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Introduction and history

Introduction

This book differs essentially from the existing monographs on countable
Markov chains. It intends to be, on the one hand, much more construc-
tive than books similar to, for example Chung’s [Chu67] and, on the
other hand, much less constructive than some elementary monographs
on queueing theory, where the emphasis is mainly put on the derivation
of explicit expressions. The method of generating functions, which is
to be sure the most constructive approach, is not included, since the
dimension of the problems it can solve is small (in general < 2). Our
book could equally be called Constructive use of Lyapounov functions
method. Here the term constructive is taken in the sense close to the one
widely accepted in constructive mathematical physics. One can say that
the objects considered have a sufficiently rich structure to be concrete,
although the results may not always be ezplicit enough, as commonly
understood. Semantically, it is permissible to say that our methods are
more qualitative constructive than quantitative constructive.

The main goal of the book is to provide methods allowing a complete
classification (necessary and sufficient conditions) or, in other words,
allowing us to say when a Markov chain is ergodic, null recurrent or
transient. Moreover, it turns out that, without doing much additional
work, it is possible to study the stability (continuity or even analyticity)
with respect to parameters, the rate of convergence to equilibrium,.. .,
etc. by using the same Lyapounov functions.

Our primary concern with necessary and sufficient conditions is crucial,
since in many cases it is indeed trivial to get explicit necessary or suf-
ficient conditions. Another peculiarity of our approach is that we do
not pursue generalizations, which could be easily done by any expert in
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standard classical probability theory. For example, in many places, we
restrict ourselves to bounded jumps, whenever the formulation would
remain unchanged in the case of unbounded jumps.

The various sections of chapter 1 give only exact definitions and some
results taken from countable Markov chains that we use. To render the
book accessible for the beginner, we also present section 1.4, to demon-
strate the possibilities of perhaps more exact, but also more restrictive,
elementary methods.

In chapter 2, we present the main classification criteria for general count-
able Markov chains, which are needed in the following chapters. Further
far reaching martingale criteria are presented. Also we obtain some
exponential bounds, which imply nice properties for the corresponding
Markov chains.

The rest of the monograph is devoted to the so-called deflected random ;
walks in Zﬂ . The reader might wonder why random walks in Zf are of
primary interest. There are several striking reasons. First, they describe ;
many networks of practical interest (e.g. see section 3.2) and the meth-
ods presented here could also be useful for more general networks, for
instance with non-identical customers. Secondly, the problems involved
not only are of probabilistic interest, but they also produce a large store
of examples and, moreover, are closely connected with other branches of
mathematics. In fact the classification problem for random walks in Rf
is a probabilistic version of a well known question in functional analysis
and partial differential equations: When is a multidimensional Toeplitz
{(or any general elliptic) operator in Zf invertible? It also has much in
common with the problem of the behaviour of diffusion processes near
non-smooth boundaries of large codimension. The ideas and methods
exhibited here are, in our opinion, useful for attacking problems of very
different nature. :

Chapter 3 gives techniques for an explicit geometrical construction of
Lyapounov functions. They apply to random walks in Z2 , as well as
to the famous Jackson networks in ZQ’ . The zero drift case in Zi and
almost zero drift one-dimensional examples of sections 3.6 and 3.7 consti-
tute new directions of development, initiated by Lamperti [Lam60} thirty
years ago. They are directly related to several works of R. Williams and
others [VW85, Wil85].

The central method of induced chains and vector fields is presented in
sections 4.1 and 4.2. In section 4.3, general results pertaining to the
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construction of Lyapounov functions in a uniformly bounded number of
steps are given. Using these results, we obtain the complete classification
in Z3.

Completely new phenomena appear in chapter 5: scattering, null recur-
rence for a positive Lebesgue measure in the parameter space, constants
L and M in the simplest situation.

General criteria (some of them using Lyapounov functions), concern-
ing conditions ensuring the continuity of stationary probabilities with
respect to the parameters, are given in chapter 6.

Finally, chapter 7 offers a probabilistic criterion, again using the Lya-
pounov functions and Foster’s theorems, for a family of Markov chains to
be an analytic Lyapounov family. In particular, this property leads to an-
alytic dependence on the parameters, as well as exponential convergence
to equilibrium and exponential decrease of stationary probabilities.

Historical comments

Chapter 1. For the contents of this chapter we refer the reader to any
standard textbooks on countable Markov chains, for example [Chu67,
Kar68].

Chapter 2. The notion of Lyapounov function or test function similar to
the well known Lyapounov functions for ordinary differential equations
goes back to Foster [Fos53], as far as we know. Although his examples
are now trivial, his ideas and criteria for ergodicity and for transience
became basic for later extensions. There exist now many technical gen-
eralizations of these criteria, some of which we give in this chapter. Gen-
eralized Foster criteria for ergodicity were given in [Mal93]. In [Fil89] a
new martingale proof is proposed with an important extension to random
times. We have summarized and simplified all these results in theorems
2.1.1,2.1.2 and 2.1.3. Theorems 2.2.1 and 2.2.2 extend, with new proofs,
results contained in [MSZ78] and [Fos53]. Theorems 2.2.2 and 2.2.3 are
the famous Foster criterion itself, with a slight modification and modern
proofs. Theorem 2.2.6 generalizes some corresponding results of [Mal73]
(given for a.s. uniformly bounded jumps). Theorem 2.2.8 is contained in
[FMM92] and seems to be the unique constructive result allowing us to
prove non-ergodicity by means of non-piecewise-linear Lyapounov func-
tions. Theorems 2.1.1 and 2.1.10 are fundamental tools for proving all
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criteria we need and they also provide exponential estimates which are
used in various parts of the book.

Chapter 3. Section 3.1 shows an elementary example. The results have
been partially known for 20 years already. The proofs given in the book
are pedagogic. Section 3.2 contains definitions taken from [MM79] and
[Mal93]. Most of the theorems of sections 3.3 to 3.7 are new. The idea
of using quadratic forms and functionals of quadratic forms is original,
and appeared, as far as we know, for the first time in [Fay89, FB88,
FMM92]. They are used in connection with the principle of almost
linearity introduced in {Mal72a).

Chapter 4. Section 4.1, 4.3, 4.4 are taken, with some improvements,
from [MMT79]. Section 4.2 is basically contained in {Mal93].

The results of chapter 5 were first published in [FIVM91].

The content of chapters 6 and 7 is a substantial revision of the results
in [MMT79).
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Preliminaries

In sections 1.1, 1.2 and 1.3 of this chapter, we briefly introduce basic
notions and some results borrowed from the theory of discrete time ho-
mogeneous countable Markov chains (MC).

In section 1.4, some well known examples of MCs are given, for which a
complete classification can be obtained by elementary methods: simple
probabilistic arguments in 1.4.1, explicit solution of recurrent equations
in 1.4.2, generating functions in 1.4.3.

It is not our intention to devote a detailed section to the fundamentals
of probability theory, which are presented in a plethora of excellent text-
books. Thus, we only introduce in fact the minimal basic notions and
notation useful for our purpose.

¢ The events are the subsets of some abstract set 2, which belong to %,
the o-algebra defined on €.

¢ The couple (Q,X) is a measurable space and the sets belonging to 3
are
Y.-measurable sets.

e The triple (Q,%, 1), where p is a positive measure defined on ¥, is
a measure space. A probability space is a measure space of total
measure 1, i.e. p(X) = 1, and in this case most of the time we shall
write (2, 2, P).

¢ A Y-measurable real-valued function f with domain Q is called a
random variable. More generally a random element @ with values
in a measurable space (X,B) is a measurable mapping of (Q,%,P)
into (X, B). For X = R or ZV, B being the o-algebra of Borel sets,
we shall speak of random vectors.
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1.1 Irreducibility and aperiodicity
Let A be a denumerable set and P a stochastic (transition) matrix such
that
P = (pap)a,pen

and, for any o € A, P, = (pag)sca is a probability vector, that is

> pap=1, pap20.
peA

Definition 1.1.1 The pair (A, P) is called a discrete time homogeneous
Markov chain (MC).

A path w is any sequence
w = (w0aw17w2’ .. ‘)’

where
w; €A , Vi >0.

The path space = AN is the set of all paths and ¥ is the standard
o-algebra generated by the cylinder sets

(ap, a1,...,on)={w:w;=0;,0<i<n}, n>0, oy € A

Occasionally, it will be necessary to consider MC with a fixed initial
distribution. Therefore we give the following

Definition 1.1.2 We call an MC with nitial distribution po(a), @ € A,
> opole) =1,po(a) > 0, a probability measure P defined on (Q,X) such
that, for all cylinder sets (ap, oy, ..., an),

P(ag, 0, ..., 0n) = po(@0)Paga, - - -Pan—1an - (1.1)

The random variable £,{w) = wy,, defined on (2, %, P) and taking its
values in A, will be called the value of the chain at time n, or the position
of the chain at time n, etc. We shall simply write &,, ad libitum and
whenever unambiguous; & is called an initial state. If there exists a
sequence oi,qs,...,0,_1 such that pyqa,Paiay -+ Pa,_1g > 0, we shall
write a ~ .

Let us denote by p(akg the k-step transition probabilities, i.e. the elements
of the matrix P*.
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Definition 1.1.3 The point o is called an inessential state of the MC,
iff there exists a point B such that a ~ B but B % a. All other states
are called essential.

It is easy to show that, for any initial state and any inessential state o,
there exists a random time N{w) < oo such that &, never equals « for
n > N(w), a.s. We shall write o« <= S iff a ~ § and 8 ~ «. The
operation ‘<=’ is obviously transitive. Sometimes we shall also say that
« and 8 communicate.

Definition 1.1.4 An equivalence class with respect to the operation
‘ez 15 called an essential class. A Markov chain is called irreducible
iff every state can be reached from any other state or, egquivalently, if,
and only if, A forms a single class of communicating states, which then
are all essential.

It is not difficult to prove that, for any initial distribution, there exists
N(w) such that all £,’s belong to the same essential class, for n > N{w),
almost surely (a.s.). As we shall be mainly interested in the long run
behaviour of all random processes which will be encountered, from now
on and for the rest of the book, the Markov chain (A, P) will be assumed
to be irreducible.

Choose now a € A. Let n1{a) < ng(a) < ... be all the positive inte-
gers for which p(*)(a,a) >0,3=1,2....

Definition 1.1.5 ( Theorem ) Let us denote by d(a) the greatest
common divisor of the n;(a), ¢ > 1. Then d(a) indeed does not depend
on a and is called the period of the (irreducible) chain A. If d =1, the
chain is called aperiodic.

In the sequel, we shall consider only aperiodic chains, but all the the-
ory can easily be transcribed with minor modifications to include the
periodic case. In fact, it suffices to consider £, at embedded instants
n = k + dm, for some fixed k. It is also useful to keep in mind that,
if for some @, pao > 0, then the chain is aperiodic. Unless otherwise
stated, all the chains studied hereafter will be assumed to be irreducible
and aperiodic.
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1.2 Classification
Let @, 8 € A. We define now, for n > 1,

fale, B) = P(€e(w) # 6,0 < k <n;&u(w) = B/&(w) = a)

the probability that the MC first enters into state B at time n, given
that it starts from the state o. Then

Qe,8) = fale,8)
n=1

is the probability that, starting at «, the MC ever visits B. Accordingly,

o0

Mapg = Z nfn(c, ,B)

n=1

is the mean time of first reaching 2 when starting at . Clearly mqp = 0o

if Q(e, ) < 1.

Theorem 1.2.1 If Q(o, 8) = 1 for some pair (a, (), then Q(a, B) =1
for all (a,B). Similarly, if Map + Mga = o0 for some (o, B), then
Mag +Mpa = 00, for all (a, B) (in either instance, o and B need not be
distinct). |

Definition 1.2.2 An irreducible aperiodic MC is called

(i) recurrent if Q(o,3) = 1, at least for one pair (o, B);
(ii) non recurrent or transient if Qa,p) <1, Yo, B);
(iii) positive recurrent or ergodic, if mag+mp, < 00, at least for one
pair (o, B);
(iv) null recurrent if Q(«, B) =1 and my g = 0o, at least for one pair
(o, B).

(v) non ergodic if ma g = 0o , at least for one pair (o, B).

The purpose of the next theorems is to give other useful (equivalent)
criteria for an MC to be ergodic. We consider the equation

7 =P or, equivalently, 75 = Z TaPaf (1.2)

[+3

where 7 is the unknown vector

T=(ma, € A).




1.8 Continuous time 9
Theorem 1.2.3 The limits
vg = nllr&pg’g , VBe A, (1.3)

exist and are independent of the initial state a. Futhermore, when the
MC s non-ergodic, vg =0, V.
When the MC is ergodic, then we have

vg >0, Zvﬁzl

B
and
vg = Z'Uapaﬁ ,
o
i.e. the vector v is a probabilistic solution of (1.2). a

Theorem 1.2.4 The following conditions are equivalent:
(i) the MC is ergodic;
(ii) there exists a unique l'-solution of the equation (1.2), up to a
multiplicative factor;
(iii) there erists a unique stationary distribution (74, € A), i.e. a
solution of (1.2) such that 7o > 0, > 7o = 1. In this case
e >0,YVaeA,

and
To :nlir&pg’;? ,VyeA. (1.4)
[

Theorem 1.2.5 For an ergodic MC, the invariant distribution is given
by

T =

, Vae A. (1.5)
Maa

1.3 Continuous time

Many examples seem more natural in continuous time. Later on we in-
troduce the necessary notation to the extent we need. But we want to
stress immediately that all results concerning the classification in dis-
crete time are automatically transposed into continuous time and vice
versa.
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There are two main definitions of a continuous time homogeneous count-
able MC (the set of states is still denoted by A). In both cases, the
intensity matrizc H = (Ayp) is given by

Aaﬂ Z 0: & #ﬁ 1
1.6
Xaa == D Aap - (16)
B:B#a

For the examples we shall consider, it suffices to assume the existence
of a constant C > 0 such that, for all o, 5,

Paal < C . (1.7)
Then the matrix

oo " tn
I pag(®) = Pt) =€ =3 H" =, t>0, (1.8)
n=0 :

is defined by the convergent series (1.8) .

Definition 1.3.1 The MC &, with initial distribution p,(0), is defined
by the following finite-dimensional distributions, forall0 <t; <...<ty,:

P(€o= 00, 1€, = an) = Pao(0)Pasen (1) - - -Pan_ran (tn).  (1.9)

This definition does not depend on the choice of the probability space.
The next one uses a concrete choice. We define 2 to be the set of right-
continuous piecewise constant mappings w : [0,00) — A, i.e. w is given
by a sequence (oo, 0),{a@1,71),..., such that

w(t)=oa;, t € [H,T41),70=0,

where 71,79, ..., are the jump times. The measure on €, corresponding
to the MC (using the standard canonical o-algebra, see for example
[Chu67, GS74]), is defined by the following conditions:

(i) Given ag, a1, ..., the random variables ;41 — 7; are mutually in- |
dependent and have an exponential distribution with parameters {
_)\aia,'; }

(ii) ao,0y,...,Qn,. .., are distributed as an embedded discrete time

homogeneous MC, with parameters

_ _ap
Pap = =) (1.10)
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It is easy to show that this measure leads to the finite-dimensional prob-
abilities (1.9). Below we always assume the embedded chain to be irre-
ducible and aperiodic. The classification of such continuous time MCs
reduces to the classification of the corresponding imbedded chain.

1.4 Classical examples

This book is intended to provide general methods to classify Markov
chains in terms of ergodicity, null recurrence or transience. In some
(rare) cases, it is possible to get a complete answer from some elementary
consideration or by finding explicit tractable expressions for Qag, mags
or m, defined in preceding sections.

1.4.1 Doeblin’s condition

Take an MC (A, P) satisfying the following simple condition, due to
Doeblin: There exist a finite set .4g, an integer 5 > 0 and a real number
€ > 0 such that, for all a € A,

p(j)(a,Ao) > €

where

p9(a, Ag) = Zp(a)aﬁ

BEAo

It is immediate from theorem 1.2.4 that such Markov chains are ergodic.
Indeed, since

PP (e, Ag) = Zpg’;”p’ B Ao)>e€ , Vk>j , Yae A,

we have

def 3
mao S 3 mo= 3 Jimpcy = Jim > el = Jim p e Ao) 2e
BE Ao BEAp

A direct argument could also be used : at least one point oy € Ay
is entered infinitely often, with a finite mean hitting time. Note that
all irreducible MCs with a finite number of states do satisfy Doeblin’s
condition and, therefore, are ergodic.
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1.4.2 Birth and death process

A birth and death process is an MC with state space Z , which has the
following transition probabilities:

Pii+1 =Di , Piji—1=¢;,

pitqg=1 ’ i>1 ’ P0:17‘I0:0~

Let us put
M= m= B s,
o0 ® (1.11)
A:;m , B:zz:;pim.

Theorem 1.4.1 A birth and death process is
(i) ergodic if, and only if, A < co;
(ii) null recurrent if, and only if, A = B = oco;
(iii) transient if, and only if B < oo.

Proof: Consider the system of equations for the stationary distribution
{Wi},
Ty = Ti—1 Pi—1 + Tip1 Gig1. (1.12)

It is clear that they have a nonzero unique solution, given by (1.11) up
to a constant factor. So (i) follows from theorem 1.2.3. Equations for
the probabilities y; of ever reaching 0, starting from 4, are

Yi = PiYi+1 + qiyi-1, © > 1. (1.13)

It can be easily verified that y,(lo) = 1 is a solution of (1.13), another

solution being given by

n—1

M =0, 0= 5>
v =0, S Z;mm’"

Hence, the general solution has the form
n=Coyl) +Cryll .

If B= oo then y,(ll) — 00, as n — oo, and the only probabilistic solu-

tion is ySLO), so that the MC is recurrent. If B < oo, there is another

probabilistic solution

1
Yo =1- 2=y

n ?
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where probabilistic solution means yp =1 and 0 <y, <1,n>1. Let
us note now that any probabilistic solution y; satisfies the equations

(o o]
> Biiyi=v , 1=0,1,... (1.14)
=0
where p;; = p;;, for i >0, Po; = bo:.
The transition probabilities f;; define a new (reducible) MC having an
absorbing state at 0.
After iterating (1.14), we get

sz] Y; =

and, since yg = 1,
1556‘ )<y
But lim p(") is the probability, for the initial MC, of being absorbed

into 0, starting from ¢. So, if there exists a probabilistic solution with
y; <1 for some %, then the MC is transient. ]

1.4.3 The space homogeneous random walk on Z™

We shall denote by Z™ the lattice of all integer-valued vectors in the
space R™. The position of the random walk at time n is defined by a
random vector &, € Z™, such that

{ h=a+m+mt.. g n>1,
b=a,

where oo € Z™ is a deterministic vector giving the original position of
the particle at time 0, and 7,k > 1, are i.i.d. random vectors with
range Z™.

It is immediate that &, is a discrete time MC, which is, moreover, spa-
tially homogeneous, in the sense that its transition probabilities satisfy

paﬁ:g(ﬁ_a) » Va:ﬂe Zm ’
where we have put
g(y) =Pl =7v) , v€Z™.

We quote only the main results, referring the reader to [GS74] for a
detailed treatment. The classical way of analysing the random walk
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relies on the method of characteristic functions.
Let

F(u) = B[],
where u = (u1,ug,...,Un) € R™.
For an MC to be irreducible, a well known necessary and sufficient con-
dition (see [GS74]) is that
F(u) #1, for u # 2ma, a € Z™ .

First, note that the random walk is never ergodic, as emerges easily
from a translation invariance argument. Secondly, if E(r;) # 0, then
the random walk is transient, as can be seen by using the law of large
numbers.

Theorem 1.4.2 For m > 3, the random walk is always non-recurrent.
It is also non-recurrent if E(m1) # 0. If E(m) = 0, then the random
walk is recurrent form = 1. If E(m1) =0, E(n?) < oo, then the random
walk is recurrent for m = 2.

Proof : Only the case E(n;) = 0 needs to be considered. We shall
use the following general criterion for the recurrence of a MC (see for
instance [Kar68, GS74].

Theorem 1.4.3 An irreducible aperiodic MC is recurrent if, and only
i,
Zp(") =00, for some i, and then for all i. [ ]

We do not use the criterion of theorem 1.4.3 in the sequel. We simply
quote that, in the convergent case,

(n) _
Zp 1-QG,4)

Hence, for the random walk to be recurrent, it is necessary and sufficient

to have
G=3 ¢™(0)=co
n>0

where g™ (.) denotes the n-th iterate of the probability distribution
function g(-) defined above. The following equality holds:

G=liTr{1R(z),O<z<1,
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where

RE) = L a0 = i 3 [ = [
2 @™ 24 Jo @™ Jp 1= 2F()

and D= {u:|w |<mi=1,...,m}. Since z is real, we get

T 1 ~1
G= llerrll o /D Re[l ~ zF(u)] " 'du .

This shows that the boundedness of G is equivalent to the convergence
of the above integral and the theorem is proved. ]
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General criteria

In this chapter we present and prove several general criteria, which are
constantly used throughout the book. En passant, it is worth mentioning
that:

(i) some other criteria exist [Szp90], which in fact we could not ef-
fectively use for our constructive problems, so that we shall not
discuss them;

(ii) although martingale or Lyapounov function ideology is indispens-
able and could be perceived as fundamental for such criteria, we
realize that some deeper meta-theory for producing such criteria
might well exist too.

2.1 Criteria involving semi-martingales

Let (Q, F, P) be a given probability space and {F,,,n > 0} an increasing
family of o-algebras Fo C F1 C ... C F, C ... C F. Let {S;,7 > 0}
be a sequence of real non negative random variables, such that S; is
Fi-measurable, Vi > 0. Moreover, Sg will be taken constant. Denote
by 7 the F,-stopping time representing the epoch of the first entry into
[0,C], ie. 7(w) =inf{n > 1 : S,(w) < C}. Introduce the stopped
sequence S'n = Spar, Where

n, ifn<7t,
NAT = .
T, ifn>71.

We also use the classical notation for the indicator function

1,— 1, if A is true,
~ | 0, otherwise.

