ). Denoting by F[k,n] the σ-algebra generated
by {ζk, . . . , ζn}, this means that there exists a non-increasing function ψt → 0
as t→ ∞, such that for any A ∈ F[1,n], B ∈ F[n+t,n+t] and any n, t

|P(B) − P(B)| < ψtP(A)P(B). (2.23)

But Theorem 8.2.1 of [9] states that the law of large numbers holds for a sequence
with the ∗-mixing property under some additional moment conditions (which
are trivial in our case due to ζk ≤ 1).
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As a consequence we obtain (2.22) and so condition (2.21) holds.
Thus, limt→∞ ηt/

√
t has the normal distribution. Write

nt√
t

=
nt

|ηt|
|ηt|√
t

=
nt

r∑
a=1

eana(t)

|ηt|√
t
.

By our law of large numbers Theorem 1.3

nt
r∑

a=1
eana(t)

→ const,

and so our central limit theorem follows, since

lim
t→∞

nt√
t

= const lim
t→∞

|ηt|√
t
.

2

3. Generating functions

In this section we consider some analyticity properties of the functions ϕa(z)
and we will also give another proof of Theorem 1.4 using complex variable
techniques.

By their definition, the functions ϕa(z) are analytical on {z : |z| < 1}.
Equations (2.1) therefore imply the following expansion for ϕa(z)

ϕa(z) =
∑

s≥0

ϕs
az

s.

All odd coefficients ϕ2s+1
a are equal to 0.

It is simpler to work with the functions {ua(z)}a∈R defined by

ua(z) = qa
∑

s≥0

ϕ2s
a z

s.

Let τa = min{t : ξt = ∗ | ξ0 = a}. Then ua(z2) = Ezτa−1. The generating
functions ua(z) satisfy the equations

ua(z) = qa + z
∑

b

qabub(z)ua(z). (3.1)

Introduce the following notation. For a given sequence {xa}a∈R we denote by

~x the vector with components xa and by X̂ the diagonal matrix with diagonal
elements xa. By I we denote the unit matrix and by ~1 the vector with all
components equal to 1.
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Equation (3.1) can thus be rewritten as

~u(z) = ~q + zÛ(z)Q~u(z).

We know ~u(1) = ~1 and ~u(z) to be analytic on {z : |z| < 1} and continuous on
{z : |z| ≤ 1}. But ~u(1) has a singularity at point ~1, since from null recurrence
we have

u′a(1) = E(τa − 1)/2 = ∞.

Since the ua(z) satisfy a system of algebraic equations, these functions have only
algebraic singularities. Hence, it follows that the singularity at 1 is an algebraic
singularity.

Let us recall one useful theorem (a special case of the Darboux theorem,
see [7], [8]) and some related necessary definitions.

Suppose that the function f(z) has a singularity at z0. This singularity is
called algebraic if f(z) can be written as a function that is analytic near z0, plus
a finite sum of terms of the form

(z − z0)
−ωg(z), (3.2)

where g is a function that is analytic and non-zero near z0 and ω is a com-
plex number not equal 0,−1,−2, . . . Call the real part of ω the weight of the
term (3.2).

Theorem 3.1. Suppose that A(z) =
∑

n≥0 anz
n is analytic near 0 and has

only algebraic singularities on its circle of convergence. Let w be maximum of

the weights at these singularities. Denote by zk, ωk and gk the values of z0, ω
and g for the terms of the form (3.2) having weight w. Then

an − 1

n

∑

k

gk(zk)

Γ(ωk)zn
k

= o(r−rnw−1),

where r = |zk| is the radius of convergence of A(z), and Γ(s) is the gamma-

function.

As we mentioned in the above, the functions ua(z) have only algebraic sin-
gularities, because they solve a system of algebraic equations. The latter also
implies that the ωs in the terms of the form (3.2) are rational.

Lemma 3.1. For each a ∈ R, the point 1 is the only singular point of the

function ua(z), a ∈ R, on the unit circle.

Proof. Let z0, |z0| = 1, be a singular point of one of the functions ua(z). For z,
|z| ≤ 1, we have

1 =
qa

ua(z)
+ z

∑

b

qabub(z)
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or, in vector form,
~1 = ~F (~u(z)).