16
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Theorem 2.1.1 Assume that So > C and, for somee >0 and alln >0,
E(§n+1/.7:n) < S'n — 61{T>n} a.s. (2.1)
Then
S
E(T)<?<OO. (22)
Proof : Taking expectation in (2.1) yields

E(Sni1—8,) < —€P(1 > n)

and, by summing over n and taking into account S; >0,

n

0<E(Snt1) < —€) P(r>9)+ S,
=0

which implies
E(r) = lim zn:P(T >1i) < 5 < oo
o € .
This proves the theorem. ]

Now we shall formulate and prove a theorem which generalizes theo-
rem 2.1 and will be an important instrument in the investigation of
the ergodicity of random walks in Z7}. Let {N;,i > 1} be an increas-
ing sequence of stopping times of S,, i.e. {N;=n} € F,, for all n
and %, and such that No = 0, N; — N;_y > 1, a.s. Vi > 1. Introduce
Yo =S, Yi= SN, , ¢t > 1, the stopping time

o=inf{i >1:Y; <C},

and the stopped sequences ﬁ =Y.o, Ni =N, o, 121

Theorem 2.1.2 Assume Sg > C and, for some ¢ >0 and alln >0,
E(Vasr/Fr,) < Vo — € BNyt — No/Fg ), as. (23)
Then
E(r) < —. (2.4)
Proof : It follows from (2.3) that

E(Y; - Yi-1) = B(E(Y; - Yi1/Fg, )]

R

o

< —eE(N; = Ni_4) .
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Consequently,

n

B(V) < =Y~ [B(Ns) - B(Ri )] + So

i=1

= —¢ E(Nn) + 5. (2'5)

Since ¥, > 0 a.s., we obtain from (2.5)

~ S
E(N,) < —6‘1 , Vn>1. (2.6)
Thus, as follows from theorem 2.1.1, E(0) < co. Since N; is pointwise
increasing with respect to i, we get, using the monotone convergence
theorem and (2.6),

B(Ny) = B(lim Nooo) = lim ENap) <2 (27)
Also, for any sample path Sy, Sy, ..., S;,.. ., it is immediate that
7 <N, as.
Consequently
E(t) < E(N,) < %9 < o0, (2.8)
which proves (2.4) and the theorem. n

Theorem 2.1.3 Suppose Sy > C and, for n > 1 and some positive real
M,

E(Sn/]:n—l) > gn—l y @.8., (29)

E(|Sp =81 | /Fa1) <M as. (2.10)
Then E(1) = oco. (Here the S, ’s are not necessarily positive. )
Proof : For all k > 1, we get from (2.10)
E(| Sk ~ 8-y |) = BIE(| Sk — Sk1 | /Faer)] < MP(r > k — 1) |

Thus, for any n,l, such that 1 < < n,

n

E(18 =8 )=Ell Y (5k-81) | < D E( S-Sk )
k=lt1 k=l+1
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<M > P(r>k), (2.11)
k=l+1
whence, immediately,
E(|S.|) <MD P(r>k)+S. (2.12)
k=0

Assume E(7) < co. Then, from (2.11), (2.12) and Cauchy’s criterion, it
follows that S, is a submartingale converging almost surely (a.s) in L;.
[The convergence a.s. is here obvious since, by hypothesis, P(T < c0) =
1 and thus S, = S, ,» 3 S;]. Thus we have

E(S;) = lim E(S,) > E{(Sp) .
But, from the very definition of 7, E(S;) < C, which yields a contra-

diction. Hence E(7) = oo and the proof of theorem 2.3 is concluded.
|

Theorem 2.1.4 Let {H,,n > 0} be a martingale belonging to L%,
1 < a <2, where Hy =0 and {By,,n > 0} denotes the increasing pro-
cess associated to Doob’s decomposition of |H,|* = Uy, + By, Uy, being
a martingale. Then

(i) the martingale {Hpn,n > 0} converges almost surely in L* to a
finite limit on the event {Bo < 00} ;
(ii) if E(Bso) < 00, then the martingale {H,,n > 0} converges in
Le.
Moreover, when o = 2, E(sup,,>o H2) <4E(B). [ ]

For o = 2, this theorem appears for instance in Neveu [Nev72|. The
extension to the case 1 < a < 2 is obtained, first, by using the following
classical inequality, valid for any positive submartingale {X,,,» > 0} and
any p > 1,

p
Il sup Xo [lp < = sup || Xn 5,
n n

and, secondly, by introducing an estimate analogous to the one derived
from (2.17) in the forthcoming Lemma 2.1.6. |

Theorem 2.1.5 If, foralln>1 and o, 1 < a <2,
E[Sni1 — Sn/Fn) <0 as., (2.13)

El| Snst = 8n [® /Fa] <M as., (2.14)
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E(r) < oo,
then
~ Ll
Sy = §2. (2.15)

Before proving theorem 2.1.5, let us formulate the following lemma which
is of independent interest.

Lemma 2.1.6 If the conditions (2.13), (2.14) hold and E(r) < oo ,
then

sup B(S%) < oo Vo, 1 <a<2. (2.16)
n

Proof : Define - - -
ASn = On+41 — S‘n .

The following estimate applies, from Taylor’s formula:
Sn1 — 8% = alA8, (8, + 0,A5,)°1 (2.17)

where 0 < 6, <1, Vn > 0. The right-hand side member of (2.17) can
now be rewritten as

aSeAS, + 82 1AS, [(1 + f)%ns”)a—l - 1]
<aS5TIAS, + o | AS, |2,
where we have used the elementary inequalities
[1+v]9< 1407, [1-v|9>1-2? | Vg, 0<¢<1, Ww>0.

Thus taking conditional expectation in (2.17) and using (2.13) and
(2.14), we get
B[Sz, - 83/F,) < aM 15ny as., (2.18)

and, hence,

E(82,,) < aM Y P(r > k) + 8§ < aME(r) + 55 .
k=0

The finiteness of E(r) yields (2.16) and lemma 2.1.6 is proved. n
Proof of theorem 2.1.5 {S'n} is a positive finite supermartingale.
Therefore, using Doob’s decomposition, we have S, = M,, — A, where

M, is a positive martingale and A, is an increasing predictable sequence.
Let us prove in fact that

Mn = MnAT 3 An = An/\-r 3
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i.e. M, and A, are stopped sequences with respect to 7.
Now, from the very definition of S, , we have on {r <n},

Mp — An = Mny1 — Any1 = Sy,
or, equivalently,
(Mn = Myt1)1{r<n} = (An = Ant1)lir<n}. (2.19)
It follows from {2.19) that

E((An - An+1)1{rﬁn}/-7:n) = E((Mn - Mn+1)1{75n}/-7:n)
= Yran} B(Mn — Myy1)/F) =0.

But (An — Any1)1r<n) is measurable with respect to F,, so that
(An - An+1)1{.,-5n} =0 as.

It follows also from (2.19) that (M, — M, 41)1{,<n} = 0 a.s. Thus M,
and A,, are stopped sequences, as asserted above. The next step consists
in showing the uniform boundedness of the sequences | Ap+1 — A4, |* and
E(| Mpt1 — M, |* /Fr). We know that

Apy1 — Ap = E(S, — 8p11/Fy), as.
Therefore, using Jensen’s inequality for o € {1, +o0], we have
| Anp1 — An |*S E(| Sp — Sn+1 |2 /Fn) < M as.

so that
Apy1— An S MY a5, (2.20)

Since
Mn+1 - Mn = ~n+1 - S'n + An+1 - An >

the triangular inequality for the L*-norm and (2.20) yields

(E(| Mn+1 - M, ‘a /fn))l/a < (E(l §n+l - S'n |a /}-n))l/a
+ An1 — An < 2MY°,

whence
E(| Mpy1 — M, |*/Fn) <2°M . (2.21)

Applying now lemma 2.1.6 to the martingale M,,, we have

sup E(M;J) < oo. (2.22)
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Then, using the uniform boundedness of E(MZ) and theorem 2.1.4, it
follows that

M, 5 M. .

Since A, is an increasing process and 0 < A, £ M, as for all n,
Lebesgue’s dominated convergence theorem ensures that

A5 A,

Finally, as S,, = M,, — Ay, the supermartingale S, converges in L*.
Theorem 2.1.5 is proved. [ |

Let us assume now that the S; ’s defined above are not necessarily non-
negative and introduce the following random variables:

Ye+1 = Sk41 = Sk s Gk = Yeligssy
where b is some given constant. Usually the y;’s will be called the the
Jumps of the process {S,}.
Theorem 2.1.7 If there exist a constant b and positive numbers ¢, 1,
such that
E(§e+1/Fi) < —€ as., (2.23)

Yk+1 = Sk+1 - Sk <l a.s. 5 (224)

then, for any &1 < €, there also erist constants D = D(Sp) and 82 > 0,
such that, for any n >0,

P(S, > —81n) < Ce % (2.25)

Proof : First, we note that, if (2.23) is satisfied at all, then necessarily
b <0. Secondly, for all b < 0,

Sn :ZymLSo < Zﬂz’ +8 =8, .
i=1 i=1
In this case
| 9 |< max(—b,1) ' d
and
P(Sp > —61n) < P(8, > —6&n) .

This simple remark allows us to reduce the case of Jjumps bounded from
above (but not necessarily from below) to the simpler one, when the
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jumps are bounded in absolute value. Thus it will be assumed throughout
the proof that

|y,|§d<oo s V’LZO,

and we shall use (2.23) without the tilde symbol. From Chebyshev’s
inequality, we have

P(S,>0) = P (Zyk > —so) (2.26)
k=1
= P IDAFELEN e h) < ehS°E[ehE:=1 Y],
for any h > 0.

Choosing 0 < h < %i, we have

3
e <1+ hyr + §(hyk)2 ,

which follows from the simple inequality
3 2
6”<1+m+% , Jzl<1.

Hence, by (2.23),

3
E[ehyk/]—'k_l] < E[l1+hyr+ E(hyk)z/}_’c-ll

2 12
< 1—he—|—3h2d , as.

Therefore, taking h sufficiently small, we obtain, for some § > 0 and all
k>1,

Ele™/Fi_i)<e™?, as. (2.27)
Hence, from (2.27)
Ef* X% = E[[] ") = BE(]] e /Fu v)]
k=1 k=1
n-1 n—1
= E[[] B/ Far)] <eE[J] &,
P k=1

which yields immediately

E[ehE:=1 Vel < et
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After setting K = "5 we obtain

P(S, >0) < Ke ™ (2.28)
Let Z, = S, + néy, for any fixed §; <€, and ¢; = ¢ — 61. Then
ElZn/Frni] = Zn_1 = B[S, — Sn1/Fn-1]+6; < —e46; = —¢; < 0.

(2.29)
It follows from (2.29) that, for some D, >0,
P(Zn >0)<De™™ | yp >0,
whence
P(Sy > ~61n) = P(Z, > 0) < De~"% |
The proof of theorem 2.1.7 is concluded. |

The following theorem is a strenghtening of theorem 2.1.7 in the case of
bounded jumps.

Theorem 2.1.8 Let {Ni,i > 1} be a strictly increasing sequence of F,, -
stopping-times, i.e. {N; = n} is Fp-measurable and No = 0. If for some
d,r,¢>0 and all ; > 0, the inequalities

IS: ~ Si1] < d,
I<N;—N;_1<r, (2.30)
E(SNe/FNi~1) < SN¢-1 —€,

hold with probability 1, then for any §; < ¢, there exist constants D =
D(Sp) and § > 0, such that, for alln >0,

P(Sn > —61n) < De~n | (2.31)

Proof : Let ¥; = Sn;, Yo =Sy, The sequence {Y; , i > 0} satisfies
the assumptions of theorem 2.1.7. Therefore, for any 6, < €, there exist
C1,82 > 0, such that, for all 5 >0,

P(Y; > —61i) < Cre 2 | (2.32)

It follows from (2.32) that there also exist C2,63 > 0 such that, for all
i>0,

P(Y; > =615 — dr) < Cye=% . (2.33)

Consider the event A,, = {8, > ~é1n}. The first two conditions of
(2.30) yield

AnC | (Ym> —6m—ar}.

m={n/r|
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Consequently, taking (2.33) into account, we obtain

P(S, > —=6in) = P(An) < Y P(Ym > —8ym —dr)

m=(n/r]

< Gy 2": e bm

m=[n/r]
which in turn implies that there exist D and & such that
P(S, > —6in) < De™®™ | ¥n>0.

This proves the theorem. (]

Theorem 2.1.9 Let N;,d,r be as in theorem 2.1.8; assume that, for
somee >0 and alli > 0,
E[SNi/]:Ni—I] >SN,_, +te, as. (2.34)

and
So>C+dr.

Then P(7 = oc0) > 0.

Proof : It is sufficient to prove that, for some m, there exists v > 0,
such that

g=P(({S>C}) >, (2.35)
k=m
for So > C + dr . Clearly, we have
qzl—P(U{SkSC})>1—ZP(SkSO). (2.36)
k=m k=m

Proceeding along the same lines as in theorems 2.1.7 and 2.1.8, but
reversing the inequalities, we prove the existence of § > 0, and q, such
that

P(Sy <C)<ae® | vk>0.

o0
Since the series Ze“sk is convergent, there exist v > 0 and m, such
k=1
that
o

S P(Sk<C)<1-7. (2.37)

k=m
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The theorem now follows from the inequalities (2.35), (2.36), (2.37). &

We propose now a result which is, in its nature, similar to theorem 2.1.9,
but assumes merely the lower boundedness of jumps.

Theorem 2.1.10 If there ezist a constant b and positive numbers ¢, |

such that
Yo+l = Sk41 — Sk > =l > —00  a.s., (2.38)
and
E(zpr1/Fr) > € as. (2.39)
where

2k = Yelye <o}
then, for So > C,
P(r=0)>0;

remember that C appears in the definition of 7.

Proof : The line of argument is the same as that used to derive
theorem 2.1.9 from theorem 2.1.8 and indeed is based on the exponen-
tial estimates obtained in theorem 2.1.7. Therefore, the details will be
omitted. ]

2.2 Criteria for countable Markov chains

Let us consider a time homogeneous Markov chain £ with a countable
state space A = {a;,7 > 0}. The n-step transition probabilities will be
denoted by p") ; or, more briefly, by pgl), with pfjl )= pij. L is supposed
to be irreducible and aperiodic. The position of the chain at time = is
&, as introduced in chapter 1.

Theorem 2.2.1 The Markov chain L is recurrent if, and only if, there

exist a positive function f(a), o € A, and a finite set A, such that
E\f(6n1) = fEn)/ém = aa] SO , Vosg A, (240) |

and f{a;) — 0o, when j — oco.

Proof: Let 7; the F,-stopping time representing the epoch of first entry ,
into the set A, given that & =a; ¢ A, ie. P

n=inf{n>1:4, € A/ = o} .
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We first prove the if assertion.

Let S, = f(én) and S, = f(£nar). Condition (2.40) entails that
{S,, F,} is a positive supermartingale, since

E[Sn41/Fn) <8,  as. (2.41)

It is well known that there exists S’oo = lim S'n, almost surely. More-
n—o0
over, from Fatou’s lemma,

E(Sa) < E(So) = So = f(€o) . (2.42)

Suppose the chain is transient. As f(a;) — 0o when 7 — oo, there exist
mg, 8 > 0 and «; ¢ A such that, for any K, we have

P{fEn) > K}NZ {6 ¢ AY/So=) > 6 , Vm>mg. (2.43)
But (2.43) yields
E(Sm/€ = ;) > 0, asm — oo, (2.44)
which contradicts (2.42). So the chain is recurrent.

We shall now prove the only if assertion, i.e. the existence of a function
f(a) satisfying (2.40), whenever £ is recurrent. The states are now
enumerated by the integers 0,1,2,.... Let £ be the Markov chain with
transition probabilities

Poo = 1,
Dij = pij, Vi>1,V5>0.

Let Em be the position of £ at time m and denote by cpz( ) the probability
that £ ever reaches the set {n,n+1,. ..}, given that & = i.
Thus @g(n) = 0, ¥n > 0 and ¢;(n) = 1, Vi > n. Moreover, since £ is
recurrent, we have

lim ¢;(n) =0, Vi >0. (2.45)

n—oc

Now we construct an increasing sequence of integers {ni,1=1,2,3,..}
subject to the following conditions:

For any k > 1, we can choose ny, such that ¢;(ny) < 27% Vi <k .

This is possible owing to (2.45). Note, that for fixed n, @;(n) is a function
of ¢ and, if we set p(a;) = p;(n), then (2.40) is satisfied for A = ay, i.e.

Elp(6mt1) — p(€m)/&m = 03] <0, Yoy # aq.
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Let us now define the function
flos) = ilmu).
k=1

From the definition of ¢;(n) and ng, it follows that S 5o | @;i(nk) < oo
and f(o;) satisfies (2.40), as does (o) = ¢i(ni). But for any fixed
k, @i(nk) — 1 and Y 72, ¢i(nk) < oo, so that lim f(a;) = +oo, by
Fatou’s lemma.

The proof of the theorem is concluded. n

Theorem 2.2.2 The Markov chain L is transient, if and only if there
exist a positive function f(a),a € A and a set A such that the following
inequalities are fulfilled:

E[f(&m+1) = f(€n)/&m =] <0, Va; ¢ A, (2.46)
flog) < i-%fA f(aj),for at least one o, ¢ A . (2.47)

Proof : The notation is the same as in theorem 2.40. Assume that
(2.46) and (2.47) hold. Then (2.46) yields

E[f(§nnn)] < E[f(€0)] = f(ox) -

Suppose the chain not transient. Then P(r;, < 00) = 1 and

fn/\‘rk a;s" g‘rk -

Hence by using Fatou’s lemma, we get

E[f(¢n)] < E[f(€0)] < (o) ,

which contradicts (2.47), since &, € A. Thus P(1, = co) > 0 and the
chain is transient.

To show that (2.46) and (2.47) are necessary, let us fix some arbitrary
state ap and take A = {ap}. Define the function f(-) as follows:

{ flao) = 1,
flag) = P{f(&) = ao, f(€k) # a0, 1 <k <v/& =05}, § > 1.
Then, clearly,

E[f(6mt1) — f(ém)/&mn = ;] =0, Va; # ag .

Moreover, since the chain is assumed to be transient, f(a;) < 1 =

f (a0) ) .7 7é 0.
The theorem is completely proved. [ ]
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Theorem 2.2.3 (Foster) The Markov chain L is ergodic if and only if

there exist a positive function f(a),o € A, a number € > 0 and a finite
set A € A such that

E[f(€mt1) = fm)/em =] < —¢, o ¢ A, (2.48)

Elf(fm+1)/ém =il <00, s € A (2.49)
Proof : First, let us prove the sufficiency. The notation is the same as
in 2.2.1, but here the F,-stopping-times
7 =inf{n > 1,¢, € A/& = o}
are defined for all o; € A. Let us fix o; ¢ A and define

S‘n :f(fn) ) Sn — OnAT; -

Rewriting (2.48) in the equivalent form
ElSmi1 — Sm/bm = aj] < —el(r; >m), o ¢ A, (2.50)

we can apply theorem 2.1.1 to get immediately

E(r) < %—i—)— ,forallo; ¢ A. (2.51)

Now, for any ox € A, we have, using (2.51) and (2.49),
E(mn) = Z Pri + Z priE[T + 1]

ai€A a;EA
1
= 1+ Z reiE(r) <1+ p Z Prif(os) < oo.
a; A a;EA

Thus we have shown that for all ey € A, the mean return time to the
finite set A is finite. This is equivalent to positive recurrence, since it
implies that, for one (and thus for all) ax € A, mg,q, < 00, according
to the definition given in section 1.1. This shows the if part of the
proposition.

To prove the necessity, we shall construct a function f(-) satisfying (2.48)
and (2.49), assuming that £ is ergodic.
Choose A = {a}, where oy is a fixed state, and define

{ flog) =E(n) , i>0,
f(ao) =0.
Then, it is straightforward to check that

E[f(Em+1) = f(En)/m = as] = =1 , Vou # a0,
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which is another way of writing the system
oo
E(Ti) = Zp,;jE(Tj) +1, 2 7é 0.
i=1
Moreover, since Mayq, < 00, We also have

ZPO]’E(TJ’) <o,
j=0

which is nothing else but (2.49). The proof of the theorem is finished.
]

The next theorem is a generalization of Foster’s theorem, just as theorem
2.1.2 was a generalization of theorem 2.1.1. It will be frequently used in
the rest of the book.

Theorem 2.2.4 The Markov chain L is ergodic if and only if there exist
a positive function f(a),a € A, a number € > 0, a positive integer-
valued function k(a),a € A, and a finite set A, such that the following
inequalities hold:

E[f(€mth(em)) = F(m)/ém = ] < —€k(ai), s ¢ A (2.52)
E[f(fm+k(£m))/§m = Oéi] <oo, a; €A, (2.53)

Proof: Follows directly from theorem 2.1.2 and from the argument used
in theorem 2.2.3. The details are omitted. ]

As an immediate consequence, we have

Corollary 2.2.5 All the conditions of theorem 2.2.4, together with
sup k(a) =k < o0,
acA

are necessary and sufficient for L to be ergodic. a

Theorem 2.2.6 For an irreducible Markov chain L to be non-ergodic,
it is sufficient that there exist a function f(a),a € A, and constants C
and d such that

(D) Elf(ém+1) — f(ém)/ém = o] 20, for every m, all o € {f(a) >
C}, where the sets {a : f(a) > C} and {a : f(a) < C} are
non-empty;

(il) B[l f(Em+1) = f&m) | /&m = o] < d, for every m, Vo € A.
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Proof: The random sequence S, = f(&,), & = constant, f(&) > C,
satisfies the conditions of theorem 2.1.3, with 7 = inf{n > 1: f(&,) <
C}. Thus E(7) = oo and £ is non-ergodic. ]

Theorem 2.2.7 For an irreducible Markov chain L to be transient,
it suffices that there exist a positive function f(a),a € A, a bounded
integer-valued positive function k(a), o € A, and numbers ¢,C > 0,
such that, setting A. = {a : f(a) > C} # 0, the following conditions
hold:

(i) sup k(@) =k < oc0;
atA

(il) E(f(Emtkem)) — f(Em)/ém = ou) 2 €, Vm, for all & € Ac;
(iii) for some d > O, the inequality | f(ou) — f(a;) | > d implies
pij = 0.

Proof : Still denote by 7 the time of first entry of the sequence S, =
f(&x) into [0, C]. From condition (ii) above, it is not difficult to see by
induction that there exists &g, such that f(&) = C + dk. We introduce
the random sequence Ny = k(£o), Nit1 = N; + k(&;). Then, condition
(ii) can be rewritten as

E(SNi/SNi—l > C) 2> SNi—l +e,

and we are entitled to apply theorem 2.1.9, which yields P(7 = co) > 0.
Thus L is transient and the theorem is proved. a

Theorem 2.2.8 For an irreducible Markov chain L to be null recurrent,
it suffices that there exist two functions f(z) and p(z),z € X, and a
finite subset A € X, such that the following conditions hold:

(i) f(#) 20, p(z) 20, Ve X .

(ii) For some positive o, 7y, with1l < a <2,

f(@) <Hle(@)]%, vz e X .

(iii) lim ¢(z;) = co and

sup f(z) > sup f(z) .
g A TEA
(iv)  (a) Elf(6n+1) — f(6n)/6n =2] 20, Vz ¢ A ;
(b) Elp(bn+1) —¢(6n)/En = 2] <0, Vx ¢ A ;
(c) sup El| ¢(€nt1) —¢(6n) |* /€n = 2] = C < o0.
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Proof : Let us suppose the existence of f(-) and ¢(-). Conditions (i),
(iii) and (iv)(b) on ¢(x) show immediately, by using theorem 2.2.1, that
L is recurrent. We shall now assume that £ is ergodic, in order to get a
contradiction, thus proving the null recurrence. Let us denote

an = (&), bn=f(&n) ,

T = inf{n>0:4, € A/& ¢ A},

Gn = Guar, by = boar .

Since £ was assumed to be ergodic, E(7) < oco. It will be convenient to
choose &y to be a constant and &, ¢ A. The set A being finite, we have

sup p(z) < oo , sup f(z) <oo.
€A €A

Since P(7 < oo) = 1, there exist two random variables @ and E, such
that

Moreover, theorem 2.1.5 shows that the random variables a2 are uni-
formly integrable and converge to @ in the L'-sense. Using now condi-

tion (ii) in the statement of theorem 2.2.8, we get
Bn = f(&n/\‘r) < 'Yag :

Thus the family {b,,n > 0}, dominated by a uniformly integrable
family, is also uniformly integrable. This shows that b is the L!-limit of

I;n and
lim E(b,) = E(b) < sup f(z) . (2.54)

On the other hand, condition (iv)(a) shows that b, is a submartingale
and

Elbn/€0 = oi] > f(€0) = f(eu) , Yai ¢ A, ¥n 20. (2.55)
Condition (iii) allows us to choose ¢ in (2.55), such that
f(ai) > sup f(z) .
z€EA

Doing so, we get from the estimate (2.54), which does not depend on
the initial position &p,

lim E(En/go =q;) <sup flz),

and this last inequality contradicts (2.55). Thus necessarily E(7) = oo
and the proof of theorem 2.2.8 is completed.
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Explicit construction of Lyapounov functions

The simplest idea to come to mind is that, in order to use the criteria of
section 2.2, one must exhibit explicit Lyapounov functions. Fortunately
enough, this can be done for a large number of cases. In this chapter,
we give typical examples where Lyapounov functions can be found and
verified with elementary (but sometimes very tedious) calculations.

In section 3.1, the simplest case is considered, in which, however, arises
the notion of the induced chain, fundamental for chapter 4.

In section 3.2, the main definition of a space homogeneous random walk
in Zf is given. The classification for N = 2 is obtained in sections 3.3
and 3.4.

A special but famous type of random walk in Zf is given by Jackson
networks in section 3.5, for which necessary and sufficient conditions of
ergodicity are proved, by constructing explicit Lyapounov functions.

In section 3.6, we examine important one-dimensional examples, when
the drifts are asymptotically zero. The last section 3.7 presents some
results pertaining to the invariance principle.

3.1 Markov chains in a half-strip
Here we consider an MC L, defined on the state space Z; x Z,,, Z, =
{1,...,n}. The states are denoted by @ = (z,3),z € Z,,i=1,...,n.

Assumption Ao (Homogeneity) For almost all (i.e. except for a finite
number of) points a = (z, 1), the transition probabilities from (z,1) to
(z + k, ) do not depend on = and thus can be denoted by py.

Assumption A; (Lower boundedness) pﬁcj =0, for £ < d, for some
d> —co.

33
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We now introduce, albeit in the simplest situation, the new notion of
induced chain, intensively used in the next chapter.

Definition 3.1.1 The induced chain L;,g4 for the random walk L is a
finite MC, with state space Z,, and governed by the transition probabili-
ties

Gij = ZP? (3.1)
k

Let Ay,..., An be the essential classes for £;,4 (Which itself may be not
irreducible). Let £, be the induced MC on A, and let 7;, i € A,, be the
stationary distribution of Lg,5=1,...,m.

Let M(i) = E; w k pY be the mean jump from the point o = (=, 1), for
almost all x.

Define also the mean drift in the z-direction, for s =1,...,m,

M, = Z Is:ﬂ',p’J = Zm M (i) where 3,3 run over A, .
7]7 1

We also introduce the following;:
Assumption Ag (Boundedness of moments) M(i) < oo for all 4.

Theorem 3.1.2 The following classification holds:
(i) L is ergodic if, and only if, Ms <0, Vs ;
(ii) L is recurrent if, and only if, M; <0, Vs.

Proof We consider only the case when all states of the induced chain
L;.q are essential, i.e. m = 1, and then write M = M;, leaving obvious
generalizations to the reader.

(i) First, assume M = 0. We shall prove that this case corresponds to
null recurrence, by finding a function

fa) = f((z,7)) = z + &,

which satisfies the equalities

Zpaﬁf(ﬂ) — f(a) =0, for almost all « . (3.2)

For z sufficiently large and « = (z,1), equation (3.2) is thus equivalent
to

Zp (k+aj;)—ai= (i)+2q¢jaj—ai:0,i:l,...,n. (3.3)
J
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This system of equations has a solution if, and only if, the vector
(M(Q),...,M{n)) is orthogonal to any solution of the adjoint homo-
geneous system, i.e. when

M= Zn:m M(@) =0, (3.4)
i=1

Therefore, the function f(a) satisfies the conditions of theorem 2.2.1,
so that the MC L is recurrent. On the other hand, f(a) satisfies the
conditions of theorem 2.2.6: thus £ is non-ergodic and, consequently, is
null recurrent.

(ii) If M < 0, then we introduce the function f(a) = f((z,i)) =z + a;,
satisfying the inequalities

Zpaﬂf(ﬂ) — f(@) < —¢, for some € >0 and almost all .  (3.5)
B

Now we apply Foster’s criterion of theorem 2.2.3, hence proving the
ergodicity. Note that here the lower boundedness is not needed.
(iii) If M > 0, then we use a function satisfying the inequalities

Zpaﬁf(ﬁ) — f(a) > ¢, for some € >0 and almost all @,  (3.6)
B

and the transience follows from theorems 2.2.7 and 2.1.10.
Theorem 3.1.2 is proved. [ ]

3.1.1 Generalizations and problems

Let A be a denumerable set and consider a Markov chain defined on
the countable state space A x Z and transition probabilities
p((a,n) — (B, m)), homogeneous in the second component, i.e. depend-
ing only on o , B and m —n. We assume also that there exists a constant
d < 00, such that p({a,n) — (8,m)) =0, for | m — n |> d. Let us put

M(e) = Y (m—n)p((a,n) — (B,m)).
(8,m)

We define the induced chain as in (3.1), the quantity M as in (3.4), and
we assume that the induced chain is irreducible, aperiodic and ergodic.
Aset A= AX(Z—-2Z,)C AxZiscalled

(i) positive recurrent, if the mean time of reaching A from any state
(a,n) € AX Z, n >0, is finite;
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(ii) recurrent if the probability of reaching A, from any state
(,n) € AX Z, n >0, is equal to 1;
(iii) transient if the above probability is less than 1.

We have obtained above the complete classification, when A is finite and
the induced chain is irreducible, namely

(a) A is positive recurrent if, and only if, M < 0;
(b) A is recurrent if, and only if, M < 0.

Below, we prove (b) in a more general situation. The reader can show
easily that A is positive recurrent if M < 0. We can formulate the
following

Problem : When is it true that A is not positive recurrent if M = 07

Let &, be an irreducible aperiodic ergodic Markov chain, with countable
state space A4, and g(a) be a bounded integer-valued function on A. Let
T1,732,. .. be the random times of successive visits to some fixed state 1.
We define
T-1
zr=c+ Y g(&), c>0.
t=0

Theorem 3.1.3 Under the above conditions, the set A is recurrent for
the chain (&,, 2,1 1) if, and only if, M <0.

Proof Setting n; = Zr;y — %4, it is sufficient to prove that E(m;) =0,
when M = 0. To that end, we shall use some results and notation bor-
rowed from [Chu67], sections 1.13 and I.14, where ipg.“) is the taboo
probability, starting from the state i, of entering the state ; at the k-
th step, without hitting ; in between. Then the 7;’s are i.i.d. random
variables and El| n; [] is finite, for all Jj >1. Setting iPi; = 75/, we
have

Bm) =3296) # = 3a) vy = 3 ol) L 0.
k,j J J :

Thus x,, enters 0 a.s. and so does Zpn and theorem 3.1.3 is proved. W

Remark The so-called periodic random walk in (Key84] pertains to the
theory of this section. A random walk in Zor Z7 is called periodic, with
period U, if the transition probabilities satisfy

PaB = PatU,B+U -
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(On Z*, this property needs to be verified only for « sufficiently large.)
This periodic-random-walk problem can immediately be reduced to that
of the strip Z x {1,...,U} or of Z* x {1,...,U}. Note that a result
similar to that of [Key84] was already contained in [Mal72b|.

3.2 Random walks in Zf : main definitions and interpretation

Let us consider a discrete time homogeneous Markov chain £ which is
assumed to be irreducible and aperiodic unless otherwise stated. We
introduce the notation which will be ubiquitous in the sequel.
The set of states is Z& = {(21,...,28):2; >0 integers}, pﬁﬂ are the
k-step transition probabilities of £, with péﬁ = pag. Also, let

M*a) = (MF(a),..., Mj/(a)

be the vector of mean jumps from the point « in k steps. We shall write

M) ¥ Mi(a)= 3 (8~ ¢)pap.
Forany 1 <4 < ... < <N, k>1, a[}aceof
RY = {(r1,...,rn) : 7 > O real}
is, by definition,
BN =A@y, .., 4) =
{(r1,...,rN) iri > 0,0€ {ia, .. i b;rs =0, &€ {31, ...,k }} -

In spite of a slight ambiguity in the notation, we shall sometimes write
i€ BNorie A,wheni € {i1,...,ix}. It is important to emphasize that
a face does not include its boundary. Quite naturally, A; C A will mean
exactly BM C B~

We shall frequently consider random walks satisfying the two following
conditions already encountered in section 3.1:

Condition Ag (Mazimal homogeneity) For any A and for all
a€B"NZY,

Pap = Patefte, Vo€ B NZY, V3 e ZV.
Thus we can write pog = p(A; 8 — ).
Condition Ay (Boundedness of the jumps)
Pap=0for |a—g|>d,
where d is a strictly positive constant and

“ a“:ma‘X’ilai laa:(ah'"aaN)'
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Condition Ag ensures that p,s =0, if §; — o < —1, for at least one .
We define now the first vector field on RLY to be constant on any A and
equal to

My = M(a), aeAN.

Unless otherwise stated, we assume that conditions A; and Ag are in
force.

As an example, consider a class of networks with N queues. All cus-
tomers in the same queue are identical (no types, no marks), so that the
state of the network at time ¢ is completely defined by the vector

a=(ni(t),...,nn(t)),

where n; is the number of customers in queue i. One can have various
transitions (including sychronization constraints)

a=(ni(t),...,nn{)) = 8= (ni(t) +41,...,nn(t) +iN),
with respective intensities A g, yielding different values of the vector
B—a=I(i,...,iN), (3.7)

for nonzero A,p’s. For example, in the famous continuous time Jack-
son network, not more than two components of the vector (3.7) can
be different from zero. But in the case of Fork-Join systems, involving
bulk-arrivals and bulk-services (see e.g [BM89, ICB88]), the vector (3.7)
may have up to N nonzero components. As usual, the random walks
corresponding to these systems are defined, for w sufficiently small, by

Pap = W/\aﬂy ¢4 7é B, Paa=1-— Zpaﬁ . (3-8)

This class of networks is not sufficient to get g.rto)litrary random walks
satisfying Ao and A1, because the transition intensities on the faces are
simply restrictions of the transition intensities inside Zf (a kind of meta-
continuity). In fact the most general random walk, in the class we have
introduced in this section, can be depicted by a queueing network with
interactions between the nodes, where interaction means that A\,g de-
pend also on which nodes of the network are empty, if any. More exactly,
Aap = Aap(A; B — @), which means that A,g is a function of 8 — « and
of the face A to which o belongs. Thus networks with interactions pro-
vide in fact all Markov chains defined on Zf_’ , subject to conditions Ag
and A;. Examples of such networks are given not by Jackson networks,
but for example by Buffered ALOHA, coupled-processors [Szp90, FI79],
..., etc. A new class of networks for data bases will also be considered
in section 5.9.
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3.3 Classification of random walks in Zi

Consider a discrete time homogeneous irreducible and aperiodic MC
L ={&,,n >0} Its state space is the lattice in the positive quarter-
plane Z2 = {(¢,7) : 4,7 > O,integers} and it satisfies the recursive
equation

En—i—l = [é-n + 0n+1]+ s

where the distribution of 6,1 depends only on the position of &, in the
following way (mazimal space homogeneity):

pij, fork,l>1,
o . _ ) pij, fork>1,1=0,
p{0n+1 - (’L:])/é’n - (kvl)} - ;,;a fOI' k :O, l 2 1 ,
pY, fork=1=0.

Moreover we shall make, for the one-step transition probabilities, the
following assumptions:

Condition A (Lower boundedness)

pij =0, if i<-1 orj<-1;
pi; =0, if i<-1 orj<o0;
pi; =0, if i<0 orj<-1.

Condition B (First moment condition)
Elll bny1 || /6n = (k,1)] <C <0, V(k1)eZ},

where || z ||,z € Z%, denotes the euclidean norm and C is an arbitrary
but strictly positive number.

Notation We shall use lower case greek letters o, 3,... to denote ar-
bitrary points of Z2, and then Pop Will mean the one-step transition
probabilities of the Markov chain £ and a > 0 means

az >0, oy >0, for a = (az,ay) .
Also, from the homogeneity conditions, one can write
Ont1 = (0:,0y), given that &, = (z,y).
Define the vector
M(a) = (Mz(a), My())
of the one-step mean jumps (drifts) from the point «. Setting

o= (g, ay), B=(8x,0y),




40 3 Explicit construction of Lyapounov functions

we have

Mx(a) = Zpaﬁ(ﬂw - az),
B

My(e) = Zpaﬂ(ﬂy —ay).
B8

Condition B ensures the existence of M(a), for all a € Z2. By the
homogeneity condition A, only four drift vectors are different from zero:

M, for az,ay >0,
M, for a=(a,0), az >0;
M", fora=(0,ay), ay >0;
My, for a=(0,0).

M(a) =

Remark:

(i) All our results remain valid if a finite number of transition proba-
bilities are arbitrarily modified.

(ii) Given &, = o, the components of 6,,; might be taken bounded
from below not by —1, but by some arbitrary number —K > —00,
provided that

First, we keep the maximal homogeneity for the drift vectors M (@)
introduced above (i.e. four of them only different);

Secondly, the second moments and the covariance of the one-step

jumps inside Zi, le. from any point a > 0, are kept constant.

These last facts will emerge more clearly in the course of the study.

Theorem 3.3.1 Assume conditions A and B are satisfied.
(a) If Mz <0, My <0, then the Markov chain L is
(i) ergodic if
{ M. M, - M,M, <0,
MM, - MM, <0;
(ii) non-ergodic if either
MyM, — MyM, >0 or MyM/ — MyM, >0.
(b) If My >0, M, <0, then the Markov chain L is
(i) ergodic if
MyM, — MyM < 0;
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(ii) transient if
MyM, — MyM, >0 .
(c) (Case symmetric to case (b)) If My > 0, M, <0, then the Markov
chain L is
(i) ergodic if
MyM,' — M M| <0;
(ii) transient if
MyM, — M M,/ >0.

(d) If My >0, M, >0, My + M, > 0, then the Markov chain is
transient.

Assuming also that the jumps are bounded with probability 1, some
stronger results can be derived.

Theorem 3.3.2 Let there exist d > 0, such that || 0, ||< d a.s., for all
n, and assume conditions A and B hold.

(a) If My < 0,M, <0, then the Markov chain L is
(i) transient if either
MM, — MyM; >0 or MyM,' — MM, >0;
(ii) null recurrent if either

MM} — My M}, =0,
MM — M, M]' <0,

or
MM, — MyM,, <0,
MyM! — MM} =0.

(b) If My >0, M, <0, then the Markov chain L is null recurrent if
MM, — MM, =0.
(c) If My <0,M, >0, then the Markov chain L is null recurrent if

MyM! — MM} =0.
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Proof of theorem 3.3.1 : Introduce the following real functions on
VAR

Qlz,y) = uz®+vy? + way,
fle,y) = QY3(z,v),
Af(z,y) = QY+ 0,,y+0,) — QV%(z,y),

where (z,y) € Zi and u,v,w are unspecified constants, to be prop-
erly chosen later, but subject to the constraints u,v > 0, 4uv > w?, so
that the quadratic form Q is positive definite. First, we shall prove the
ergodicity in the case (a(i)).

Lemma 3.3.3
BlAf(z,y)] = “28E0:) + wB(G,)] +y[wE(6;) + 20B(,)

2f(z,y) o
(3.9)
where o(1) — 0 as (2% +4?) — .
Proof
E[Af(z,y)] = Ef(z + 65,y + 6,) — f(=,y)] (3.10)

z(2uby + why) + y(wby + 2v6,) + Q(6;, Oy)) 1/2 B 1}
Qz,y) '
Let us write F(Af(z,y)) in the form

E[Af($7y)] = ¢1($,y) + ¢2(x7y),

- f(a:,y)E[(l +

where

vi(z,y) = E[Af(z,y)1{e,+0,1<2}] s
Va(z,y) = E[Af(z,9)1(0,40,52}] »
z being some positive real number.
Take (z,y) such that 22 +y? = D? and z = ¢, D, for ¢; sufficiently small
and D large. Then, for | 6; + 6, |< z and sufficiently small €1, we have
z(2uby +wly) + y(why + 2v8,) + Q(6s,0,)
Q(z,y)
Upon applying now the simple inequality

<1.

(1+t)P <146t for |t|<land0<B<1,

and taking €; < D™ with a > 1/2, it follows that
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Pi(z,y) =
f(@y)E [:1:(2u0,, +w0y)+y2(cgu}(%,:)2vay)+cz(0m ) 1{|9¢+0y|Sz}] +o(1)
_ El(z(2ul; + wly) + y(wly + 2v0y))1{|01+9ylﬁz}]
2f(z,y)
+ E[%‘%Q(%%'L))’I{W,H—GylSz}] + o(1).

Noting that, if E[| £ || = C < oo, for any arbitrary random variable £,
then

E[€ 1(¢>) = o(1) and E[€? 1g<.3] < Cz,
we get

zE(2ub, + wly) + yE(wb, + 2v6,) L o(1)(z+v)

Vile,y) = 2f(zy) 7(z5)

+610(1) ,

(3.11)
where O(1) represents, as usual, a bounded quantity.

Let us now estimate v (x,y). For fixed u, v, w, €1, there exists a constant
a such that

Af(@,y)1{j0.+0,>2} < alfz + 0y[L0, 40,)>23 -

Hence
¢2(x,y) < aEHOl. + 0y|1{9¢+9y[>z}] = 0(1), as z — 0. (3.12)
The lemma now follows from the estimates (3.11) and (3.12). |

Let us continue the proof of case (a(i)). Lemma 3.3.3 shows that, if
there exist u,v > 0 and w? < 4uw, such that, for some e; > 0 and all
(z,y) € Z- — A, where A is a finite set,

2uE(0;) + wE(8y) < —eg,
wE(0;) + 20E(0y) < —eg,
then, for some D, ¢ > 0 and all (z,y) with 2 + y? > D?, we have

E(Af(z,y)) < —e. (3.14)

(3.13)

Therefore, when (3.13) holds, the random walk is ergodic, by using theo-
rem 2.2.3 (Foster’s criterion). Let us rewrite inequalities (3.13) in terms
of the drifts on the axes and in the internal part of Zi.

2u My +wMy < —e,
2v My +wM; < —e2,
2u M, +wM, < —e3,
2v M) + wM,/ < —€; .

(3.15)
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M M
Y A fx,y)=C1
M”
M= (M Xy MY)
o) -
Fig. 3.3.1
It is easy to show that, if
M, <0,
M, <0, (3.16)

MM, — MyM] <0,
MyM; — M, M, <0,
then there exist u,v > 0 and w? < 4uv, such that (3.15) is satisfied
for some e; > 0, thus proving case a(i). We can give a geometrical

illustration of this result on Fig. 3.3.1, where inequalities (3.16) hold, so
that the chain is ergodic.

The cases (b(i)) and (c(i)) are analogous to (a(i)). Indeed, if

M, 20, M, <0,
M, <0, or M, >0,
MM, — MyM, <0, MM, — M, M,! <0,

we show that there exist u,v > 0 and w? < 4uw, such that (3.15) holds,
so that the chain is ergodic in both cases. Fig. 3.3.2, shows the situation
corresponding to (b(i)).
Now we shall prove the non-ergodicity in (a(ii)). Assume that
M, <0,
M, <0, (3.17)
M.M, — M,M} >0 .
As shown in Fig 3.3.3, there exists a linear function flz,y) = ax + by,
such that, for all @ = (z,y) with az + by > C, we have

fla+ M(a)) > f(a) +¢, for some C,e>0,

and the non-ergodicity immediately follows from theorem 2.2.6.
The proof of the transience in (b(ii)), (c(ii)) and (d) is more difficult.
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Fig. 3.3.2 Fig. 3.3.3

In a preliminary step, we shall discuss the principle of local linearity for
random walks with bounded jumps.

Principle of local linearity Let the state space A of a Markov chain
L be a countable subset of R" and the function f, , a € A, be the
restriction of some real function f(x) defined on RM. Assume also
fa 2 C > —o0 and introduce the sets

D7 ={z: f(z) <e,x € RN} and D} = {z: f(z) > e,z e RV} .
Suppose the jumps of £ are bounded, i.e., for any o € A, there exists a
number d, such that

|| B—a||> do implies that pog =0, VB € A .

If the function f(z) is linear, then it is easy to see that a+M(a) € Df(a)—e
if, and only if],
> Pap(fs — fa) < —¢. (3.18)

peA
Analogously, a + M(a) € D?(a) te if, and only if,
> pap(fp — fa) > €. (3.19)
BeA

Let now f(z) be arbitrary.