By taking the derivative in the above equality, we get

∑

b

qabub(z) =
qa

u2
a(z)

u′a(z) − z
∑

b

qabu
′
b(z).

If z0 is a singular point, then det
( d

d~u
~F |~u(z0)

)
= 0. Hence the matrix

Q̂Û−2(z0) − z0Q

is not invertible. This means that there exists a vector ~v = {va}a∈R, such that

qa
u2

a(z0)
va = z0

∑

b

qabvb.

Taking into account that |ua(z0)| ≤ 1, |z0| = 1, we get

|va| ≤ |ua(z0)|
∑

b

qab

qa
|vb| for all a ∈ R.

The matrix
{qab

qa

}
a,b∈R

is positive with maximal eigenvalue 1 (see (1.3)). Hence

|ua(z0)| ≥ 1,

for some a ∈ R. This can only be at the point z0 = 1, since ua(z0) is a generating
function. 2

We will prove that the functions ua(z) have weight (−1/2) at point 1. The
proof of this fact is not straightforward, but a weaker assertion can be proved
easily.

Lemma 3.2. All functions ua(z), a ∈ R, have the same weight at the point 1.

Proof. Let the weight of the function ua(z) be wa. Then, near 1, ua(z) can be
written as

ua(z) = 1 + (1 − z)−waga(z) + o((1 − z)−wa),

where ga(z) is analytical near 1 and ga(1) 6= 0. Moreover,

ga(1) < 0,

for all a ∈ R, because the functions ua(z) are monotone increasing on {z ∈
R, z < 1}. From the equations (3.1) we get

ga(z) =
∑

b

qabgb(z)(1 − z)−(wb−wa) +
∑

b

qabga(z) + o(1).
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The functions gb(z) have the same sign near 1 (z ∈ R), so they cannot be
reduced one to another. On the other hand, the right side should be finite at
the point 1. Hence wb ≤ wa, for any a, b ∈ R, so that wb = wa. 2

Theorem 3.1 and Lemmas 3.1 and 3.2 have the following corollary.

Corollary 3.1. There exists ε > 0, such that for any a, b ∈ R and s ≥ 0

ϕas > εϕbs.

Remark. It would be interesting to prove this corollary directly from equa-
tions (2.4). In this case we prove all main theorems without using analyticity
properties of ua(z).

3.1. Analyticity properties

Here we prove some analyticity properties of the generating functions and
give another proof of Theorem 1.4.

First of all, we need more information on the singularity at the point 1.

Theorem 3.2. In some neighbourhood of 1, the functions ua(z) can be written

as

ua(z) =
∑

s≥0

uas(1 − z)s/2 = ũa(
√

1 − z),

where ũa(z) is analytic near 0 and ua1 6= 0.

Proof. Near 1, the functions ua(z) can be written in the form

ua(z) =
∑

s≥0

uas(1 − z)s/n,

for some n > 1.
Let t = (1 − z)1/n. Then we get the following equations for ua(t)

~u(t) = ~q + (1 − tn)Û(t)Q~u(t),

or (
I − (1 − tn)

∑

s≥0

tsÛsQ
)∑

s≥0

ts~us = ~q.

Also we get equations for uas, namely

ua0 = ua(z) |z=1= 1,

and

~us −
s∑

l=0

ÛlQ~us−l = ~0, 1 ≤ s < n,

~us −
s∑

l=0

ÛlQ~us−l +

s−n∑

l=0

ÛlQ~us−l−n = ~0, s ≥ n.
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Rewrite these equations as follows

Q̂~us −Q~us =
s−1∑

l=1

ÛlQ~us−l, 1 ≤ s < n, (3.3)

Q̂~us −Q~us =
s−1∑

l=1

ÛlQ~us−l +
s−n∑

l=0

ÛlQ~us−l−n, s ≥ n. (3.4)

Lemma 3.3. Let k=min{s > 0 : ~us 6= ~0}. Then n = 2k and ~us = ~0, if s is not

an integer multiple of k.

Proof. From (3.3) we have

Q̂~uk −Q~uk = 0.

Hence ~uk = uk~c, where ~c is the right eigenvector of the positive matrix Q̂−1Q

Q̂−1Q~c = ~c.