Lemma 3.34 Ifa+ M(a) € Di(a)—s5c and the condition
inf sup | f(&)~-e(a)|<e (3.20)
¢  GeR®

aec
&—c|<da
holds, where inf is taken over all linear functions @, then ineguality

(38.18) is valid.
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Proof Let ¢(z) be a linear function such that

sup | f(&) — (@) |<e. (3.21)

acR
lé—cli<da
Then we have the decomposition

Zpaﬂ(f(ﬁ) ~ f(a))

= Zpaﬁ ¢8 — ¢a +Zpaﬁ fo—wp +Zpa,@ a—fa).  (322)
Usmg (8.21), we can wrlte
|Zpaﬂ fﬁ ‘Pﬁ)‘ < € and lzpaﬁ fa)‘ < €.

Hence

> Paples — wa) = pla+ M(a)) — ¢(a)
5

< [pla+ M(a)) = fla+ M(a))]
+[f(@) — ()] + [f{a + M(e)) — f(a)]

<e+e€—5e=—3¢.

Thus, we obtain from (3.22)

> pap(f(B) - fl@)) < —¢.

BeEA
The proof of lemma 3.3.4 is concluded. ]

Lemma 3.3.5 [fa+ M{a) € Df( )45 and the condition

inf  sup | f(&)—w(a)[<e
¥  a€eR”
a—al<da

holds, then inequality (3.19) is valid.
The proof of this result mimics completely that of lemma 3.3.4. n

It is natural to call the statement of lemmas 3.3.4 and 3.3.5 the princi-
ple of local linearity. Instead of verifying conditions 3.18 and 3.19, this
principle allows us automatically to use smooth level curves, for a Lya-
pounov function transversal to the one-step mean jump vector field. In
many concrete situations, ¢(&) will be the tangent to the level curve at
the point «, in particular when the level curve behaves as ||a||? ,p < 1.

Proof of case (d) Let us consider first the case of bounded jumps. We
begin with a geometrical construction of the function f(z,y), (z,y) e R%.
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Fig. 3.3.4

We draw the quarter-circle L of radius 1, tangent to the axes  and y, as
shown in figure 3.3.4. For all points (z, y) belonging to the quarter-circle
L, we put f(z,y) = 1. Then, by scaling, we define the function f(z,y)
in the whole quarter-plane R?,r. More exactly, we put, for (z,y) € L and
allr >0,

flra,ry) =r.

It is clear that the level curve C corresponding to f(z,y) = ¢ is the circle
of radius ¢ with centre at the point (c,c). So we can apply the principle
of local linearity to the function f. Hence, for any d, € > 0, there exists
D > 0 such that, for any o € R%, || o ||> D,

inf sup | f(&) — (&) <,

¥  &ER"

|&—cl<d

where inf is taken over all linear functions ¢.
Moreover, it appears that all mean jump vectors (except maybe on the
axes, in the particular situation when M’ or M" points towards the
origin along its respective axis) in the direction of the increasing values
of f(a). Hence, taking D such that, for | a ||> D,

a+ M(e) e D}L(a)+5e ,

we obtain, from lemma 3.3.5,

> pap(f(B) = f(@)) > +¢ , for |a|>D,agO0zUOyY,
BeA

and the transience in the case (d), with bounded jumps, follows from
theorem 2.2.7.
Let us deal now with the case in which jumps are bounded from below,
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fx,y)=C
yA M
" f(x,y)=0
M
o .
Fig. 3.3.5

but not from above. We take the same function f(a) = f(z,y) as above
and consider the two sequences of random variables

Yi = f(€kv1) — f(&) and Zy = Yil{y,<B} -

It is easy to verify that, for B sufficiently large, these sequences satisfy
conditions of theorem 2.1.10, for f(&;) sufficiently large. The case (d) is
thus completely proved.

Cases (b(ii)) and (c(ii)) could be proved in an entirely similar way and
so are left as exercises. The proof of theorem 3.3.1 is complete. [

Proof of Theorem 3.3.2 : The transience in the case (a(i)) can be
proved as in the case (a(ii)) of theorem 3.3.1 but using theorem 2.2.7.
(1) Consider first the case (a(ii)). The proof of the non-ergodicity is
then rather simple: it is indeed a direct consequence of theorem 2.2.6,
by using the linear function shown in figure 3.3.5. Let us now prove the
recurrence.

Introduce the following real functions, defined on Zi:

Q(z,y) = uz® + vy* +way and f(z,y) = log[Q(z,y) + 1],

where u,v,w are unspecified constants (to be properly chosen later)
satisfying u,v >0 and 4uv > w?, so that Q(x,y) shall be a positive
semi-definite quadratic form. We have

E[Af] = E[f(z + 0z, y + 6y)] - f(2,y)
z(2uby + wly) + y(wbe + 206,) + Q(0s, 0y)]]
1+ Q(=z,y)
_ 2[2uE(0:) + wE(8,)] + y[wE(6:) + 20E(6,)] + E[Q(6a,6,)]
1+Q(z,y)

= E|[log[1 +

]
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E[[z(2uf; + wby) + y(wby + 208y) + Q(6, ,))?]
- 21+ Q(z,y)?

1
P
Let us first assume that
{ MM, — MyM, =0,
MyM] - M M,! <0.
Then we choose the constants u, v, w, to satisfy the system
2uM; +wM, =0,
2uM; + wMy =0,
My +wM,; <0,
2uM,' +wM, <0.
It turns out that (3.25) is equivalent to the simpler system

+o|

wM, wM,
U = — — —
2M, 2M,’
2uM, 2vM1;’
M, Y S TTmp
Put Y ,
w  2M, u M, eM,
v>0, o= T v—[Mz] TOM,
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(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

Choosing ¢ > 0 sufficiently small, it follows from (3.27) that (3.25) and
(3.26) are satisfied, together with Q(z,y) >0, V(z,y) . We shall now

estimate F(Af).

o Assume first y > [, where [ is sufficiently large. From the boundedness

of the jumps it follows that
E[Q(6,6y)] <
z[2uE(0;) + wE(8y)] = 0,
ywB(6,) + 20E(6,) <

Hence, for [ sufficiently large, E(Af(z,y)) <0 .

e Let now y < {. Then we have

A , for some constant A ,

—esl , for some eg > 0.

E(Af) < E[Q(6:,6,)] z[4u’E(02) + 4wuE(6,6,) + w? E(62)]

= 1+ Q(z,y) 2[1 + Q(z,y))?
1
el
’LU2
- ;i—z-[—uE(()i) — wB(0:0,) - (5 —v)B(63)]
1
+o(—=)
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Fig. 3.3.6a Fig. 3.3.6b

1 1, ., ) 1
= — [-E[Q(9:,6,)] - 2 W —uw)E(G))] +o(—3). (3.28)
Choosing € small in (3.27) and inserting the corresponding v, w, u into
(3.28), we see that w? — 4uv — 0, if ¢ — 0, and

E{Q(0z,6y)] 2 El(Vube — Vvby)*] > B >0,

for some B not depending on e. Hence, for sufficiently large z, E(Af) <0.
Finally, when (3.24) holds, we have been able to construct a function
f fulfilling the conditions of theorem 2.2.1, so that the Markov chain is
recurrent.

It is useful to illustrate the above proof geometrically. The equipo-
tential lines of the function f are the ellipses f(z,y) = C, shown in
figure 3.3.6(a). They are tangent to the vectors M’ at the points of the
z-axis and the vectors M and M" point towards their interior.

The case

’_ I
{ MM, — MyM, =0, (3.20)

MM/ - MM =0,

could be handled along the same lines, although with additional techni-
cal difficulties. In fact, one can show that the function f(z,y) increases
as log(x? + 3?), but the level curves would consist of two ellipses, con-
nected by a smooth arc, as depicted in figure 3.3.6(b). To describe the
obstacles in trying to produce a direct approach, as above, we shall
prove the recurrence in a particular case, which requires an additional
(strictly speaking not necessary) assumption, involving a relationship
between second-order quantities.

Choose u, v, w satisfying

w
v>0, —=-—
v
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For these values of u, v, w, which are compatible with (3.29), we set

Q(x’y) = T2(w,y), where T(a},y) = \/’II.’II—\/’I_)y ,
L(z,y) = ax+by, where a and b are positive constants ,

R(z,y) = Q(z,y)+ L(z,y) and f(z,y) = log[R(z,y)] .

From now on, we take ||z + y|| > D, for D > 0 large enough, and it is
important to note that () is only positive semi-definite. For any function
g(z,y), we introduce the convenient notation

def
Ag(z,y) = Ag = g(z + 02,y +6) —g(z,y) .
Thus we have

E[AT(z,y)] =0 and E[AL(z,y)] = aE[6;] + bE[6,] .

Hence .

E[AR(z,y)] = E[(AT(z,y))* + AL(z, )]
and
E[Af(x,y)]
(T2 + L)E[(AT)? + AL| — E[(2TAT + (AT)? + ALY
- 2R%(z,y)

ARN2

+oB[(F) ]
_ 2T?E[(AT)?—AL|+2LE[(AT)*+ AL -4ATE[AT(AL+(AT)?)]
N 2R%(z,y)

2
‘—2R2ix,y) + O(E[(A_R}E)z]) '

(We have omitted the argument (z,y) in most of the functions.) It turns
out that the right-hand side of the above equation (in which §? denotes
a positive quantity uniformly bounded with respect to (z,y)) can be
rendered negative outside a compact set, i.e. for D large enough, if we
assume the condition
nf { E[(AT")?] E[(AT”)2]} 5 El(AT?)]
M! MY M,

(which is parasitic in the sense that it is not needed in the statement of
the theorem) with an obvious notation (7 refers to the Oz-axis, # to the
Oy-axis and no prime symbol means the interior of the quarter-plane).

Geometrically, the level curves are here parabolas. The case (a(ii)) is
finished.
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Fig. 3.3.7 Fig. 3.3.8

(2)case b. There are two subcases.
e First, the situation shown in figure 3.3.7. Then the recurrence can be
proved as in case (a(ii)) and the details are left to the reader. On the
other hand, taking
p(e) = o(z,y) = pr+qy, for o= (z,y) , withp >0, ¢ >0,
we can choose p and ¢ so that
p(M) = pM; +qM, =0,
e(M") = pM;+qM,; =0, (3.30)
e(M") = pMJ+qM;>0.

Thus, (&) is a positive submartingale. Hence

Elp(6n+1) | &n = (=,9)] 2 ¢(z,v)

and theorem 2.2.6 tells us that the chain is non-ergodic and, conse-
quently, is null recurrent.

e Consider now the case of figure 3.3.8. This is a more difficult situation,
which we shall solve by using theorem 2.2.8, together with the principle
of local linearity. Here, it is possible to choose p,q > 0, such that w(&)
becomes a positive supermartingale and the Markov chain £ is recurrent
by theorem 2.2.1. Our goal now is to prove the non-ergodicity.

Define the regions

B = {(x,y)eRiﬂ{y<aw}},forsomeawith0<a<oo,
B¢ = {(a:,y) eER N{y> aa:}} .
For (x,y) € B, we introduce the functional of quadratic form,

fz,y) = (uz? + vy? + zy)? | (3.31)
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where u > 0, v > 0, 0 < § < 1, and recall the notation

Qz,y) = uz’+vy’ +ay,
AQ(r,y) = Qz+0z,y+06y)—Q(z,y) (3.32)
= uf?+ 'Ut9§ + 020y + (y + 2ux)0 + (x + 2vy)8, .

Our purpose is to estimate the quantity

H(z,y) o E[f(€n+1) — f(&n)/6n = (=, )] (3.33)
= E[(Q(‘Tay) + AQ(:E,y))6 - Qé(a:: y)] .

Lemma 3.3.6 There exist §, 0 < § < 1 and a constant D such that
H(z,y) = 6Q° ! (z,y)[E(AQ(z,9)) + (6 — 1)O(1) + o(1)]  (3.34)
for all (z,y), such that (x* +y2) > D?, where, as usual, |O(z)| < K|z|

and o(1) tends to zero when D — oo.

Proof : By Taylor’s formula, we have

H(z,y) = SE[AQ(z,y)(Q(z,y)+v(z,9)AQ(z,v))*!]
§Q° !z, y)|E[AQ(z, )] + (=, ),
where v(x,y) is a random variable such that 0 < v(z,y) < 1.
Note that Q +vAQ > 0 and

Y(z,y)=E [AQ(Q,y)[(IJF%%)a_l ~ 1]] |

It suffices to prove y(z,y) = (6 — 1)O(1) + o(1). In fact, the re-
sult of the lemma is immediate from the definition (3.33), after using
11+ 2)°~ — 1] = (§ = 1)O(=2), for z sufficiently small, since, from the
boundedness of the jumps,

(AQ(z,y))?
Q(z,y)

The lemma is proved. [ |

(3.35)

<A<oo, VY(z,y) #(0,0).

Let us continue the proof of the theorem. From (3.33), it follows that

E[AQ(z,y)]
= zE[2ub; + 0,] + yE[2v0, + 0] + E[Q(65,6,)]  (3.36)
= z(2uE(0:) + E(6y)) + y(2vE(6y) + E(6:))
uwE(02) +vE(8,)% + E(6.6,) .
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Now we shall find D,u,v > 0, such that

E[AQ(z,y)] > 0, for (x,y) € B and (z? + yz) >D?.

Choose
LM, M
- 2M, 2M1’ (3.37)
T oTaM,
with e sufficiently small. Then we distinguish two regions:
o First, the set {(2,y) :z >0, y > 0} . Then (3.36) yields
M,
EIAQ(y) = al-3 Mo+ M)+ y(-M, - 2eM, + M,]
+udgs +vAy + R
= —2eyMy +udz +vAy + R, (3.38)
where
Ae = E(0:)%, Ay = E(6,)%, R = E(0,6,) .
e Secondly, the set {(x,y) : z >0,y =0} . We obtain now
E[AQ(z,y)] = ull, + v\, + R, (3.39)
where X, = E(6,)?, A, = E(6,), R = E(6:0,).
Setting z = —% =tany > 0, we get
M,
t E(0,)? t o) E(6,)?
'U,A; —f—'UA.; +RI — ( a‘n(p)z ( ) + (CO <p)2 ( y) _'_E(ozay) —GA;

1
= 5 [°E(6:)" + 22 E(6:6,) + E(8,)%] — eX, .
It follows from Schwartz’s inequality (E(6,6,))? < E(62) E(62), that
22 E(63) + 22E(0:6,) + E(62) > 0. (3.40)

Thus, using (3.38), (3.39), (3.40) and the assumption M, <0, M, >0,
we can choose € > 0, such that

E[AQ(z,y)] >0, forz>0,y>0.

Moreover, E[AQ(z,y)] grows as a linear function of y.

In figure 3.3.9, we show the level curve Q(x,y) = c. For (z,y) € B, this
curve is an arc of an ellipse. For (z,y) € B¢, we draw the circle tangent
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Fig. 3.3.9

to the vertical axis z = 0, which is a smooth continuation of the curve
Q(z,y) = c. The union of these two curves will be denoted by L.

We have shown that for (x,y) ,« > 0, y > 0, the quantity F[AQ(=z, )]
grows linearly in y. So, for sufficiently large ¢, the vector M, drawn from
the intersection point of L and of the straight line y = ax, is oriented in
the direction of the increasing values of Q(z,y) (see figure 3.3.9) and,
therefore, also looks on the same side of L as the points belonging to
the region B°.

Let us construct now the function f defined as follows:

{f(x,y) = ¢, for(z,y)eL,

frz,ry) = r2c, for (x,y) e L ,r>1. (3.41)
We will prove the existence of §, 0 < § < 1 and D, such that
E[f (z+0z,y+6,)] - f* (z,y) >0, for (z,y)€Z2 : z’+y> >D? (3.42)

First, we will show that, for sufficiently large D and (z,y) : z2+y? >D?,

Elf(z+6z,y+6,)] — f(z,9) >0. (3.43)

For (z,y) € B ,f(m,y) = Q(z,y) and (3.43) has already been proved.
For (z,y) € B¢, inequality (3.43) follows easily from the principle of
local linearity, which yields

E[fY*( + 62,y +6,)] - /2 (z,y) 20, for (z,y) € B°.  (3.44)

Now using (3.44) and Jensen’s inequality, we can write
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E[f'(z+6: +y+06,)] - f’(z,9) 20,
1
forall6, 5 <6<1,(z,y) €B° and 2’ +3* > D?, (3.45)

where D is chosen sufficiently large.

To prove (3.42), if suffices now to apply lemma 3.3.6. In fact (3.34)
shows that, taking § close to 1, the sign of H(x,y) is the same as that
of E[AQ(z,y)]. But we have already shown that

E[AQ(z,y)] > 0, for (z,y) € B and z? + 3* > D?, for some D .

We have finally proved that there exist D > 0 and -21- < 6 < 1, such that
(3.42) holds, for all (z,y) € 22 N{z? +4* > D2}

Now we are in a position to apply theorem 2.2.8, remembering that
we are dealing with the case of figure 3.3.8. Then there exist P,q >0,
such that the function ¢(¢,), where ¢(x,y) = pz + qy is a positive su-
permartingale, i.e. condition (iv)(b) of theorem 2.2.8 holds. Since the
jumps are bounded, condition (iv)(c) also holds. The following argument
shows that condition (ii) also holds. Indeed, for any fixed u,v,p, q > 0,
there exists d > 0, such that

uz? + vy® + zy < d(pz + qy)?
whence,
flz,y) < di(p(z,y))? , for some d; >0.

Since we have shown above that conditions (i) and (iii) were also fulfilled,
null recurrence follows from theorem 2.2.8.
This concludes the proof of case (b) and of theorem 3.3.2. a

3.4 Zero drifts

We consider the Markov chain £ introduced in the previous section, but
satisfying the stronger

Condition B (Second moment condition)
Elll 61 I* /60 = (k,1)] < B < 00 V(k,1) € Z4 .

Until recently nothing was precisely known for the case M = 0. In
fact, this problem, in many respects, is of a very different nature. In
particular, intuition does not provide us with any evidence that the
random walk could be ergodic, when M = 0.

There exist at least four methods which would allow us to solve some
particular cases of the problem:
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(1) The analytic approach, as in [FI79, Mal70, Nau89]. Now there
are only some preliminary results into this direction.

(2) The semi-analytic approach, by using well known explicit results
about one-dimensional random walks. For instance, when the
random walk inside the quarter-plane is the composition of two
independent random walks along both axes, then it is easy to
show that the mean time to reach the boundary is infinite, in
which case, for any values of the parameters p;;,p};, the chain is
not ergodic if M = 0.

(3) The method of Lyapounov functions. This seems to be the most
general approach and we will use it here.

(4) The approach via diffusion processes. There was a lot of work
done on the same problems for diffusion processes in RZ (see
[RW88, VW85, Wil85]). Their intimate connections with the dis-
crete case will be discussed in a forthcoming monograph.

There is a crucial difference between the cases M # 0 and M = 0: in-
deed, the case M # 0 is in a sense locally linear and M = 0 is locally
guadratic. The local second-order effects are well caught by functionals
of quadratic Lyapounov functions.

For M = 0, we will obtain the ergodicity conditions in terms of the
second moments and the covariance of the one-step jumps inside Z?i_,

de =) ipij, Ay = 5°pi \R= ijpi; ,
ij ij ij
and of the angles, anticlockwise oriented, ¢, ¢, shown on figure 3.4.1.

Here ¢, is the angle between M’ and the negative z-axis, ¢, is the angle
between M” and the negative y-axis. Thus, if ¢, # 7/2 and ¢, # 7/2,
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then
M' MII
tan ¢, = —M ,tang, = ——M% .
Y

Theorem 3.4.1
(i) If ¢ >
(ii) If ¢z <

e ergodic if

or ¢y > 5, then the random walk L is not ergodic.
and ¢y < 7, then the random walk L is

[(MERSE]

! "

M
Az tan ¢+, tan ¢, +2R = — M )\ym+2R < 0; (3.46)

T

o non-ergodic if
Az tan ¢y + Ay tang, + 2R > 0. (3.47)
(iii) If (3.47) holds together with ¢, + ¢y < 7, then the random walk

18 null recurrent.

Remark 1 It follows easily from the statement of the theorem that the
mean first entrance time of £ into the boundary, when starting
from some arbitrary point & > 0 at finite distance, is finite (resp.
infinite) if R < 0 (resp. R > 0), since in this case the vectors M’
and M" can be properly chosen to satisfy (3.46) (resp. (3.47)).

Remark 2 It is clear from the formulation of the theorem that we do
not consider the limiting situation

Az tan ¢; + Ay tang, + 2R =0,
which would impose further assumptions of third order.

Proof We introduce the linear function ¢ : Ri — R, such that, for
any v = (z,y),

e(v) =z, y)=pr+qy,p>0,g20,p+q>0.
Lemma 3.4.2 Let p,q >0, p+ q > 0, be such that the vectors M’ and
M" have the following properties (see figure 3.4.2)

@(M') =pM; +qM, >0,
(M//) MI/ + qMII > O

Then, for all (z,y) € Z2 , (z,y) # (0,0),
Elp(€nt1)/6n = (z,9)] 2 #(z,y) , (3.49)

i.e. (&) is a positive submartingale.

(3.48)
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Fig. 3.4.2 Fig. 3.4.3

Proof Immediate by using the linearity of ¢ and the fact that (Mg, My)
= (0,0), for z,y > 0. [ ]

It is simple to check that the conditions of lemma 3.4.2 hold in the case
(i) of theorem 3.4.1. They are also valid when

s T T
¢m<§a¢y<§,¢m+¢y2§a

which yields
My M,! — MM <0. (3.50)

Lemma 3.4.3 If the random walk L satisfies the conditions of lemma
3.4.2, then L is not ergodic.

Proof This is a direct consequence of theorem 2.2.6. It is worth men-
tioning that this result holds under the mere assumption, weaker than
condition B,

E(ll Ont1 |l /60 = (z,9)) <C <. (3.51)

Consider now the case ¢ + ¢y < 7/2.

Then we have the property opposite to that of lemma. 3.4.2, since the vec-
tors M’ and M" point now toward the interior of the simplex bounded
by the two positive axes and the line pz + gy = C. (see figure 3.4.3).
‘This means that there exist p > 0 and ¢ > 0, such that the linear func-
tion (&) is now a positive supermartingale. Hence, the random walk
L is recurrent. Our goal is to distinguish between positive and null
recurrence. To that end, we introduce again the quadratic form

Qlz,y) = (u® +vy’ + ay) , (z,9) € 22,
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where u and v are positive.
As in the preceding section, the game consists in adjusting v and v to
satisfy the conditions of theorem 2.2.8. Define, for the sake of brevity,

= ub?+ vﬂz + 0,0, + (y + 2uz)0z + (x + 2vy)fy .
(3.52)
Put

K(z,9) € ElQEns1) — Qén)/%n = (,9)] -

Then
K(z,y) = zE[2ub; + 0,] + yE[2v8, + 0;] + E[Q(0:,8,)] . (3.53)

Since E[Q(8z,0,)] = O(1), ¥(z,y) € Z%, we get from (3.53), after taking
into account the boundary conditions on the axes,

Azu+ A+ R, (z,y) >0,
K(z,y) =< y(2vM, + M) +0(1), z=0,y>0,
r(2uM;+M,)+0(1), z>0,y=0.

Thus, for some € > 0 and some finite subset E € Z2 , we have
K(:E:y) < —¢, V($>y) ¢ E )
provided that the following system can be satisfied, for some u,v > 0,:

Azu+ A+ R <0,
uM,+M, <0, (3.54)
oM,/ + M,  <O0.

The inequalities M >0, M, <0, M, >0, M, <0, show at once that
(3.54) can be satisfied if (3.46) holds, that is
M’ M/I

o 3y H2R<0.

T

Then the remaining conditions of Foster’s criterion (theorem 2.2.3) are
clearly fulfilled and the random walk is ergodic.
In the other case, when (3.47) holds, i.e.
M/ M
Yy T
Az —W—)\y W+2R>O,

x
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one can find u, v > 0, so that

Au+Av+R >0,
2uM, + M, >0, (3.55)
oM,/ + M >0.

Hence, for some finite subset £ C Z2 , we have K(z,y)>0, for (z,y)¢E.
Consequently, when (3.47) is satisfied, there exist two functions, namely
the quadratic form Q(z,y) and the linear function ¢(z,y), such that,
assuming ¢, + ¢y < 7, all the conditions of theorem 2.2.8 hold (taking
a = 2 in the statement of this theorem). This shows the null recurrence
part of theorem 3.4.1, which is, by the way, completely proved. [ ]
The general conditions allowing for separation between transience and
recurrence have been obtained in [AFM]. We simply quote them here,
without proof:

Theorem 3.4.4 The random walk is

(i) recurrent if

1 7

“Ag—L — A %+2R20;

My UM
(ii) transient if
MII M/
e — X2 +2R<0.
MY v M,

Problems

(1) Find the complete classification in the case

M’ M
Ao =L 4N 2 _2R =0,
M, MY

(2) Classify random walks in Zi, when M{1,2,33 = 0. In particular

(i) Are there ergodic cases?

(ii) When do the one-dimensional faces play no role in the classi-
fication?
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3.5 Jackson networks

Jackson networks are now classical models for communication networks.
Jackson [Jac63] obtained the famous product form for their stationary
probabilities. Sufficient ergodicity conditions follow from this product
form. The proof of the necessity of these conditions was obtained by
many authors [Afa87, Bor86, Fos89, Pod85]. From the general theory
of countable Markov chains, it follows then that the n-step transition
probabilities converge to stationary probabilities when n — co. But not
much was known about the rate of this convergence. The only result is
exponential convergence under some smallness assumptions in [KKRSS].
Here we consider basic Markovian Jackson networks, i.e. with Poisson
arrivals and exponential service times. In this case, these systems are
equivalent to a class of random walks in ZY . where N is the number
of nodes in a network. The main result of this section is that we give
an explicit construction of Lyapounov functions. They are either almost
linear in the terminology of [Mal72a], or just piecewise linear. Later
on, in chapter 7, we again use this construction to show exponential
convergence to the steady state (whenever it exits) and also analyticity
results. Let us emphasize that we never use Jackson’s product form in
the proofs.

Ergodicity conditions for Jackson networks

Here we recall some well known facts and prove a useful geometric
lemma. We consider an open Jackson network with N nodes. Let
¢(t) be the length of the queue at the i-th node at time ¢. We re-
strict ourselves here to the simplest assumptions: independent Poisson
inputs with parameter A; > 0 for any node ¢, exponential service times
with parameters p; > 0 and FIFO service discipline. After a customer
completes service at the i-th node, he is immediately transferred with
probability p;; to the end of the queue at node j, j = 1,.. ., N, and,
with probability

n
pio=1- Zpij )
i=1

he leaves the network. It will be convenient (although strictly not nec-
essary) to assume p;; = 0, for all 4.

In other words, we consider a continuous-time random walk L on Zf
with transition intensities A.g, from the state o = (a!,...,aN) to the
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state 8= (B!,...,B"), where

Hoi = Ag iff—a=e;,
Aap =< Mio=jipio, HB—a=—¢
Wi =pipij, UPf—a=—e+e,for1<ij<N.

(3.56)
Here e; denotes the vector (0,...,0,1,0,.. .,0), having its i-th coordi-

nate equal to 1. It is convenient to denote the zero vector by eg. We
recall now Jackson’s equations. Assuming a stationary regime, we de-
note by v; the mean number of customers visiting node j and coming
from the outside world or from the other nodes during a unit time inter-
val. Using the law of large numbers, Jackson wrote the following system
of equations (we call it Jackson’s system):

N
ujz)\j—i—ZVipij, j=1...,N. (357)

i=1

Let us note that these equations can be solved by the iteration scheme

oo N
k
vj =X+ Z Z)‘i ng) ) (3.58)
k=1 i=1
where
k
| Pz(‘j) =P*, P=| Pij lls,j=0,1,.. N,

and we put p,; =0, 1 £ 0, p,, = 1.
The series in the right-hand side of (3.58) converges if
Py <C1-e)F, (3.59)

for some € > 0, C > 0. For this, it is necessary and sufficient to assume
the classical

Condition J : Starting from any state, the Markov chain with N + 1
states 0,1,..., N, defined by the stochastic matriz P, reaches 0 with a
positive probability (a.s.).

Thus, we can rewrite (3.58) as

N
0
vy = )\j +Z)\z mij s
i=1

where mgj is the mean number of hittings of j, starting from 1, in this
finite-state Markov chain. Then, it is immediate to see that the solution
of (3.57) is unique.
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Theorem 3.5.1 (Jackson). The network is ergodic if, and only if,
vi<pj forall j=1,...,N.

We will give a new proof of this theorem by means of a geometrical
approach, which is the key point of the study. Later on we also make
use of several results for discrete time Markov chains, borrowed from
chapter 2. It is worth noting that all of them could be easily rewritten
for the continuous time case. To avoid this rewriting, we introduce the
following discrete time random walk L in Zf . Its transition probabilities
are taken to be

Paf = Wa Aaf » (3.60)

for some constants w, satisfying
0<wy < (Z/\O"B)_l'
B

For instance, the choice
wa = (D Xap) ™"
B

yields the natural embedded chain. In fact, it will be more convenient
to choose

we =w < min O dap) ™ (3.61)
B
The stationary probabilities 7, of L., and those 7, of L are the same,
ie.
Mo = Ta, (3.62)
so that L is ergodic if, and only if, L is ergodic.

We shall consider the discrete time homogeneous Markov chain L, which
is assumed to be irreducible and aperiodic, unless otherwise stated. The
notation of section 3.2 will be in force. In particular, we recall the
definition of a face: For any A C {1,2,..., N}, the face BN of RY is the
set

BN ={(r1,...,7N):1i >0, i€A; 1;=0,1 ¢ A}.

Obviously the random walk L, which is equivalent to the Jackson net-
work under study, does meet conditions Ag and Ay of section 3.2. Here
condition A; is even stronger, since

Pap=0, for [a—B]>1.
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The first vector field on Rf is constant on any B* and is equal to
Mr=M(a), aeA.

For the Markov chain L, we have the crucial property

My = fo+ Zfi ) (3.63)
€A
where
N
fi:wZ,uij(—ei+ej), for i=0,...,N. (3.64)

i=0

So, f; represents the contribution of the transition from the i-th node
(including the virtual 0-node). On the other hand, it is clear that the
2" mean jump vectors M, are the vertices of a parallelepiped which we
denote by OIT . Its initial point can be taken as fy and the edges drawn
from this point are f1,..., fy. This parallelepiped may be degenerate
if the vectors fy,..., fi are linearly dependent. We shall use below the
following combinatorial criterion of ergodicity, equivalent to Jackson’s
one.

Lemma 3.5.2 The Jackson network is ergodic if, and only if, OTI is not
degenerate and the point 0 € RN is one of its interior points. Moreover,
if the origin does not belong to 811, then this chain is transient.

Proof Consider the following system of equations, with respect to
€1,...,€EN!

Joterfit+---+eny fn=0. (3.65)

Note that OII is not degenerate if, and only if, this system is not de-
generate. In this case, (3.65) has a unique solution and 0 is an internal
point of JIT if, and only if, 0 < ¢; < 1,fori =1,...,N. Inserting (3.56),
(3.64) into (3.65), we get

N N N N
O=fotd fi = D Ne;+y 6 ppij(—eite;)
=1 i=1  j=0

j=1
N N N
= Z Ajej + Z €ipi[—e; + Zpijej}
j=1 i—1 7=0
N N

N N
= D Ne =D Gty e pie;
i=1 j=0

j=1 j=1
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N N
= > N-&gu+ > e mipiges
j=1 i=1
which coincides with (3.57) for ¢; = p; = Ly
g

Thus, when 0 is an interior point of dII and JII is not degenerate, the
ergodicity follows directly from Jackson’s explicit formulas for the sta-
tionary probabilities but later we shall prove it without using Jackson’s
results.

Let now 0 lie on the boundary of 11 (this includes the case of a degener-
ate OII, when 811 coincides with its boundary). Assume first that OI1 is
not degenerate. Then there exists a hyperplane £ of dimension N —1
in RY, such that 0 € £ and 911 belongs to the closure of one of the two
half-spaces defined by £. Denote this closure by £t and consider the
straight line [, passing through 0 and perpendicular to £. Let = be the
coordinate on [ which is positive on £1. For any point « € Rﬁ , let f{a)
be the value of the z-coordinate of the orthogonal projection of o onto
I. Then, since all the Mx’s belong to LT, it follows that

Zpaﬂf(ﬁ) — f(@) 20, f(a) > 0 for an infinite number of o € Zf.
B

Consider the sequence of random variables £o,&1,. .. constituting the
chain L, and the corresponding sequence f(&;). Let 7 be the time of
first visit of & to the set {a : f(a) <0} and n(t) = f(€iar). We have

Ees1/&, .. 6] —m 2 0.

It is then well known that ET = oo, which proves the non-ergodicity by
using theorem 2.1.3.

For a degenerate OII, the proof is the same and, with regard to the
transience, we have, for some € > 0,

Zpaﬁf([a’) — f(a@) > €, f(e) >0 for an infinite number of @ € Zf .
B

Then the results follows from theorems 2.1.9 and 2.2.7. The lemma 3.5.2
is proved. ]

Geometric construction
Let us recall that OII is the convex hull of the points M (the ends of
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the vectors M having their origin at 0).
Let a be a fixed point of RY. We define

N
P=T"={at+) 6 fi: 520}

i=1
Hence, I represents a multidimensional cone (with vertex a) generated
by the vectors f;. It will be convenient to put

F7\={a+2 Bi fi: B >0} ,AC{1,...,N},

€A

so that
= I“{11,...,N} .
We define the surface '@ of I'® by
r= 1) .
A#{L,....N}

Whenever a = fy , we shall simply write T, A, T, etc.
Scaling : We shall denote by o, af‘, al'a, a > 1, the respective

scaled geometrical objects, with vertex aa.

Lemma 3.5.8 The set
RY N (al)
s compact for any a > 1.

Proof Let us first note that, if this set is compact for some a, then it is
compact for any a. Hence we can choose a in a convenient way, putting
for instance

a=f0.

We now remark that the ray fo + 8;f;, 0 < 8; < 0o, intersects the face
z; = 0 of Rﬁ , since f; has its e;-component negative and the others are
positive. From this, the required compactness is readily seen. In fact,
we can rewrite

N N
fotd Bifi=w) Cies, (3.66)
i=1 Q=1
with

N
Ci=XA +Y aipy—oy,
i=1
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after having set
a; = p; Bj -

Choosing now a ray «; = tr;, ; > 0, t > 0, we see that its intersection
with Rf is an interval of finite length, since

N
ZC]- = Z)\j +1 (Zri(l — Pio) — Zrz) = ZA]' _tzripio )
i=1

and the coefficient of ¢ is negative. The lemma is proved |

Let us now consider some ', with | A| = N — 1. This defines an affine
hyperplane Hx (of dimension N — 1) in RV, which subdivides R" into
2 half-spaces I'f, 'x. We denote by I’} the half-space containing I".

Lemma 3.5.4 We assume that 0 lies inside OIl and consider an arbi-
trary Ta with |A| = N — 1. Then any vector Mu:, such that

NEA, (3.67)
which has its initial point in T, lies entirely in T'f.
Proof Let us first show that My;  n} has this property for all T'a,
such that |A|= N ~ 1. For this, choose a = —M(;  n}. Let us note
that 0 € OI1 if, and only if, 0 € {—0II}. Then the vector My, . Ny, With
initial point a (which belongs to all T'4 simultaneously), has 0 as its final

point and is thus contained in I'}.
Take now e.g. A = {2,..., N} and any A’ such that 1 € A’. Choosing

again
a=-My, .ny=-fo— Y, fi— >, fi,

ien i£0,ig¢ A

we see that the point

b=a+ Z fi

i£0,igA
belongs to I'x and b+ M = 0 € T. The lemma is proved [

Lemma 3.5.5 If a lies strictly inside Rf, thenT'%, for any | A |=N -1,
has the property

[2NBN =80 , forA CA,

where B denotes the closure of B.
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Proof Let again A ={2,...,N}. Then

N
T ={a+>_ B fi}.

Jj=2
But the vector
N N
G+Z B; [ chi € ,
=2 i=1
since C| is strictly positive, cannot belong to the region BN, where the

first coordinate is zero. The lemma is proved. n

Let us introduce now the following function, with domain Rﬁ :
fiz— fo=a, for z€al. (3.68)

This piecewise linear function, obtained by scaling, is our main Lya-
pounov function, as will be shown below. We shall in fact propose two
constructions, which are both useful for future generalizations.

First construction
This construction uses smoothing, which is in fact equivalent to the prin-
ciple of almost linearity, presented in section 3.3.

Lemma 3.5.6 For any € > 0, there exists a smooth convex closed hy-
persurface OlI(€), homeomorphic to the boundary 811 of I1 such that, for
any z € Oll(e),

p(z,0Il) < €,
and, for any y € OII,
ply,01l(e)) <e,

p being an arbitrary metric.

For the proof, it is sufficient to consider the unit cube in R" and then
to use a linear transformation. For this unit cube, one can proceed by
induction, in constructing at each step a cylinder smoothed at the ends.
Take the intersection of Oll(€) with a neighbourhood of the vertex a = f;.
We extend it by linearity to get a hypersurface f‘(e), smooth and convex,
such that the pairs

(CNRY, TnaRY))
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and
(L) nRY, T(e) nORY))
are homeomorphic. Moreover,
p(z,T(€)) < ¢ foranyzeNRY,
p(y,T) < € foranyye'(e)N RY .
Then, by scaling, we define the following Lyapounov function:
fizofo=a, zecalle). (3.69)

Let us fix some r > 0 sufficiently large and an arbitrary z € af‘(e). Let
O(z) = O(r;z) be a cube with sides of length r, centred at z. Then
there exist linear functions g,(-) on RY such that

sup  sup | fy —gz(y) |—=0 fora— oco.
zeal'(e) ¥EO(x)

By geometric construction, when 0 lies inside II, we have, for all suffi-
ciently large z € Z ﬁrv and for some § > 0,

fz+M(z) —fa <=6

From the last two formulas, it follows that, for some §; > 0 and for all
z except for a finite set, we have

szyfy —fa < =61 .
Y

This yields the following (as announced, we have used the principle of
almost-linearity)

Theorem 3.5.7 If O lies inside 811, then the function f, defined by
(3.69), satisfies the conditions of theorem 2.2.3, so that the Jackson
network 1s ergodic.

Second construction

In this construction, we shall use the Lyapounov function (3.68) together
with theorem 2.2.4, for integer-valued functions k(x) = k, with k taken
sufficiently large

Theorem 3.5.8 Let us consider a Jackson network such that 0 € 91,
and choose the function fy as in (3.68), with the point a lying inside
Rf . Then, for this Lyapounov function, and k(z) = k sufficiently large,
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the conditions of theorem 2.2.4 are satisfied and the Jackson network is
ergodic.

Proof Let us fix a constant d, representing the maximal length of a
jump, for some metric p in RY. In our case, d = 1 for the metric

plz,y) = mzaxlzi —uil,

where e.g. = = (2, ..., zN).

Lemma 3.5.9 Let us fir ¢ > 0 sufficiently small. There exists pg > 0
such that, for any x € Zf, with

p=plz,RY) > po
and for any k such that
po<kd=k<p,

we have

>l fy—fa < €. (3.70)
Y

Proof Forany A, |A| = N—1, let us consider a new function f* : z — fJ!
= «, for x belonging to the hyperplane aH, generated by aI'. Con-
sider the evolution of the random walk after & steps, assuming it started
from z. That is

=280, &1, .-, &k—1-
Then the sequence
féo T Fh,

is a supermartingale satisfying, for some €/ > 0,
E(fé:/fé;: . '7f§/>_1) _—fﬁ/\i—l < —€ )

since M{; . N} is directed to the corresponding side of the hyperplane

aHy. Thus, by theorem 2.1.7, we can find constants Ca, 6x, € > 0,

such that

fbo s — I < —ken , (3.71)

with probability 1 — Cx e+, Hence, for pg chosen sufficiently large,
(3.71) takes place for all A, with probability

1-C e %

3
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for some constants C, § > 0. Using the boundedness of jumps and
the fact that the function f grows linearly with o, we immediately get
(3.70), for some € > 0.

The lemma is proved. [ ]

Lemma 3.5.10 Again choose € > 0 sufficiently small and i € 1,...,N.
Then there exist p; > 0 such that, for any x € Zl_l\_’ with

p = max p(z,B") > p; , (3.72)
AGEA

and for any k such that

p<kd=k<p,
we have
Sb® - fu < —e. (373)
y

Proof We repeat the proof of lemma 3.5.9, using the geometrical con-
struction, as the mean jump vectors point in a suitable direction, from
any point which the random walk, starting from z, can possibly visit
during p — 1 steps. The lemma is proved. ]

To prove the theorem, we introduce the quantity

Then, for any point z lying outside a (5+1)-neighbourhood of the origin,
in our special metric, we put

kz)=k=p

and note that, for any such point, there exists 7 such that, for A =
{1,..., N} —{¢}, inequalities (3.72) and (3.73) hold. The proof of the-
orem 3.5.8 is concluded. |

3.6 Asymptotically small drifts

Let us consider a discrete time MC {X,}, with state space Z; and
satisfying the following moment condition:

sg}()) E[| Xnt1 — Xn |7 /Xn] < ¢ < o0, as., for some €>0,c> 0

(3.74)




8.6 Asymptotically small drifts 73

Let us define forx € Z; and 1 =1,2,...
pi() = Bl(Xnt1 ~ Xn)'/ Xy = 2] (3.75)

From the condition (3.74), it follows that

sup ps(z) < oo and sup py(z) < oco.
x€Zy zCZy

The next theorem, proved in [AIM], generalizes results obtained by Lam-
perti [Lam60].

Theorem 3.6.1 The following classification holds:
(i) If there exists a number B such that

pa(x)

mz) < —=——= |, forz > B, (3.76)
2z
then {X,} is recurrent.
(ii) If instead, for some 6 > 1,
)
wi(zx) > u22a(cx) forz> B, (3.77)
then {X,,} is transient.
(iii) If
i (z) > —”"’2(5) , forz>B, (3.78)
then {X,} is non-ergodic.
(iv) If for some 60 > 1
0
m(z) < —% , fora > B, (3.79)

then {X,} is ergodic.

Remark The transience and recurrence parts of this theorem are due to
Lamperti [Lam60]. Non-ergodicity and ergodicity can be proved using
theorem 2.2.8. These results, and also the following one (more precise),
are stated without the proofs, which can be found in [AIM].

We define recursively

logz = log(2), log(logz) = log® z, ... ,log*)(z)
= log(log(k_l) z),...etc.
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Theorem 3.6.2
(1) If for some k € Z,. there exists a number B such that, forxz > B,

pn(z) > _ka(@)  pa(z) m(w)(z) _
2z 2zlogz  2zlogzlog'?(z)
22 [Ty log®(z)
then {X,} is non-ergodic.
(ii) If, for some k, for some 6 > 1 and for z > B,
_a(x) ()
Ha() < 2z 2z logzx
pa() Opa(z) (3.81)

2z H’;;ll log®(z) 2z Hszl logP(z) ’
then {X,} is ergodic.

Theorem 3.6.1 could be used as a classification criterion in multidimen-
sional zero drift situations. The algorithm might be as follows: find a
family of Lyapounov functions f(d,a), where a € A is the state space
of the MC and @ is a real vector parameter, satisfying two conditions:
(i) @ issmall and for @ =0 f is a linear function;
(ii) f(d@; ) is a super- (or sub-) martingale with asymptotically small
drift. After this we could just use the theorem above mentioned.

This way might be a more direct alternative approach to section
34.

An example of such a theorem is the following result [Lam60], which we
state now.

Let X,, € Ry be a real nonnegative process (not necessarily a Markov
process), satisfying

E[l Xn+1 _Xn ,2+E /Xn—l,Xn—% .- ] < c <o ’

limsup,, ,,, X, =co, as. (3.82)
We define
ﬁ($) = €ss sup E[Xn+1_Xn ] X :van—ly .- ~7X0]a (3 83)
v(z) = ess sup B[( X1 —Xn)? | Xn=x, X, 1,..., X0, )

where the sup is taken over n and over the values of {X;,i < n —1}.
Similarly, u(z) and v(z) are defined by replacing sup by inf in (3.83).
The finiteness of 7z and ¥ follows from (3.83), but, as an additional
assumption, y(x) is supposed to be bounded away from 0, to avoid trivial
situations.
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Theorem 3.6.3 Let a non-negative stochastic process {X,} satisfy
(3.83) and

P(limsup X,, = 00) =1, (3.84)
and, for all large x,
Blz) < %z—) +0(™ 179, 6>0. (3.85)
Then { Xy} is recurrent. If instead, for some @ > 1,
o ()
> .
we) 2 —- (3.86)

Jor all large x, then {X,} is transient.