By Perron – Frobenius’ theorem, ~c is positive. Let us choose ~c, such that 〈~c,~1〉 =
1 (only for uniqueness). If n > 2k, we put s = 2k in (3.3). We get

Q̂~u2k −Q~u2k = ÛkQ~uk.

This equation has no solutions because

ÛkQ~uk = u2
kĈQ~c > ~0.

Indeed, for some positive π > 0 we have π(Q̂−Q) = 0, see (1.3). We choose π
such that π~1 = ~1. Hence the equation

(Q̂−Q)~x = ~y (3.5)

is solvable only if ~y ⊥ π. But πQ~1 > 0. Therefore, ~u′(1) does not exist. We will

often refer to equation (3.5). Let us remark that (Q̂ −Q)−1 is well defined on
the subspace π⊥ = {~y : ~y ⊥ π}.

In the same way, if n < 2k, then we put s = n in (3.3). We obtain

Q̂~un −Q~un = IQ~1 > ~0.

Next let us show that ~us 6= 0 if and only if s = km. The only non-trivial case is
for k > 1. Let k ≤ s < 2k. Then (3.3) implies that ~us = us~c, for some us ∈ R.
Letting n < s ≤ 2n, then

s−n∑

l=0

ÛlQ~us−l−n = ~0.
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Hence (3.4) is solvable if

π

s−1∑

l=1

ÛlQ~us−l = π

s−k∑

l=k

ÛlQ~us−l = 0.

For s = 2k + 1 we get

uk+1(ukπĈQ~c+ ukπĈQ~c) = 0 ⇒ uk+1 = 0.

In the same way, the equations for s = 2k+ 1, 2k+ 2, . . . , 2k+ k− 1, yield that
us = 0 for k < s < 2k.

Let ~us 6= ~0 for s ≤ mk only, if s = lk, l = 1, . . . ,m. We will show that ~us = ~0
if m+ k < s < (m+ 1)k. From (3.4), it follows that for such s

Q̂~us −Q~us = ~0.

Hence, ~us = us~c for some us ∈ R. Equation (3.4) is solvable for

(m+ 1)k < s < (m+ 2)k

if and only if

π

s−1∑

l=1

ÛlQ~us−l + π

s−n∑

l=0

ÛlQ~us−l−n = 0.

But

π

s−n∑

l=0

ÛlQ~us−l−n = 0.

So

π

s−1∑

l=1

ÛlQ~us−l = us−k(πÛkQ~c+ πĈQ~uk) + π

s−1∑

l=1

ÛlQ~us−l = 0.

From this equation one can get subsequently that umk+1, . . . , umk+k−1 = 0. 2

By virtue of this lemma we obtain

ua(z) =
∑

s≥0

uas(1 − z)s/2.

We will show that equations (3.3), (3.4) uniquely define uas.
As we know, ~u1 = u1~c. From (3.3) we have

π(Û1Q~u1 −Q~1) = 0.

Hence

u1 = ± πQ~1

πĈQ~c
,
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which corresponds to different branches of the function ua(z). We should choose
“−”, because ua(z) is increasing in a neighbourhood of 1. Assume that we have
determined ~us, s < m, then we can write ~us as ~us = us~c + ~vs, where ~vs ⊥ π.
For s > 1, equation (3.4) is solvable if and only if

( s−1∑

l=1

ÛlQ~us−l + π

s−2∑

l=0

ÛlQ~us−l−2

)
⊥ π. (3.6)

Hence by (3.4)

~vm = (Q̂−Q)−1
( m−1∑

l=1

ÛlQ~us−l +

m−2∑

l=0

ÛlQ~us−l−2

)
.

By plugging s = m+ 1 into (3.6), we get the relation

πÛmQ~u1 + πÛ1Q~um = π
m−1∑

l=1

ÛlQ~um+1−l + π
m−1∑

l=0

ÛlQ~um−l−1,

thus yielding um. The theorem is proved. 2

Now all ingredients for the analytical proof of Theorem 1.4 are available.
Let z ∈ C,|z| ≤ 1, ~z = (z1, . . . , zr) ∈ Cr, a ∈ R, |za| ≤ 1.
Denote by F (z, ~z) the doubly generating function

F (z, ~z) =
∑

t

zt
E∗

∏

a

zna(t)
a ,

where
E∗

∏

a

zna(t)
a =

∑

n

∑

a1,...,an

pt(a1 . . . an)za1 . . . zan
.