Lamperti [Lam60] applied this theorem to multidimensional random
walks without boundaries and with asymptotically zero (or constant)
drifts. Assume that

(1)
n
X.=1 . , n=0,1,2, ..,

X
are random vectors forming a Markov process, with the transition prob-
ability function

Flyi, ..., ys;%) = P(X0), ~ X0 <y i =1,...,5/X, =x), (3.87)

independently of n. For simplicity in the proofs, Lamperti makes the
assumption that, for some B < oo,

| XS—?—I ~-XP|<B,as fori=1,...,s, (3.88)

for all n, although, as usual, (3.88) could be relaxed to a moment con-
dition at the expense of some labor. We shall use the notation

{ EXnt1 — X0/ X5 = x| = p(x),
E [(Xn-H = Xa)Xnp1 — X0)T/X, = X] = v(x) = {vi;(x)} .
(3.89)

The idea. is to define the process

Rn =[| X, = D (X))
=1
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and apply the result of theorem 3.6.3 to {R,}. The requirement that
limsup R, = oo a.s. is assumed ad hoc (see (3.84)) and is usually easy
to verify in particular cases.

Theorem 3.6.4 Under the above hypotheses, suppose
v(x)=v+O(|| x||°), for somed >0,

where the matriz [v;;] = v is positive definite. Then {X,} is recurrent
provided that

(2-5)
2

Ty,—1

X' v ip(x) < +O(lx [17%)

for all sufficiently large || x |I, while in the case for large || x || where

T (2-5)
2

xTvlpx) > —L +¢ >0,

then {X,,} is transient.

3.7 Stability and invariance principle

Let X(©) = {X,(f),n > 0} be a family of irreducible, aperiodic Markov
chains, with state space Z_, indexed by some positive parameter 6 and
supposed to be ergodic for any # > 0. We shall suppose that the transi-
tion probabilities of these chains have a property of convergence

P = piy, 8500,
where ||p;;|| denotes the matrix of transition probabilities corresponding
to X, Let 7r(9) be the stationary probabilities for the matrix || p(o) || and

let ¢? denote a random variable having the distribution P[¢? = j] = 7r(0)

Under some assumptions explained below, we shall consider the asymp-
totic behaviour of the distribution of ¢¢, as 6 | 0. When X is ergodic,
the problem mentioned above is generally referred to as the stability of
the ergodic distribution of X(®) . However, the discussion below deals
also with the situation when X(9 can be non-ergodic. The approach
proposed follows [BFK92| and could also be used for non-Markov pro-
cesses.

The notation is compatible with section 3.6. In particular, for the first
and second moments of the drifts, we simply add the superscript ().
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We enforce now the following general conditions:

im  u{?() =0 and  sup pd(j) < oo,
i—00,00 i>0,602>0
lim, PG +6) = —p, for —oo < p< too,
(@) _
z-»lcgrblou (7) b, 0<b< .

(3.90)
Thus X is ergodic, for any # > 0. We state now the following theo-
rems, without proofs, which can be found in [BFK92].
Theorem 3.7.1 (Ergodicity and stability). If (8.90) holds, 2p < b and

sup E[(X® — i)t /xP =i < C < o, (3.91)
i>0,0>0

where € is an arbitrary but strictly positive number, then the chain X(©)
is ergodic and becomes stable, in the sense that

4(9) C(O) as@ |0,

where D indicates a weak convergence. The case p = oo is covered by
the statement of the theorem.

Theorem 3.7.2 (Convergence to a T" distribution). If (3.90) holds and
—00 < 2u < b, then X () 4s non-ergodic. If, moreover, the series repre-

senting
(9) () 2
Z Pjjt+k k
k>—j

converges uniformly with respect to j and 6, then
20¢® 5Ty, 1 2, 05010,

where, up to a slight abuse of langage, Iy g denotes a random variable
distributed according to the standard I'y g distribution.

Theorem 3.7.3 (Convergence to the uniform distribution). If (3.90),
(3.91) hold, 2p = b and

2410G) + 0] + uD () = (o+§) , (3.92)

then X9 s null recurrent and

log(¢”) p
log(1/6)

Ulo,1], as 6,0,
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where U0, 1] denotes the uniform distribution on [0,1].

The next theorem, which gives a detailed account of the behaviour of
X© g intimately related to theorems 3.6.2 and 3.6.3 and also to the
studies [Lam63, Twe76].

Theorem 3.7.4 (Distinction between transience and null recurrence).

Assuming here 8 = 0 and that (3. 90), (3.91) hold, we have the following
classification:

(1) If 2u > b, then X© is ergodic (assumption (8.91) is here not
necessary).
(ii) If —b < 2u < b, then X(©) 45 nullrecurrent; this is also the case
if 2= b and (8.92) holds.
(iil) If b > —2p, then XO) s recurrent.
(iv) If 0 < b < =2y, then XO is transient.

It is worth making some additional remarks (see again [BFK92]):

(i) In theorem 3.7.2, the second equation of (3.90) can be replaced by
the representation

1
uﬁ")(j)z—o—ﬁ,+o(0+-.> , 88 j =00, 050
J J

(ii) In the case p = —oo, the limit distribution of ¢, after a suitable
normalization will be normal (see [Kor90]);

(iii) The statement of theorem 3.7.3 says, roughly speaking, that ¢(®)
is distributed as ", where 7 is a random variable distributed as
U[0,1]. Taking a different rate of convergence to 0 in (3.92) could
yield a different distribution for log(¢(®)) as well.




4
Ideology of induced chains

In sections 4.1 and 4.2 we introduce the main notions (second vector
fields, paths) and we give the preliminary description and classification
of properties of these paths. In section 4.3 we get sufficient conditions
for a random walk to have a Lyapounov function satisfying the simplest
of Foster’s criteria (with k; < C, see corollary 2.2.5). In section 4.4, it
is proved that these results allow for getting a complete classification in
dimensions 2 and 3.

4.1 Second vector field

We come back to the terminology of section 3.2 to introduce here some
fundamental concepts, frequently used in the sequel.

Definition 4.1.1 For any A # A(1, ..., N) we choose an arbitrary point
a € B°NZY and draw a plane C* of dimension N — | A |, perpendicular
to B" and containing a. We define the induced Markov chain L, with
state space CAORIJY (by an obuvious abuse in the notation, we shall write
C” most of the time) and transition probabilities

APap =Pap+ ) Pay, Ya,0 € C"
v#B

where the summation is performed over ally € ZY | such that the straight
line connecting v and 3 is perpendicular to C™. It is important to note
that this construction does not depend on a.

We shall make a series of assumptions 0; , 2 = 1,2, .... All of them hold
for all points in the parameter space, except for some hypersurface of
lower dimension. More exactly, we define the parameter space P = Py
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depending on a fixed constant d. Due to conditions Ay and A, of section
3.2, it is the product of 2V simplices

P(A) = {p(/\;a) D a € ZY,p(Aa) 20, Y p(Aja) = 1}

o3

in the finite-dimensional Fuclidean space.

Assumption 0; For any A the chain £” is irreducible and aperiodic.
We call B* (or simply A) ergodic ( non-ergodic, transient, . ..) according
as L" is ergodic (non-ergodic, transient,...). For an ergodic £", let
7 (y),v € C*, be its stationary transition probabilities. We introduce

the vector v = (v, ..., v}) by setting
v o= 0,igAN,
o= Y TMi(y), i€,
yeCr

Intuitively, one can imagine that the random walk starts from a point
which is close to A, but sufficiently far from all other faces B’\/, with
A ¢ N After some time (sufficiently long, but less than the minimal
distance from the above mentioned B’\I), the stationary regime in the
induced chain will be established. In this regime, one can ask about the
mean drift along A: it is defined exactly by v*. For A = {1,..., N}, we
call A ergodic, by definition, and put

v = M(a), aGB’VﬁZﬂ.

From now on, when speaking about the components of v, we mean the
components v{* with ¢ € A.

Assumption 0y v # 0, for each i € A.

Definition 4.1.2 Let us fix A, A1, so that A D A1, A # Ay, that is to say
B" 5 BM (EA is the closure of B"). Let B" be ergodic. Thus v" is
well defined. There are three possibilities for the direction of v w.r.t.
B" . We say that B" is an ingoing (outgoing) face for B, if all the
coordinates v for i € A — Ay are negative (positive). Otherwise we say
that B" is neutral.

As an example we give simple sufficient criteria for a face to be ergodic.

Proposition 4.1.3 A face B of dimension N —1 is ergodic if and only
if vi{l’”"N} <0, fori={1,...,N} - A.
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This statement is obvious, since in this case £" is a one-dimensional
Markov chain. [}

Proposition 4.1.4 If all faces B* with A D A are ergodic and ingoing
for BM | then BM is ergodic.

We leave the proof to the reader, since it is a direct consequence of the
main result of section 4.3. [ ]

Definition 4.1.5 To any point x € RY, we assign a vector v(z) and
call this function the second vector field. It can be multivalued on some
non-ergodic faces. We put, for ergodic faces B",

v(z)=v",ze B".

If BM is non-ergodic, then at any point x € B™ | v(x) takes all values
v for which B" is an outgoing face with respect to B . In other words,
for x belonging to non-ergodic faces, with |z| sufficiently large,

z+v(z) eRY,

for any value v(z). If there is no such vector, we put v(z) =0, for
z € BM. Points z € RY, where v(z) is more than single-valued, are
called branch points.

There are few interesting examples, for which only the first vector field
suffices to obtain ergodicity conditions for the random walk of inter-
est, but it is nevertheless the case for Jackson networks. In general,
the second vector field must be introduced. The following proposition
demonstrates the usefulness of this second vector field.

Proposition 4.1.6 If for some ergodic face A all components of v are
positive then the random walk is transient.

Proof Let us fix an ergodic face A and let & be the corresponding
induced (ergodic) Markov chain. Introduce also the mutually indepen-
dent random variables 7(¢, z), enumerated by z € C*, ¢t =0,1,..., and
defined as follows: They take values in Z*, k = | A |, so that

P(n(t,=) =y) = Y _pap,

where a,y € B, a = (a,z), 3= (a + v, ) and the summation is over all
z € CN
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Let us consider now the following process with values in Z¥, k= | A |:

n—1

Sn = SO + Zn(t>§£) )

t=0

where S; € BM N Zf . This process is a random functional over the
induced chain. By the ergodic theorem [KSF80|, we have

i
—

n

S

n(t, &) = v as.
t

Il
o

Then there exist sufficiently small € > 0 and 19 > 0,6 > 0 such that, for
any component S, ; of S, (i € A),

So+ (V) —€)n < Sni < So+ (vf +e)n, (4.1)

for all n > ng with probability not less than 6.

Now take Sy sufficiently far from the boundary of B*. From (4.1) we
see that there exists a set A of trajectories S,, for n =0,1,..., which
never reach the boundary of B*, S, ; — oo, for all ¢ € A and, moreover,
A has a positive probability.

Coming back to our random walk in Zi’ , we start it from the point
having coordinates Sy, for i € A, and zero otherwise. Now we take the
set A’ of all trajectories wy,,n=0,1,..., of this random walk, so that
the projection of A’ onto B" coincides with A. Noting that A and A’
have the same probabilities, the transience is proved. ]

4.2 Classification of paths

We shall consider paths ' = TI'(¢), that is, continuous mappings
I':[0,T] — RY, where T can be equal to oo, such that

(i) T'(¢) belongs to the union of ergodic faces except for some countable
subset F = F(I') of [0,T7;

(ii) for the points of the same interval belonging to {0, T] — F, where the
path runs through an ergodic face B”, I'(t) is linear with velocity

drlt) —wr, 1) € BN
Let us consider the increasing sequence
0<t1 <...<t, < ..., (4.2)

of times when I'(¢) changes a face. More exactly, this sequence com-
prises all points ¢, but those for which there exists ¢ > 0 such that, for
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AN £

Fig. 4.2.1 a) Fig. 4.2.1. b)

allt’ € (t —¢,t+ €), I'(t’) belongs to the same face as I'(¢). The sequence
(4.2) is countable and F belongs to it but is not equal to it because, for
example, from an ergodic two-dimensional chain one can pass immedi-
ately to an ergodic one-dimensional chain. Note that the sequence (4.2)
can have accumulation points, e.g. one can approach and go away from
a one-dimensional face, by rotating along two-dimensional faces of Rﬁ ,
as shown in fig. 4.2.1, where the one-dimensional face is perpendicular
to the sheet of paper at the origin. Hence, in general, the sequence (4.2)
is not isomorphic to some subset of the ordered set of natural numbers,
but in many examples it is (and then it is finite for finite T'). Together
with the sequence (4.2), to any T is associated a denumerable ordered
set of faces

A1 (D), Ag(T), ... Ap (1), ... (4.3)

which are visited by I' in the corresponding order. Here A;(I) is the
face to which I'(0) belongs. The system of all different paths starting
from z € Rﬁ is called an z-bundle of paths and is denoted by V,, and
the paths starting from z are denoted by I',,. For any visited ergodic
face A, , we have

Fz(t) = Fz(tn—l) + 'UA"‘l (t - tn—l) p tn—l <t S tn .

Definition 4.2.1 A point = is called regular if, for any 0 < T < oo,
there exists only a finite number n(T, V) of paths Ty € V. on the time
interval [0, T]. For example, £ =0 in fig. 4.2.1(a) is not regular since,
for any T > 0,n(T, Vo) is a continuum. For a regular point and for any
A;, there exists a next face in the sequence (4.3), which is denoted by
Nit1- A random walk is called regular if all points x # 0 are regular.
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A regular random walk is called strongly regular if the sequence (4.2)
s isomorphic to a subset of the ordered set of natural numbers for all
z # 0 and all paths T,. A regular point x is called stable if, for any
I'=T; €V, and any ergodic A;(T),

dim/\i (F) = dim/\H_l (F) +1,

whenever Ay is the next face for A;. This means that, after moving
along an ergodic face A, one enters a face of A\ of dimension dimA — 1.

We show that stability implies continuity. More exactly the following
proposition holds.

Proposition 4.2.2 For any stable x and any T,e > 0, one can find
6 > 0 such that, for any y with ly—z <6, we have

(ii) there ezists a one-to-one correspondence ¢ : Vo (T) — V,(T) such
that, for any T € V,(T) and Ly =¢(I'z) € Vy(T), we have

ITz(t) =Ty ()| <e¢ te [0,77.

Proof Let z be stable and belong to an ergodic face A. Then for all Y
sufficiently close to =, I, and I’y meet the same face (say A’ ) after A. If
A’ is non-ergodic and the second vector field on it is multivalued, then
we define ¢ so that I', and I'y = #(I'z) go to the same face. Then one
can proceed by induction in a finite number of steps, for any fixed finite
T. The proposition is proved. [ |

Now we will show that stability (and consequently continuity) is in fact
a generic property for strongly regular random walks.

Proposition 4.2.3 There erists q subset PO C P of Lebesgue measure
0 (in fact it is the union of a finite number of analytic hypersurfaces in
P) such that, for any strongly regular random walk with parameters in
P — PO, there erists at most a denumerable number of hyperplanes in
Rf outside of which any point z is stable.

Proof For all ergodic A, we shall construct a system of hyperplanes (in
fact restricted to Rf:’ )y B, .. .B,’c\( A k(A) < oo, satisfying the following
properties:

(i) B belongs to the hyperplane generated by B*, but does not
coincide with it, and B is parallel to N fori=1,2,.. S E(A);

H
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(ii) any z € B" — (|J, B}) is stable but no other z is.

To construct such a system we proceed by induction from lower di-
mensions. First for any A, A1, A1 being ergodic and such that A C
A1, dim A < dim A; —2, we consider the plane containing all segments
[,z + av™],z € Ay, if Ja > 0 such that z + av™ € A.

If this plane does exist, then it has dimension dim A + 1 and contains
all paths in Ay which enter A immediately after A;. All planes thus
constructed will be called first generation planes.

We construct second generation planes in the following way: take an er-
godic Ay # A1, dim Ay > dim A4, and, for any first generation plane in
A1, we consider all paths in Ay which run along this plane immediately
(possibly first intersecting some non-ergodic face) after Ag. The plane
of minimal dimension containing all such paths is a second generation
plane. Similarly we construct third generation planes, etc. The planes
of all generations comprise the desired system.

Now let P° be such that, for any regular random walk in P — P°, any
z € BN —J; B (for an ergodic A) is stable: the random walk belongs
to PV if, and only if, there exist A and B/ containing some subface of
the face B”*. For example, in Ri this could be a plane passing through
two one-dimensional planes (i.e. lines). It is clear that Py is of Lebesgue
measure zero. In Zi, Py = 0. The reader will find examples of non-
empty P in Z* ( which can be viewed as the union of 8 octants Z3.).
Note that, by stability, if A; is ergodic then dimA;; = dim A; —1. More-
over if a random walk is in P — Py, then the following possibilities exist
for an ergodic A;:

(i) A;—1 is non-ergodic. Then A;_, does not belong to any B;.\*. So
A;i—g does not belong to any B;-\“z ;
(ii) A;-1 is ergodic. Then A;_; does not belong to any BJ/.\“"‘.

Hence, properties (i) and (ii) follow by construction and the proposition
is proved. .

Unless otherwise stated, we consider only strongly reqular random walks,
but many definitions will be appropriate for more general situation.
Some random walks in dimensions 3 and 4 are not strongly regular (see
chapter 5) but proposition 4.2.3 can be easily reformulated for such cases.

Problem For some nonregular random walks, similar results could be
proved. Describe the situation for an arbitrary random walk.
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Remark The above construction vaguely resembles the construction of
billiard dynamical systems [KSF80].

Definition 4.2.4 A random walk is called deterministic if its second
vector field has no branch points. A regular random walk is called es-
sentially deterministic (e.d.r.w) if, for any stable z, T'y has no branch
points.

Let us consider an e.d.r.w. in P — Py and let T; be the dynamical system
on Rf defined by

Tix =T4(t),

for stable x, i.e. a point moves with velocity v along the ergodic face
A. For non stable z we shall define Tix by continuity at every point
wherever possible and in any suitable way otherwise. Let us first note
the following crucial scaling property: for any a > 0, > 0,

I'z(t) = a Tag(at) , (4.4)

we can assume that T; is defined so that (4.4) holds not only for stable =
but for all z, by making use of the function ¢ defined as in the preceding
section.

4.3 Gluing Lyapounov functions together

Let @ = {&.} be an irreducible aperiodic ergodic Markov chain, de-
fined on some probability space (€21, ¥4, u1), with countable state space
A, (o) being its stationary probabilities.
Let us consider, on some other probability space (£29, Y2, po), mutu-
ally independent vector-valued (with values in R¥) random variables
gta{w2),c€ A, t=0,1,..., and wy € Qy, indexed by t,o. The distri-
bution of g; o, does not depend on ¢, so that we can write E[g; o] = F'(a).
We assume F'(a) is finite and we put

T—1

Xr=c+» gie, c€ERF,

t=0
on {01 Xy, L1 X Yo, 1 X pa}. As gr¢, is a stationary process, Birk-
hoff’s ergodic theorem yields

Xr — m(a)F(a), as. when T > oo .

T
aEA

The next result also follows from Birkhoff’s ergodic theorem.
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Lemma 4.3.1 Assume the chain Q is ergodic and £y = c at time t = 0.
Then, for any € > 0,

p <|| th@ —-n Z w(a)F(a) ||> ne) —0,as n—>oo. (4.5)

t=0 aEA

The proof is immediate using a convergence in probability argument. W
Let us put for any A ,¢>0, ¢t > 0,

By ={(r1,...,rn)iri>c, s €Ny <t i €A}

By means of lemma 4.3.1, we can prove the following assertion concern-
ing random walks. Let £, be the location of the random walk £ in the
m-th step with £0 = a.

Lemma 4.3.2 Assume that either L is ergodic for | A| < N or
AN={1,2,...,N}. Then, for any Ry and ¢,c > 0 there exist a natu-
ral number m and Ry > 0 such that, for any point a € Bﬁl R, N Zf,

P(|| Em — (@ +mv™) ||>me |§0:a) <o. (4.6)

Proof In order to apply lemma 4.3.1, consider the chain Q" whose
states are all the one-step transitions of £", i.e. the pairs (a;,a;) for
a;,a; € C". The transition probabilities of Q" are defined as

0 ag ?é as ,
P(a1a2)(a3a4) - { /\’pa a ag = as
2,04 ’

Let m,(a € C") be the stationary probabilities of £ and m(, by, (a,b) €
C" x C", the stationary probabilities of Q. It is obvious that

T(a,b) =A PabTa - (4.7)

Let £ = «,&1,&2,. . . be the sequence of random variables corresponding
to the random walk £, ¢ being the i-th component of &,,, and let

A = (41,...,%). We introduce the sequence of random variables g, ¢,
by setting
Imgm = ( 124—1 —&ms :ri+1 =&y s ’m’°+1 ~&x) .

This random sequences satisfies the hypotheses of lemma 4.3.1. Using
it, we obtain the assertion of lemma 4.3.2. |

On the set Zf , let areal function f(a), a € Zf , be given such that the
condition |fo — fa| > d implies that p,p = 0, for some d > 0. Introduce

B ={(z1,...,on) 1z > R, i € A}.




88 4 Ideology of induced chains

Lemma 4.3.3 Assume that the chain L is not ergodic, and there exist
a set By p, and a function m(c) defined on the set (B \ BRy, p,) NZY
and taking values in the set of natural numbers such that, for all
o € (B, \ By, g,) NZY, the inequality

Z pm(a) < —¢€ (4.8)

pezy
holds for some € > 0, and

sup m(a) =m < co. (4.9)

ac(Bj \BRIRZ)an
Then there exist a set By and a function n(a), a € By, taking values in
the set of natural numbers, such that, for all o € BQOZQ , the inequality

S i s — fa < —e (4.10)
pezy

holds for some €1 > 0, and

sup  n(a) =n < oo; n(a) =m(a), o € BR\Bj,R, -
a€B{nZy
Proof Let & = «,&;1,£&s,. .. be the sequence of random variables corre-
sponding to the chain £. Form the random index sequence N; by setting
No=m{a)and N; = N;1+m(&_1) (fora e Zf \BQIRZ, we complete
the definition of m(«) by setting m(«) = 1). The sequence £y, forms
a Markov chain £. Accordingly £” denotes the Markov chain induced
by L on the state set C. It is obvious that, if {&}} is the sequence of
random variables corresponding to £, then the sequence {£4 N, } corre-
sponds to £". The non-ergodicity of E’\ implies that of £”. Therefore,

for any o > 0, there exist R > R; and t > 0 such that, for all » with
R-R;

> r > t, we have

P(¢ ¢ Bjp,) >1-0, (4.11)

provided that £ = a € Bjp,. Taking account of (4.8), we obtain from
(4.11) that

B (f&) - f6-1)
=B (f(&) ~ JE- )1 & Bhyr, ) Prs & Bh,r,)

E(f&) - 1€ 1)ler-1 € Biyn,) Pér-1 € By ,)
<dmo —¢€(l—o0).
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Consequently, choosing o sufficiently small (hence R must be taken suf-
ficiently large), we obtain

E(f(&) - f(&—1)) < —01,

for some 01 >0 and (R — R1)/m >r >t; § = a € Bp,. Moreover,
E(f(&)) = fa =Y E(f(&) — f(&-1)) <tdm —o1(r —1) .
i=1

Thus, for any o € B3Rp,, there exists m(a) € Z such that

B (fEn@)léo = o) < J(@) =&, (4.12)

where € > 0 does not depend on c.

We use (4.12) and the exponential estimates of theorem 2.1.8. Choosing
o > 0, it follows easily that there exists 6 > 0,¢ € Z; and R > 0 such
that, for any o € Bpp,,

P sup  (f(&)+6r)< flo) Jo=a|>1-0. (4.13)

R—R,
t<r<=0

Note now that

f&) < sup  f(&)+md. (4.14)
k/m<r<k

From (4.13) and (4.14), for sufficiently large R and k, one can easily get
E(f(&)/é0 = @) < fla) — €1, (4.15)

where €1 > 0 does not depend on « € Byp, .

Inequality (4.15) is equivalent to (4.10) if we put n(a) = k, for
a € Bjp, NZY, in (4.15). For a € (By\ Bip,) NZY, we set n(a) =
m(a). The lemma is proved. |
We have previously introduced a finite collection {v"} of vectors. To
each point « belonging to an ergodic face B, we assign the vector
v(a) = v". For the points & € B{12+N}t we set v(a) = v{l2--N} In
this way, we obtain a vector field V', which may not be defined on certain
faces.

Condition B: For some 6, b,p > 0, there exists a function f(a), a € Rf
having the following properties:

(i) f(@) >0, aeRY;

(ii) fle)—f(B) <bla-Bl, o BeRY;
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(iii) for any A such that £ is ergodic (including A = {1,..., N}) and

all o € BY,,

flat+v(a)) - flo) < -6.

Condition B’: For some 6, b,t, p >0 there exist a function f(a), aeRY,
and a nonempty set T C RY, satisfying the following conditions:

(i) f(@) >0, aeRE;
(i) fla) - ()Sblla—ﬁll, a,f e RY;
(iii) fla) 2t, a€T;

fla) < t, a € RI\T;
(iv) for any A such that £" is ergodic, for A = {1,...,N} and all
a € By, NT, we have

fla+v(@) = fla) > 6.

Theorem 4.3.4 If the vector field V satisfies condition B, then the
random walk L is ergodic. If condition B’ is satisfied, then L is transient.

Proof Assume there exists a function f(a), @ € RY, satisfying con-
dition B . As follows from corollary 2.2.5, for the ergodicity of £ it is
sufficient to show the existence of a function m(a), (o € Z¥), taking
values in the set of natural numbers, such that

sup m(a) =m < co
ezl

and, for all o € Zf except some finite set, the inequality

S Pt — fu < —e1 (4.16)

pezy

is satisfied for some ¢; > 0. Let A={1,2,...,N}. It follows from
lemma 4.3.2 that for any ¢,0 > 0 there exist m” and R" such that
inequality (4.6) is satisfied for all @ € Bj.. Therefore, choosing ¢ and
o sufficiently small, taking into account the boundedness of the jumps
of the random walk and the properties of the function f (condition B),
we obtain that, for any a € Bj. N Zf , inequality (4.16) is satisfied for
some €; > 0 by setting

_ N
m(a) =m”", for a € B NZY .



4-3 Gluing Lyapounov functions together 91

We continue the construction of m(a), (a € Zf ) by induction. Assume
that for all A,|A| =k < N, there exist sets By, and a function m(c)
with values in the set of natural numbers such that

sup m(a) < oo
an[/\[:k BpAnzZy

and, for all a € (J) 5= BRa N zy, inequality (4.16) is satisfied for some
€1 > 0. Take A; such that | Ay | =k — 1. It follows from the definition
of the sets Bf p, and Bj that there exist R{', R3* > 0, and together
with them sets B/\: RM RAY such that
I\BAMRM c |J B (4.17)
[Al=k
(a) Let L™ be non-ergodic. Then, applying lemma 4.3.3 and using
(4.17), we conclude that there exist R* and a function n{a) with
values in the set of natural numbers such that

sup n(a) < oo,
acZy

n(a) = m(a) ’ forae (Bg}\l\BA}‘I R/‘l) n Zf ’

and

an(a)fﬂ fo < =€, (4.18)

ﬂEZN

for all @ € Bk, and some €} > 0.
(b) Let L™ be ergodic. In this case we use lemma 4.3.2 and we obtain
the same result as in the case where £ is non-ergodic.

Sorting out all A with | A | = k — 1, we obtain that the conditions which
we assumed to be satisfied for all A with | A | = k will also be satisfied
for all A with [A | =k — 1.

Hence, we have proved by induction that, for all A with | A | =1, there
exist sets By, for some R® > 0, and a function m(a), taking its values
in the set of natural numbers, such that

sup m(a) < oo,
a€U|/\|=l B}/;'\ nZ1+V

and for all o C (J|5—; B~ inequality (4.16) is satisfied for some ¢; > 0.
This completes the proof of the ergodicity of the random walk, if we
take into account that ZY \ |, _; B+ is a finite set.
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Assume now that there exists a function f(a), a € RY, satisfying
condition B’. From theorem 2.2.7, it suffices to prove the transience
of £ to show the existence of a function m(a), a € Z¥, with values in
the set of natural numbers, such that

sup m(a) =m < 00
anf

and for all o € T, except some finite set, the inequality
S s fa> e (4.19)
pez

is satisfied, for some €; > 0. The proof of the existence of m(a) can be
carried out by induction analogously and in the same succession as in
the ergodic case. The theorem is proved. [ ]

Remark The results obtained in the above sections are in fact valid
under the following more general assumptions:

Partial homogeneity. Condition Ap of section 3.2 can be replaced by
the following one: There exists ¢ > 0 such that, for any A and for all
a€ B "NZY,

Pop = Patapia, Ya € BANZY, Ve ZY.

Lower boundedness of the jump + first moment condition. Condition
Ay of section 3.2 can be replaced by the two conditions

paﬁzo, for(ai——ﬂi)>—d, Vi=1,...,N,

> (B - a)pap < oo, VB € Z¥,
B

where d is some positive constant.

4.4 Classification in Z3

Before considering dimension 3 let us come back to random walks in Z?,r
and look at them from the point of view of induced chains. In fig. 4.4.1,
some possible directions of the vectors v" are shown. Note that random
walks under conditions 0; and 09 are always deterministic.

(i) Case 1: v{1?} has both components positive. So neither one-
dimensional face is ergodic.
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Fig. 4.4.1

(ii) Cases 2-3: One component (i = 1) of v{12} is positive, the other
one (i = 2) is negative. So the face A(1) is ergodic, A(2) is not.

(ili) Cases 4-7: Both one-dimensional faces are ergodic.
The main result of section 3.3 can be reformulated in the following way.

Theorem 4.4.1 Under assumptions 0; and Oq, the random walk in
Zi is transient if, and only if, there exists a path Ty going to infinity.
Otherwise (when all paths go to 0) it is ergodic.

Proof If there is a path going to infinity then (see fig. 4.4.1), there
exists a face A (one- or two-dimensional) such that v" has all its com-
ponents positive, so that the random walk is transient by proposition
4.1.4. On fig. 4.4.1 cases 1, 3-6 are transient and we are left with the
cases 2 and 7.

In these cases, for each point z, the first passage time 7(z) of the dy-
namical system I'(t) = I'y(t) to the origin is finite. We introduce the
function f(z), on R%, by putting f(z) = 7(z). It is then €asy to see
that f(x) satisfies condition B of the preceding section. Consequently,
L is ergodic and the theorem is proved. ]
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The following theorem 4.4.2 is just a rephrasing of theorem 4.4.1 in terms
of the second vector field.

Theorem 4.4.2 The random walk L is ergodic if, and only if, the fol-
lowing two conditions are satisfied:

(i) there exists an i1 such that 0}11’2} <0y

(ii) vi{:l} < 0 for very i1 such that vi{11,2} <0.
Let us pass to the study of random walks in Zi. In this case, the second
vector field also has a simple construction.

Lemma 4.4.3 For every point x € Ri\O the vector field V is defined.
Moreover, single-valuedness can be violated only on one of the three one-
dimensional faces B}, In this case only two vectors can be assigned
to the points of Blul,

Proof Let z € B{1:23}. Then v(z) = M(a) = M{123}, where M {123}
is the mean drift from the point o € B{1:23} N Z3 .

For z € Bli1#2} we put v(z) = M{L23} = (M1{1’2’3}, MQ{I,?,S}, M3{1’2’3})
if Mi{31,2,3} > 0. In this case the induced chain £{i2} is transient.
When Mi{31’2’3} < 0, the induced chain £t} is ergodic and so, for
z € Bz}l the vector v(z) is uniquely defined. For the points which
belong to one-dimensional faces the situation is different. If £} is er-
godic, then the vector v(z) for z € B} is uniquely defined. If clalt
is transient, then the uniqueness is violated only when the faces Bliia}
and Bii1is} are ergodic and Mi{:"i?} >0, Mi{:l’is} > 0. But this situ-
ation can happen only on a single one-dimensional face. The lemma is
proved [ ]

If the vector field V is single-valued, then it gives rise, in a natural way,
to a dynamical system in Rﬁ_ for which V is the velocity field. On the
other hand, if the single-valuedness of V' is violated on a one-dimensional
face B{i1}, then we choose one of the vectors assigned to Bli}, In this
way we obtain two single-valued fields Vi and V5. For each field V;, we
construct a dynamical system I'(t).

Theorem 4.4.4 If for any point x € R‘i the first passage time T(x) for
the dynamical system T%(t), [*(0) =z, to reach the origin 1s finite for
at least one i,i = 1,2, then L is ergodic. On the other hand, if at least
one dynamical system is such that 7(z) = oo, then L is transient.
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{13}

Fig. 4.4.2 Fig. 4.4.3

Proof Let 7;(x) be finite for any point = € R2. As in theorem 4.4.1
for R?, we introduce a function f(z) by setting f(z) = 7;(z). If V is
single-valued, then this function satisfies condition B of section 4.3 and
so L is ergodic.

If the single-valuedness of V' is violated on a one-dimensional face Bt}
then the continuity of f(z) is violated on the plane going through the
face B{"1} and the vector v{1:2:3}. However, this discontinuity is easily
removable. For this, the values of f(z) have to be multiplied by the
corresponding factor on one side of the indicated plane. The function
thus corrected, again satisfies condition B, which leads to the ergodicity
of L.

Let now 7;(z) be infinite for some z € R3. If z belongs to B{1:2:3}
then transience follows from theorem 4.4.1. If 7;(z) is infinite due to the
fact that, for some ergodic face B*, all components of V* are positive,
then the random walk is transient for the same reason. It remains to
consider the last possibility making 7;(z) = co. It is the case when the
dynamical system, starting from some point, reaches one of the two-
dimensional faces in a finite time and continues successively intersecting
all two-dimensional and one-dimensional faces, in tending to infinity.
This case is shown in fig. 4.4.2, and now we will construct the function
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f(z),z € R3, which satisfies the condition B’ and then we use theo-
rem 4.3.4. In the case shown in fig.4.4.2, all components of the vector
v{1,23} — p{123} gre negative. In fig. 4.4.3, we show the surface
{z: fz) =a}.

Consider a triangle 123 with the following properties:

(i) its vertices 1,2,3 belong to corresponging one-dimensional faces, : €
A();

(i) the second vector field on two-dimensional faces points to the outside
(toward oo) of this triangle.

Such triangles exist. Then we choose one and consider one of its sides,
e.g. 12, belonging to the face A(1,2). Consider a plane Hjs with the
following properties:

(i) Hi2 contains the side 12;
(ii) Hg is sufficiently close to A(1,2);
(iii) Hi2 NR3 has an infinite Lebesgue measure.

Two other planes Has and Hys can be defined in the same way. Now we
define the level surface

={z: flz) =1} = | J {H; nRY} .
(4,9)

For any a > 1, put

={z: f(z)=a}=aH; .

Since we are interested in proving transience, we can simply put f(z) =1
in the remaining part of R‘i. It is easy to see that the function f(x)
thus defined does satisfy condition B’. The proof of theorem 4.4.4 is
concluded. ]

In fact the conditions of theorem 4.4.4 can be written in an explicit way.

Theorem 4.4.5 The dynamical system I'*(t) reaches the origin in a
finite time for any initial state [*(0) = = € R‘i if, and only if, the
following three conditions are satisfied:

(i) There exists an i1 such that 'u{1 23} <o.

(ii) For every iy such that v{l 2 3}

1{2’”3} <0.

< 0, there exists an iz for which
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(iii) Either
(a) there exists an i) such that L{“.} is ergodic and, for any iy
such that L1} is ergodic, we have 'vi{fl} <0; or
(b) the chains Lt} L2} LB} gre transient; ifv§2’3} > 0, then
w23} {13} 1.2}

U§2,3} U}I,S} v:{;l,?}

<1,

and, ifv%Q’S} <0, then
v§2,3} v§1,3} ’UF'Q}

>1.
v?{’z,s} U{1,3} v;l,Q}

(The case where the expression between the absolute value signs is equal
to 1 is not considered.)

Remark It follows that, if there exist two dynamical systems and if
one of them has the above property, then so does the other one.
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Random walks in two-dimensional complexes

5.1 Introduction and preliminary results

A two-dimensional complex is a union of a finite number of quarter-
planes Zi having some boundaries in common. An example can be
the union of all two-dimensional faces of Zf . We consider maximally
homogeneous random walks on such complexes and obtain necessary and
sufficient conditions for ergodicity, null recurrence and transience up to
some non-zero assumptions which are of measure 1 in the parameter
space.

In chapter 4, a vector field was constructed allowing for a complete
classification to be obtained for N = 2, 3. Moreover sufficient conditions
for ergodicity and transience were derived for N > 3. One of the main
features of the vector field in question is that it was deterministic. In this
chapter, certain vector fields appear, which are deterministic inside two-
dimensional faces, but give rise to random scattering on one-dimensional
faces. We shall see that the calculation of the exit boundary of some
countable one-dimensional Markov chain is necessary because of this
phenomenon. This is the first new phenomenon, which is common also
for Zﬂf . The second new phenomenon is that null recurrence exists for a
set of parameters which has a positive measure in the parameter space.
We give an explicit solution to our problem. In fact it reduces to finding
stationary probabilities for a finite Markov chain with n states, where n
is the number of two-dimensional faces in the simplex considered, and to
calculation of the maximal eigenvalue of some n X n matrix with positive
entries.

The chapter is organized as follows:
After the main definitions and preliminary results in sections 5.1 and
5.2, we formulate the key theorems 5.3.2 and 5.3.4. The proof of the

98
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ergodicity conditions, using a method of pasting local Lyapounov func-
tions as explained in chapter 3, is given in section 5.5. Transience is
proved in section 5.6, by using a simpler method to construct more
global Lyapounov functions. Proofs of recurrence and non-ergodicity
are presented in sections 5.7 and 5.8. An example of interacting queues,
submitted to different regimes, is worked out in detail in section 5.9.
Possible generalizations are briefly described in section 5.10.

We give now the essential definitions and quote some preliminary results.
Definition 5.1.1 We call a two-dimensional complex T any union of
finite number of copies of R?I_:

(Ri)i:{(ml,xg)i tx; 20}, i=1,...,n.

We assume that all origins are identified, i.e. (0, 0) 0 for all 7. Also
Az

Jr T

AP = {(21,0)i 1 21 > 0}, AL = {(0,3); : 23 > 0},

some pairs ( ) of one-dimensional faces of T,

can be identified as well. This means precisely that the points of /\(1)

and /\512l lying at the same distance from the origin are identified. We
shall consider discrete time homogeneous Markov chains £ = L7 with

state space T, the integer points of T', i.e. the union of all
(Z_2+_)1, = {(CEi,J:Q)i L Xy 2 0 integers } C (R_Q*_)z s
taking into consideration the above identifications between them. We

denote the interior part of a generic two-dimensional face by 7\(2), eg

AP = {(@1,22)1 : 1, 33 > 0} .

Introduce also /\(1) A®) _ the closures of /\(1) A® _ and AD A@
the sets of integer points of AW and A® respectively.

Examples

(i) T (or T) is called planar if any one-dimensional face is identified
with at most one other one-dimensional face. This means that T
can be topologically embedded into R2. Here are some examples:

(a) 2%,
(b) the union of four quadrants of Z2,
(c) the union of three two-dimensional faces of VA
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(ii) The union of all Mjg——l-l two-dimensional faces of Zf ,N >4,isan
example of a non-planar complex. The simplest example to have
in mind is the union of five two-dimensional faces of Z X Zi, ie.
the union of two Zi having a two-dimensional face in common.

(iii) 7T is called strongly connected if it is not the union of two com-
plexes Tl and Tg which have only 0 as a common point.

Let us note that in T any line has a length. Hence, T is a metric
space endowed with the distance p(a, B) between a,f € T, equal to
the minimal length of a line between them. We assume that the one-
step transition probabilites pag{a — B) (repeated here for the reader’s
convenience) satisfy the following conditions:

Condition A1 (Boundedness of the jumps)

~@),

)

(i) pap =0 if @, 3 do not belong to the same
(ii) pog = 0 if p(c, B) > d for some fixed d < oo;
(iii) pap = O if at least one component of the vector B — a is less than
-1.

Condition A2 (Mazimal space homogeneity)

Let o, belong to the same (open) face A which can be one- or two
-dimensional. If A C A (ie. A= A2 or A is a one-dimensional face
of A®)) and

/B, - a, = IB -,
then
def A
Paf = P’ = PB—a -

Thus our Markov chain is uniquely specified by a finite number of pa-
rameters ply, with y € A3 such that A C A2 We shall also make
some assumptions 01, ...,0s, which we call non-zero assumptions and
which exclude from our consideration some hypersurfaces in the param-
eter space (in the sense that they are of measure zero in this parameter
space). Some of these assumptions are made just for economy of space

and time, but others are very essential and will appear now.

Assumption 0; The Markov chain Lr is supposed to be irreducible
and aperiodic.

Then this chain is ergodic if, and only if, any of its strongly connected
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component is ergodic. Therefore, we shall consider only strongly con-
nected complexes T'. For any two-dimensional face A and any a € A, we
define the vectors M(a), the one-step mean jumps from o. They are all
equal to

My=7 (B=o)pf_o=M(a), Yaen.
BeA
If @ € AU = A, then we define Ma = M(a) to be the collection of vec-
tors Ma a and M, e, for all A2 D A, such that

Man = Z(ﬁ - a)Péi\—a >
BEA
Myp = Z (B—a)pp_, -

BEA?2)

If one can embed T into R for some N, so that all A®) are orthogonal,
then M(a) for & € A{D can be defined as the usual vector of mean
jumps.

Theorem 5.1.2 If, for at least one A = /\(2), the vector M has both
components positive then L1 is transient

Assumption 0; For any A the vector M can have no zero component.

Definition 5.1.3 Let A(Y) be a one-dimensional face and .E(A(I)) be
the set of all two-dimensional faces AN such that AV C AQ@).  Let
S (ADY c S(AND)Y be the set of all N® such that M,a looks onto
A e its component perpendicular to AV is negative. Accord-
ingly, S_(AMD) = S(AD) = 5, (AD). We call A e S, (AD) (resp.
S_(AU))) an ingoing (resp. outgoing) face for A, If S, (AD)
= S(AM), then A is called ergodic.

Definition 5.1.4 Let us consider a one-dimensional face NV and a
point o € A, For any two-dimensional A € S(AN(), let us consider
the half-line C, which belongs to A and is perpendicular to A gt the
point a. We call a hedgehog the following one-dimensional complex:

Haon= U Cuw.
AES(AM))

For different o € A(), these hedgehogs are congruent in the obvious
sense. Let us consider the Markov chain £,q), with set of states H,q)
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(we call it the induced Markov chain for A()) and one-step transition
probabilities which are the following projections:

)
A :Zpaﬂ’ , a,B€ Hp s
ﬂl

where the summation is over all # such that 3’ belongs to the same
face as B and (if this face is A = A)) the straight line connecting S
and A is perpendicular to C,’\\(l). From the homogeneity conditions, it
follows that the induced chain for A(!) does not depend on the choice of

ac A,

Assumption 03 For any A, the induced chain L is irreducible and
aperiodic.

Then L,q) is ergodic iff A1) is ergodic. This explains the word. Let
7A@ (R) be the stationary probabilities of L), b € Hxm, In the ergodic
case.

We define, for any ergodic A a number vaq), the second vector field
on the one-dimensional ergodic faces

UAQ) — Z WA(x)(h)P’r‘,\(l)M(h),
heH, )

where Prq) means orthogonal projection of M (h) onto AW Ifhe A,
this implies

Pr,oyM(h) = M,\a),,\(x) + ZP"'A(I)M/\(I)J\(Z) .
A(2)

Theorem 5.1.5 If v,y > 0 for at least one ergodic AD | then L is
transient.

Assumption 04 v, # 0 for all A,

The sign of vaq), is easy to calculate, as shown in the following

Lemma 5.1.6

sgn (vaq)) = sgn (MAa),/\(l)

+ E Pro [M/\u) A2 +Ma@
AR AM) CAP)

Qry Maw A ]
?

A2)
A M/\(2)
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where QQE?; denotes the projection of a vector in A2 onto the azxis of
A2 other than AV and

sgn(z)=14z>0 and —1ifz <O.

5.2 Random walks on hedgehogs

For a given hedgehog H,(), we call C/’\\((f)) its bristle. A bristle C/’\‘((f))
is called ingoing if A®) is ingoing, i.e. if the number (representing the

mean jump along the bristle)

1)
maw = _ (K —h) gy (5.1)
h/

which does not depend on the position of h € C/’\\((f)) , Is negative.