By Lemma 2.1 we have

F (z, ~z) =
∑

n

∑

a1,...,an

znϕ∗(z)q∗a1ϕa1(z)qa1a2ϕa2(z) . . . qan−1an
ϕan

(z)za1 . . . zan
,

(3.7)
or in matrix notation

F (z, ~z) = ϕ∗(z)
(
1 +

∑

a,b

q∗azza(I −H(z, ~z))−1
ab

)
,

where
H(z, ~z)ab = zzbqabϕb(z) = zzbqabub(z)/qb.

So we can write F (z, ~z) in the form

F (z, ~z) =
T (z, ~z)

(1 − z2
∑

a q∗aua(z2)) det(I −H(z, ~z))
, (3.8)



Null recurrent string 451

where T (z, ~z) is some polynomial in z, z1, . . . , zr.
We will use the following notation: if f(z, ~z) is some function of z, ~z, then

for any y ∈ C, we define f(z, y) = f(z, ~z) |~z=(y,...,y). We have

lim
t→∞

E∗e
−

n(t)x
√

t = lim
t→∞

1

2πi

∫

|z|=1

1

zt+1
F (z, e

− x√
t )dz

= lim
t→∞

1

2πi

∫

|z|=1

1

zt+1

T (z, e
− x√

t )

(1 − z2
∑

a q∗aua(z2)) det(I −H(z, e
− x√

t ))
dz.

This integral can be split into two parts: one over

L = {z ∈ C, |z| = 1, | arg z| < ε}

and the other one over {z ∈ C, |z| = 1}\L. By the Riemann – Lebesgue theorem,
the integral over {z ∈ C, |z| = 1}\L tends to 0 as t→ ∞, because we can write
it in the form ∫

[−π,π]\(−ε,ε)

e−ity(f(y) +O(1/
√
t))dy,

where f(y) ∈ L1([−π, π]\(−ε, ε)).
Therefore, it is sufficient to consider only the integral over L. Define s =√

1 − z and let

T̃ (s, e
− x√

t ) = T (z, e
− x√

t ),

u(s) =

√
1 − z

(1 − z2
∑

a q∗aua(z2))
,

h(s, e
− x√

t ) = det(I −H(z, e
− x√

t )).

The function T̃ (s, y) is holomorphic in s in a neighbourhood of s = 0 and it is
a polynomial in y. The function u(s) is holomorphic in a neighbourhood of 0.
Moreover,

h(0, 1) = 0,

∂h

∂s
(0, 1) 6= 0.

So there is a unique function f of the variable 1−y solving the equation h(f, y) =
0 in a neighbourhood of (0, 1).

We want to use s as the integration variable for the above integral. Hence,
we integrate over the path s(L). But instead of this path, we can consider the

simpler one [−εi, εi]̇. This is because the integral over L′∪L′′ in Figure 3.1 tends
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6

-

L′

L′′

s(L)

Figure 3.1

to 0, since |z| ≥ 1 on L′ ∪ L′′. So it is sufficient to calculate

− lim
t→∞

1

πi

εi∫

−εi

1

(1 − s2)t

u(s)T̃ (s, e
− x√

t )

h(s, e
− x√

t )
ds.

Define the function

ψ(s, y) =
u(s)T̃ (s, y)

h(s, y)
− u(f(1 − y))T̃ (f(1 − y), y)

(s− f(1 − y)) ∂
∂sh(f(1 − y), y)

,

for s in a neighbourhood of 0 and y ∈ (1 − ε′, 1 + ε′). Because ψ(·, y) is holo-
morphic in a neighbourhood of 0,

∣∣∣
εi∫

−εi

1

(1 − s2)t
ψ(s, y)

∣∣∣ ≤ Cε.

Since ε can be arbitrary small, we can neglect this integral. So it is sufficient to
consider

lim
t→∞

u(f(1− e
− x√

t ))T̃ (f(1 − e
− x√

t ), e
− x√

t )
∂
∂sh(f(1 − e

− x√
t ), e

− x√
t )

(
− 1

πi

εi∫

−εi

(1 − s2)−t

s− f(1 − e
− x√

t )
ds

)
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=
u(0)T̃ (0, 1)

∂
∂sh(0, 1)

lim
t→∞

1

πi

εi∫

−εi

(1 − s2)−t

f(1− e
− x√

t ) − s
ds.

Hence we should compute

lim
t→∞

1

πi

εi∫

−εi

(1 − s2)−t

f(1 − e
− x√

t ) − s
ds

= lim
t→∞

2

π

ε∫

0

(1 + s2)−t
( 1

f(1 − e
− x√

t ) − si
+

1

f(1 − e
− x√

t ) + si

)
ds

= lim
t→∞

4

π

ε∫

0

(1 + s2)−t f(1 − e
− x√

t )

f2(1 − e
− x√

t ) + s2
ds

= lim
t→∞

4

π

ε/f(1−e
− x√

t )∫

0

(1 + s2f2(1 − e
− x√

t ))−t 1

1 + s2
ds

= lim
t→∞

4

π

π/2∫

0

1
[0,arctan ε/f(1−e

− x√
t )]

(θ)(1 + tan2 θf2(1 − e
− x√

t ))−tdθ.

For any θ ∈ [0, π),

0 <
(
1 + tan2 θf2(1 − e

− x√
t )

)−t ≤ 1,

and
exp

{
− tan2 θ lim

t→∞
tf2

(
1 − e

− x√
t

)}
= exp{− tan2 θ[xf ′(0)]2}.

By virtue of Lebesgue’s theorem, the last expression equals

2

π

π/2∫

0

e− tan2 θ[xf ′(0)]2dθ =
2

π

∞∫

0

e−z2[xf ′(0)]2

1 + z2
dz

=
1

π

∞∫

−∞

e−z2[xf ′(0)]2

1 + z2
dz.

The function
e−z2[xf ′(0)]2

1 + z2

is the characteristic function of the sum of two independent random variables
w + η , where w is normally N(0, 2[xf ′(0)]2) distributed and η has the Laplace
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distribution with density e−|z|. By the inverse Fourier transformation

∞∫

−∞

e−itz e
−z2[xf ′(0)]2

1 + z2
dz =

∞∫

−∞

e−|y−t| 1√
2π2[xf ′(0)]2

e
− y2

4[xf′(0)]2 dy.

Putting t = 0 and y = xv we get

∞∫

−∞

e−z2[xf ′(0)]2

1 + z2
dz =

∞∫

−∞

e−x|v| 1√
2π2[f ′(0)]2

e
− v2

4[f′(0)]2 dv.

For any x ∈ R, we then get

lim
t→∞

E∗e
−x

n(t)
√

t = Eex|w| =

∞∫

−∞

e−x|v| 1√
2π2[f ′(0)]2

e
− v2

4[f′(0)]2 dv,

where w is normally N(0, 2[f ′(0)]2) distributed. 2

A stronger version of the central limit theorem can be proved similarly.

Proof of Theorem 1.5. From (3.7) we have

lim
t→∞

E∗e
− 1√

t
〈~x,~n(t)〉

= lim
t→∞

1

2πi

∫

|z|=1

F (z, exp(−~x/
√
t))

zt+1
dz,

where ~x = (x1, . . . , xr) ∈ Cr, exp(−~x/
√
t) = (e

−
x1√

t , . . . , e
− xr√

t ). By (3.8) it is
equal to

lim
t→∞

1

2πi

∫

|z|=1

T (z, exp(−~x/
√
t))

zt+1(1 − z2
∑

a q∗aua(z2)) det(I −H(z, exp(−~x/
√
t)))

.

The function det(I−H(z, ~z)) is a polynomial in (z1, . . . , zr) and it is holomorphic
on z in {z ∈ C : |z| < 1} ∪ Vε, where Vε is a neighbourhood of 1 not containing
the segment [1, 1 + ε], i.e. Vε = {z ∈ C : |z − 1| < ε}\[1, 1 + ε].

As in the above, we define s =
√

1 − z for z ∈ Vε. Then h(s, ~z) = det(I −
H(z(s), ~z)) is holomorphic in s near 0 and holomorphic in s, z1, . . . , zr near
(0, 1, . . . , 1). As we know,

h(0,~1) = 0,

∂h

∂s
(0,~1) 6= 0.

So there is a unique function f(~z) satisfying the equation h(s, ~z) = 0 near (0,~1).
The same computation as in the above can be used to obtain

1√
t
〈~x, ~n(t)〉 → |w~x|,
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where w~x normally N
(
0, 2

[ df
d~x

(~1)
]2)

distributed. Indeed, write

df

d~x
(~1) =

∑

a∈R

xa
∂

∂za
h(~1)xa =

1
∂
∂sh(0,

~1)

∑

a∈R

xa
∂

∂za
h(0,~1).

From the definition of H(z, ~z) and Theorem 3.2 we have

∂

∂s
h(0,~1) =

∑

a∈R

ua1maa,

∂

∂za
h(0,~1) = maa,

where maa is the minor of the matrix (I−H(1,~1)) corresponding to the (a, a)-th
element. So,

df

d~x
(~1) =

∑
a∈R

xamaa

∑
a∈R

ua1maa
.

Hence w~x = 〈~x, ~w〉, where ~w is normally distributed with covariance matrix
C = {cab}a,b∈R, given by

cab = 2
maambb( ∑

a∈R

ua1maa

)2 .

In other words, ~w = w1~c with ~c ∈Rr. 2

4. Appendix

Here we a consider general “inhomogeneous” renewal equation.
Let f = {fn}n≥1 be a fixed probability distribution on N, i.e.

fn ≥ 0 for all n ≥ 1,∑

n≥1

fn = 1.

Define supp(f) = {n : fn > 0}. For each n ∈ supp(f), define dn = min{d > 0 :
fn+d > 0} and

d(f) = sup
n∈supp(f)

dn.

Let F = {fk}k≥1 be a sequence of probability distributions on N. So for
fk = {fk

n}n≥1 we have

fk
n ≥ 0 for all n ≥ 1,

∑

n≥1

fk
n = 1.
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We will call F a renewal distribution. Let c1 > 0, c2 > 1 be fixed. Denote by C
the set of all renewal distributions F = {fk}k≥1 such that for all k, n ≥ 1

c1fn ≤ fk
n ≤ c2fn. (4.1)

Let {τk}k≥1 be independent random variables with values in N “having
renewal distribution” F = {fk}k≥1, i.e.

P{τk = n} = fk
n .

For n ≥ 1 define

pn(F ) = P{τ1 + · · · + τk = n, for some k ≥ 1}.

Theorem 4.1. Assume that

d(f) < ∞,
∑

n

nfn = ∞.

Then there exists ψn → 0 as n→ ∞, such that for all F ∈ C

pn(F ) ≤ ψn.

In other words, pn(F ) tends to 0 uniformly on C.

Proof. Let a = {an}n≥0, b = {bn}n≥0 be two sequences. By (a, b) = {(a, b)n}n≥1

we denote the convolution of a, b, i.e.

(a, b)n =
n∑

k=0

akbn−k.

Let F = {fk}k≥1 ∈ C. It will be convenient to define fk
0 = 0 for all k ≥ 1. By

the definition of pn(F ) we can write

pn(F ) =
∑

k≥1

(f1, . . . , fk)n = f1
n +

∑

k≥1

n∑

t=0

(f1, . . . , fk)n−tf
k+1
t . (4.2)

For k ≥ 1 define rk = {rk
n}n≥−1 with

rk
n =

∑

l≥n+1

fk
l .

Define r = {rn}n≥−1 similarly, but using the distribution f . Remark that

∑

n≥1

nf =
∑

k≥0

rk =
∑

k∈supp(f)

dkrk ≤ d(f)
∑

k∈supp(f)

rk.
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Hence ∑

k∈supp(f)

rk = ∞. (4.3)

For all k ≥ 1, τk > 0. Hence for any n ≥ 0

1 = P{τ1 + · · · + τk > n, for some k ≥ 1}

= P{τ1 + · · · + τn+1 > n}

= P{τ1 > n} +

n∑

k=1

P

{ k∑

i=1

τi ≤ n,

k+1∑

i=1

τi > n
}

= r1n +

n∑

k=1

n∑

t=0

P

{ k∑

i=1

τi = t
}
P{τk+1 > n− t}

= r1n +
∑

k≥1

n∑

t=0

(f1, . . . , fk)n−tr
k+1
n−t .

Condition (4.1) implies that rt ≤ rk+1
t /c1. So we get for any F ∈ C that

∑

t

pn−t(F )rt ≤
1

c1
. (4.4)

Next we will show that pn(F ) tends to 0 uniformly on C. The idea is the same
as in homogeneous case (see for example Chapter 1.6 of [11]). We show that
the convergence not being uniform on C contradicts (4.4). To this end, define
the shift operator Θ on renewal distributions F as follows: if F = {f k}k≥1 ∈ C
then ΘF = {fk+1}k≥1. It is clear, that ΘF ∈ C and that

pn(F ) =

n∑

k=0

f1
kpn−k(ΘF ).

Let

λn(F ) = sup
k≥n

pk(F ),

λn = sup
F∈C

λn(F ).

It is clear that λn+1(F ) ≤ λn(F ), for any F , and hence λn+1 ≤ λn. So the
sequence λn has a limit,

lim
n→∞

λn = λ.

We should prove that λ = 0. Assume that λ 6= 0. We can choose a sequence
Fn = {fm(n),m ∈ N} ∈ C, n ≥ 1 such that

lim
n→∞

λn(Fn) = λ.
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Let us choose a sequence {mn}n≥0, such that

pmn
(Fn) → λ, as n→ ∞.

By definition

pmn
(Fn) =

mn∑

k=0

f1
k (n)pmn−k(ΘFn).

Remark that for any k ≥ 0,

lim sup
n→∞

pmn−k(ΘFn) ≤ lim
n→∞

λmn−k = λ.

Let us show that for k ∈ supp(f)

lim inf
n→∞

pmn−k(ΘFn) = λ. (4.5)

For ε > 0, there exists N such that

∑

n≥N

fn < ε.

From (4.1) we have for any n ≥ 1 that

mn∑

k=N

f1
k (n)pmn−k(ΘFn) ≤ c2ε

and

pmn
(Fn) − c2ε ≤

N∑

k=0

f1
k (n)pmn−k(ΘFn).

Let k0 ≤ N, k0 ∈ supp(f). Then

pmn
(Fn) − c2ε ≤ f1

k0
(n)pmn−k0(ΘFn)

+

N∑

k=0,k 6=k0

f1
k (n)pmn−k(ΘFn).

If
λinf(k) = lim inf

n→∞
pmn−k(ΘFn),

then

lim inf
n→∞

(
f1

k0
(n)pmn−k0(ΘFn) +

N∑

k=0,k 6=k0

f1
k (n)pmn−k(ΘFn)

)

≤ lim sup
n→∞

(
f1

k0
(n)λinf(k0) +

N∑

k=0,k 6=k0

f1
k (n)λ

)
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≤ lim sup
n→∞

(
f1

k0
(n)λinf(k0) + λ(1 − f1

k0
(n))

)

≤ λ+ (λinf(k0) − λ)c1fk0 .

We get

λ− c2ε = lim inf
n→∞

pmn
(Fn) − c2ε ≤ λ+ (λinf(k0) − λ)c1fk0 .

The constant ε can be chosen arbitrarily small in this inequality. Since the
right-hand side does not depend on ε and since fk0 > 0, this implies

λ ≤ λinf(k0).

Consequently (4.5) holds. From (4.4) we have

∑

k∈supp(f)∩[0,mn]

pmn−k(ΘFn)rk ≤
mn∑

k=0

pmn−k(ΘFn)rk ≤ 1

c1
. (4.6)

If λ 6= 0, then (4.5) implies that

∑

k∈supp(f)∩[0,mn]

pmn−k(ΘFn)rk → ∞, as n→ ∞,

thus contradicting (4.6). Hence, λ = 0 and so the theorem is proved. 2
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[7] G. Szegö (1959) Orthogonal Polynomials. Amer. Math. Soc. Coll. Publ.,
vol. XXIII, rev. ed., Amer. Math. Soc., New York.

[8] E.A. Bender (1974) Asymptotic methods in enumeration. SIAM Rev. 16.



460 A.S. Gajrat, R. Iasnogorodski and V.A. Malyshev
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