When A is not ergodic, we shall define the scattering probability
Psc(AD, AP for A e S_(AM), which is the probability that the
random walk will drift to infinity along C’/’\\((f)) . Under our simplest ho-
mogeneity assumptions, this definition does not depend on the initial
position, provided that this latter is either at the origin of the hedgehog
or on some ingoing bristle. Thus we can assume that it is at the origin
0e H AL -

Computation of the scattering probabilities

Let us fix A, A® and put gup = gfs/ . It is clear that

> @ qonp(h)
Poc(A) AP) = P

, (5.2)
EO#hGHA(l) qorp(h)

where p(h) = pa@ (h) is the probability that, starting from A, the par-
ticle on the hedgehog will never return to 0. Formula 5.2 follows from
the fact that

heC:\‘((f))

where Const does not depend on the outgoing A(?). We shall show now
that

p(h)=1-(1-y", (5.3)

where v = p(1) is the unique root inside the unit disc of the equation

C=* =Y aww =", (5.4)
hl
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with h € C;\\g))/{O} (e.g. we can take h =1), and b’ € C/’\\((,z)) The proof
is easily obtained from the recursive relationship

p(h+1) =p(1)+ {1 - p(D)lp(h)
and standard generating function methods.

Proof of lemma 5.1.6 : Let H,¢) be a hedgehog such that all mae
are negative, for all its bristles C/’\‘((f) Let

MA@ = Z A (R) .
heCA((f; NA®)
We claim that
TA) Q,\m Mpay A

/\(2)
o Q/\(l) A2)

To prove this, we note first that, for computing the above quantlty, it
suffices to consider a modified random walk on the bristle C7\ (1) ,l.e. on
Zi, after slightly updating the transition probabilities. More exactly, we

define Grar = gnn, for all h A’ € CA“), except for oo which is taken

equal to
doo=1— > dow-

' A(2)
0£h'€C e

Then 7 A /7o does not depend on this modification and its value in the
case of Z# is a well known result, yielding in particular exact ergodicity
conditions for random walks in Zi. (The point is that, due to the
homogeneity, it is not necessary to compute the exact values of the
7am (h)s .Only the drifts are needed.)

The proof is concluded. ]

Remark We have solved an exit boundary problem, using terminology
from Martin’s theory. See Feller [Fel56] for instance.

5.3 Formulation of the main result
Definition 5.3.1 For given T and L1, we define the following associated

Markov chain M having a finite number of states n =|T' |, equal to the
number of two-dimensional faces of T. (It is thus natural to denote these
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yA

M, @
¢
0
X
Figure 5.3.1

states by A).) The one-step transition probabilities p(A§2), /\§2)) of M
are equal to

Pec(AD,AD), i AP € 5, (AW, AP € 5_ (A1),
p(/\§2),/\§~2)) =< 1, if/\gz) = /\§2> € S+(/\(1)) for some ergodic AV,
0, otherwise .

We do not exclude that the associated chain be reducible or periodic.
Let A4, . .., be irreducible classes of essential states. Let us consider
some class 2; with | 2; > 2. We define the following function f on %;:
if A e 9; and P2 1s the angle between M,(2) and the negative axis
from which M, goes away, as shown in fig. 5.3.1, then we put

f(/\(z)) = logtan(ga ) .

Heuristically, if we are e.g. on the z-axis of A() at a point (z,0) and
we move along the constant vector field M () to a point (0,y) of the
y-axis, then exp f(/\(z)) represents the dilatation coefficient o = y/z.

o If 2; is aperiodic and m;(A(®)) denotes its stationary probability, we
define

L) = Y m(A®)f(AD) . (5.5)

AR) e,

e For a periodic 2;, m;(A()) is then taken to be the stationary proba-
bility in the aperiodic subclass containing A(%).

The vector M(2;) is defined by the same formula (5.5). Perhaps it
will be more convenient to normalize it, multiplying by N(2;)~! where
N(2;) is the number of aperiodic subclasses in ;.

Assumption 05 For all ¢ , L(2;) # 0.
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Our main result is the following:

Theorem 5.3.2 Under the assumptions 01,...,05 and if the assump-
tions of theorems 5.1.2 and 5.1.5 are not fulfilled, then L1 is recurrent
if, and only if, for any A; with | %, |> 2,

L(%;) <0. (5.6)

It appears that (5.6) is not sufficient for the chain to be ergodic and in
fact we will find both ergodicity and null recurrence regions. To that
end, we have to define a new important quantity M (%), connected with
;. Let us denote by /\82), ceey /\§"'), ... the random states of 2; such that

/\82) (S 2[1 .

Lemma 5.3.3 The limit

o1 : def
tl_l{(r)l(); log(EHtanq’),\i) = M®,) (5.7)

i=1

exists and does not depend on /\(()2) € ;. Moreover

M(2;) = log A1 (i) (5.8)

where A\ is the mazimal eigenvalue of the n; X ny- matriz, n, =| A; |,
with matriz elements

A(A§2>,A§2)) :p(/\g2)’ Agz)) \/tancﬁ/\gz) tanqSAgz) , for /\9, A§2) €.
(5.9)

Proof of Lemma 5.3.3 : Let us note first that for any two vectors
11,1y with positive components

Iégnm% log(l1, AVly) = log Ay
and then we notice that (5.7) can be represented in such a way.
Assumption 0g For allz, | 2; |> 2,
ML) #£0. (5.10)

In the following theorem we assume also that all states of M are es-
sential. In general, the limit (5.7) can depend on the initial inessential
state. All the proofs however are completely the same.
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Theorem 5.3.4 Under the assumptions 01,...,0s and if the assump-
tions of theorems 5.1.2 and 5.1.5 are not fulfilled, then L1 is ergodic if,
and only if, for any A; with | 2A; |> 2,

L(QLL) <0 and M(%z) <0. (511)

This implies that, if for all i we have (5.6), but for at least one i we
have

M) >0,

then Lt is null recurrent.

Remark Because of the inequality
log E§ > Elogé,

valid for any positive r.v. £, we always have

L(%;) < M(2). (5.12)
In particular, if
M) <o,
then
L(;) <0

The practical computation of the ergodicity conditions can be achieved
according to the following sequence of steps:

(i) calculate the vectors of mean jumps;
(ii) calculate sgn vaq) for all ergodic A(Y), using lemma 5.1.6;
(iii) calculate the scattering probabilities, using formulas (5.2)—(5.4);
)

(iv) calculate the stationary probabilities of the associated chain, which
in the general case give rise to a system of | T'| linear equations;

(v) calculate M(2;) using (5.8);
(vi) use theorems 5.1.2,5.1.5, 5.3.4.

So we get a complete classification up to the assumptions 0y, . .., Og.
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5.4 Quasi-deterministic process
Here, we introduce an auxiliary process 7; on T with ¢ € R;. Consider
a particle n; moving along the constant vector field M, {with velocity
M ) on any face A? c T. When it reaches a one-dimensional face
7\(1), it chooses with probability p(A(1, /\52)) a face A§2) € S_(AM) and
continues its way along 7\52) and so on. Thus 7, is deterministic outside
one-dimensional faces. Let ng =« € T and let

T1(z) < Mfz) < ...

be all the instants when 7; is on a one-dimensional face of T. Let us
define the discrete time embedded process

Xn = Xn(2) = Nra(z) -

We shall find the conditions of ergodicity, null recurrence and transience
for the process 7;, which will appear to be the same as for the corre-
sponding random walk.

Lemma 5.4.1 Under the assumptions of theorem 5.3.2, the following
conditions are equivalent:

(i) (5.6) holds;
(ii) for any z, xn(z) reaches a.s. any neighbourhood of 0;
(iii) for any z, the time for ny(x) to reach any neighbourhood of 0 is
a.s. finite.

Proof If (5.6) holds, then log x,, — —o0 a.s., by the strong law of large
numbers. So (i)== (ii) <= (i4). Conversely, if we have

then log x, — oo a.s., so that, with probability 1, n; cannot reach any
neighbourhood of 0 . [ ]

Lemma 5.4.2 Under the assumptions of theorem 5.3.2 the following
conditions are egquivalent:

(i) (5.11) holds;
(ii) the ET,s are uniformly bounded, i.e. > o0, E(7s —7i_1) < o0,
0 = O,'
(iii) n(z) reaches zero in a finite mean time;
(iv) me(x) reaches any neighbourhood of 0 in a finite meantime.
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Proof Obviously we have
(ii) <= (ili)) = (iv)
Let us prove (i) = (ii). In fact, if (5.9) holds, then E(x,) exponentially
converges to zero, so that
E(xn) < Ce™o",
for some C > 0, a > 0 and all n. But also
E(|rn = 1n-1)] S CE(xn) -

So we have proved that (i) implies (ii). Let us now prove that (iv) =
(i), i.e. if

then the mean time for n:(z) to reach a neighbourhood of 0 is infinite.
Define now

T) = |J %.

Ae;
For any = € T:(le) and any € > 0, let 7¢(z) be the time of first reaching
the set {y € T(2;) :|| y ||< €} by the quasi-deterministic process 7;(z)
(we take T¢(x) = 0 if || X ||<¢).
Proposition 5.4.3 Let z € T(2;) and for any € > 0
E(7¢(x)) < 0.

Then for any r > 0 and for any € > 0, we have

]' TE €
;E(T () = E(7¢(z)) . (5.13)
This is the obvious scaling property of the process ;. ]

Proposition 5.4.4 If there exists z € T(;) such that for any € > 0
E(r(z)) < o0,
then this property holds for any x.

Proof Let us fix such 2. Then, for any y € T(2;), there exist ¢ € R,
and r € R such that

nl(z) =ry,
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with a positive probability. It follows that, for any € > 0,
E(r(ry)) < o0

so that by proposition 5.4.3,

E(m%(y)) < oo,

for any € > 0. |

Proposition 5.4.5 If there exists © € T(;) such that, for any € >0,
B(r(z)) < 0, (5.14)
then, for any € T(A;),
E(1%(x)) < oo,
where 70(x) is the first time of reaching 0 for the process n;(z).

Proof By proposition 5.4.4, equation (5.14) holds for all z and € > 0. As
the number of one-dimensional faces is finite, it follows from proposition
5.4.3 that, for any € > ¢’ > 0, we have

sup E(r (z)) < oo.
zeT(%): |z]|=¢
Let us consider the sequence ¢, =1/2", n=0,1,2,... Let

sup = E(7%(z)) = Ci < .
z€T(%:) : ||=ll=eo

Then, for any n, by proposition 5.4.3,
sup E(r*ti(z)) = C127™. (5.15)

z: ||lz]|=en
Let now z € T(2,), || = ||== 1, and put
th(z) =1(x),. .., t"(z) = tF(z) + T (N () (2)), - - .
First, we have
t*(x) 1 7°%(z) as., for k — oo, (5.16)
which in fact corresponds to the definition of 79(z). Secondly, by (5.15),

k
sup E(reit1( Z
j=1

=1 y€T () : flyll=¢;

l'M»

NJI?—‘
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Hence,
E(r%(x)) < o0,

for all z, as in proposition 5.4.3.
Proposition 5.4.5 is proved. B

But at the same time, we see, as above, that, if M(2;) > 0, then
E(xn(z)) increases exponentially fast, so that 7%(z) = co. We reach
a contradiction which proves the assertion (iv) == (i) and also lemma
5.4.2. a

5.5 Proof of the ergodicity in theorem 5.3.4

Let us first consider the case when there is a single essential class with
at least two essential states. So, no one-dimensional face is ergodic. The
process 13; is called ergodic if the mean time f, of reaching 0, starting
from a point z € T, is finite (for all z). We would like to use f, as a
Lyapounov function for L1 in the following criterion for ergodicity (see
chapter 2): Lr is ergodic if and only if there exist a positive integer-
valued function m{«) and € > 0, such that

S 55 fs — fo < —emia) (5.17)
1Y
for « € T — Ty and some finite set Tp C T. Let pm be the transition

probabilities in ¢ steps of the process 7 for o, 3 € T. For « and ¢ given,
they differ from zero only for a finite number of points S.
Suppose M(2;) < 0. Then 7, is ergodic and therefore, for all @ not very

close to the origin,
fa=1+ Zp(l)

or

Z PSS~ fa=—1. (5.18)

We note that f, has the following properties:

(i) it is continuous everywhere, except on the one-dimensional faces
where scattering occurs;
(ii) C1 |z |< fx £Cq| z |, for some Cy, Cy > 0;
(iii) for any two-dimensional face A(?), the function f, has a linear
decrease along any line parallel to M, (2 in the direction of M, ;
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(iv) due to the space homogeneity, f, satisfies (5.13) with m(a) =1
everywhere, except possibly in some neighbourhoods of one-
dimensional faces. More precisely, let us choose some non-ergodic
one-dimensional face A and put, for any AD,

Do a0 (p) = {e: @€ AD), p(a, AD) = p}.

Then, if A® € S_(AV),a € Daw A (1), (5.17) might not be
satisfied. For this reason, we modify our Lyapounov functions as
follows. Define

]Z" :{ Jo, @ ¢ D(po)a
* (Co+1) ||, € D(po),

where

(]
D(po) = U U U Dpay a2 (0)

A AP eS_(A)) p=0

and py is a constant to be specified below.

Lemma 5.5.1 There exist pg,m,6 > 0, such that (5.17) holds for the
new Lyapounov function f,, with

m, a€D(po+1),
m(a)=4q 6lal, aclrw UA<2>es+(/\(1))D/\(l),/\m(l) )
1, in other cases.

Proof We choose ¢ > 0 sufficiently small ; then we take pg sufficiently
large and then m = m(pg) sufficiently large. When m(a) = 1, it is easy
to verify (5.17), due to the linearity property (iv).

Let us fix now a point o € D(pp + 1). One can prove that starting from
a after m steps, we shall be outside D(pg) with probability 1 —e;, where
€1 = €1(m) — 0 when m — oo, uniformly in @, with | a | > aq, for
some ag sufficiently large. This follows just from the transience of the
corresponding hedgehog. It follows also that (5.17) holds since, for large
m, we can take €; arbitrarily small with

F(B)=f(B) < Cal e | + md) ,
where 8 ¢ D(pg) is the final point after m steps.

Let now & € Dy ae» (1), A e S, (A()) and &,(«) be the position of
the random walk starting from a.
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Let A; € S_(A'). Denote by n:(a, A;) the point of R2 = A; which is the
unique point of A;, where the process n; will be found at time t, after
having started from . We need the following intermediate result.

Lemma 5.5.2 Let t = 6§ | a |. Then, for any €3,e3 > 0 sufficiently
small, there exists ag > 0 such that, for any | @ |> ag and for any
A € S_(AMY

€
| P(Et(a) € Ay | gt(a) - nt(aa/\i) |< €3 | o |) _p(/\7/\i) l< _l_2_, (519)

where | = |S_(A(D)].

Proof From the point o € Das A (1), we first make 2—(cﬁ-—1)|a| jumps.

Then, for |a| large enough, with probability p; such that

i /\7/\ ]
| pi — p( )|<3l

we shall reach a point o; € A; satisfying

1
plai, me(a, Ag)) < 5€3|04| .
After having started from «;, we perform the remaining

€3
(5—m)|a|

jumps. This will be in fact a translation invariant random walk in Z2
and, using Kolmogorov’s inequality, we prove that, for |o| large, it will
never go out of A; with probability 1 — §&. Moreover, by the law of
large numbers, the final point &;(«;, ) of this random walk satisfies the
inequality

€3 1
a2V <3

with probability 1 — (e2/31). Putting together all these estimates, we
get (5.19), concluding by the way the proof of lemma 5.5.2 ]

§i(o, @) — (o + Ma, (6 — elal,

We are now in a position to finish the proof of lemma 5.5.1.
From (5.18), we get

Z P fo—fa=—t. (5.20)

Comparing (5.17) and (5.20) yields
> Y Fa - fa——Z Py fo—Fatnr,
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where
A<e (Cg+1)|a|(1+d5)+63|al . (5.21)

Thus, for €3, €3 sufficiently small, we get
= = 1
> vy Jo — fa < =3 blal.
This concludes the proof of lemma 5.5.1 and of the ergodicity. ]

If there are several essential classes, we use the same Lyapounov function
as before inside two-dimensional faces and in a vicinity of non-ergodic
one-dimensional faces. We define it in a neighbourhood of ergodic faces,
exactly as it was done in chapter 4 for Zi.

5.6 Proof of the transience

Assume that, for the class 2;,
L) >0. (5.22)
We shall then prove that Lt is transient.

Let ét(a) be the position of the random walk corresponding to £ with
the initial condition a, ie. &(a) = a. Choosing o # 0 belonging
to some A1) we define by induction the sequence of random times
0=79<7 <...<T <...such that

(a) if &, (@) # 0,7, is the first hitting time (after 7,_1) of 0 or of
some one-dimensional face different from the face /\fll_)1 to which
&, (a) belongs;

(b) if ET" (@) = 0 for some 7, then 7,41 = 7, + 1.

Let us consider the new Markov chain (n(a) = &, (a) , (o(a) = a,

the state space of which is the union of all one-dimensional faces Uaw

and 0. The probability of sometimes hitting 0 is identical for &.(a) and
Cn(c). So it is sufficient to prove the non-recurrence of ¢, ().

Lemma 5.6.1 Let us consider two one-dimensional faces A(1), /\(11), and
the corresponding two-dimensional ones

AP € 84 (AW), A® e S_(AD) A s (AD) .
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Then, for any € > 0, one can find D1 > 0 such that, for any 8 € AV |

Dy

18]
(5.23)

[P (28 €A @) = tan 6,00] < elf]) —p(A(,AD)| <

Proof Let us note first that, for any /\( ) e S (A, we have
p(AT, A®) = p(Af, A

As the jumps are bounded, we have 71 > [|3|/d] a.s. It follows (see
theorem 2.1.7) that there exist 61,82, Dy > 0, such that, for any 8 € A(D
and any t € Z4,t < [|8]/d],

P (p€:(8),AD) < 81t) < Dy et
We also have

|P (p(gt(ﬁ),/\(l)) > b1t Et(ﬂ) € /\(2)) —p(/\(12),/\(2))| < Cze b2t

(5.24)
for any t < |B|/d, where Cjs is a positive constant.
For any €1, where 0 < €; < 1, and #; = [¢1|8|/d], we have

16,(8) — Bl <elf]. (5.25)

To prove (5.23), it is sufficient, by (5.24), (5.25), to prove that, for &, (3)
such that

p(€ (B),A) > 8 1,

and for any e; > 0, there exists a constant Cy = Cy(ey,€2) > 0 (not
depending on ) such that

P(E:,(B) € AT, p(Er (B), &, (B) + (11 —t1)Ma)
> 218l | pln (B >A<1>)>alt1>s%. (5.26)

To prove (5.26), we consider A(?) embedded into Z2 and the space ho-
mogeneous r.w. £, t € Z,, on this Z?, with the initial position

€6 = étl (:B)
and one-step transition probabilities
Pla,B)=p(a+d, B+ o) =p(e,B),

for all o, B € A?) | o € Z2.
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Let 7/ be the first hitting time of Agl) by &;. We can choose T' € Z,. and
ez > 0, so that

(é-/ A(l)) > (5 t o= |:61|:B!:| > €3 IIBI

and
p (€6, AD) + TPracy Mycy + 3|
< |81 +€1) + TPraay Mae +€3]8] <0.
Let us note that, if

max - M t <
max, l€; — Ao t| < e,

then 7/ < T and & € A, for all t < 7/. From this remark and
Kolmogorov’s inequality, we obtain

P (én (B) € (1)’P(§n (8), 81 + My (11 — t1)) < €3]

&.(8)

ZP( max |E(8) — € (B) - (t — )My | < <ol s}l(ﬁ))

t€[t1,m1]

=P ( max |§t fo —tMp| <e3 |ﬁ|)

telo,r

> — <
2P (tg[lg);,] & — &0 — tMpw| < ealﬂl)
CsT

>1—

- 4lpP
for some constant Cs > 0. The last step to derive (5.26) is achieved by
choosing T such that

T < Const |3

Lemma 5.6.1 is proved. |

It follows from lemma 5.6.1 that, for any sequence Ag,...,A, € U; of
two-dimensional faces, for any € Ao N'A; and any € > 0,n € Z, there
exists Cg = Cg(€,n) not depending on a € Ag NAq, such that, setting

U = P{G(@) € Nk NV Akt1, [Cr(e)]
> (tangp, — €)|Ce—1(a),k=1,...,n},
V= p(/\o, /\l)p(/\lv /\2) e ‘p(/\n—lv A‘n) ’

we have
Cs

U — V|<||

(5.27)
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Let us choose ¢ > 0, § > 0 and n € Z,, so that, for any Ag € 2;,

Z Zp(k)(/\o,/\(z)) log(tan ¢ —€) > 86 >0. (5.28)
k=1 A2)

Due to (5.22), it is always possible to satisfy (5.28), since

1 n

=3 " pP(no, A) 5w (AD)) | asn — o0,

™ =1
for any Ag, A, whenever Aq is an essential state of the associated
Markov chain.

To prove the transience of (x(a), k € Z,, it is sufficient to prove the
transience of the chain 7y = (uk(a), k € Z;. We shall use Foster’s
criterion (see chapter 4) recalled here: if for a Markov chain with state
space X and transition probabilities p;; , ¢, 7, € X, there exist a positive
function f defined on the state space X and a set A C X, such that

{ YexPij fi<fi, VieX - A, and
infica fi > SUPjex—A fis

then the Markov chain is transient. We shall define f on the state space
of 7.

log 3|a|

fa) ——l—,ifa7é0 and a €AY | for some A € 2;
Q) =
1, in the other cases.

Let us prove that, if || is sufficiently large, then

E(f(m)) < f(no) - (5.29)
In fact, if f(no) = 1, then (5.29) evidently holds. Let now
1
- - /\(1)
T10) = Tog3mg] 240 €N
for some one-dimensional face A(1). Then, by (5.27),
E(f(m)) <
T pho, A1)+ Pt An) 1 8 (5.30)
IRAD Y n—1,/\n n T\
s log[3|no| ITj=1(tan ¢a; —€)] * [mol

where Ag € S_(A), Ag € ;. But, for |no| sufficiently large,
~1

log | 3|mo| [ [ (tan ¢a; — )

=1
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-1
1

=1+ — log(tan —€
log 3[nol 10g3|n| Z gltan ¢n; = <)

1 . log(tan ¢a. —€ 1

< _ L Lol ¢2A’ ) 4 o( 2> . (5.31)
log 3|mol (log 3|mol) (log 3|mol)
From (5.30), (5.31) and (5.28), we get
Cs 1 6 1
E(f <—+ - +o )
V)< foel + g3l ~ Tog3imal? * Tog3ml?)

Transience is proved. |

It is worth noting that theorems 5.1.2 and 5.1.5 are in fact contained in
theorem 4.1.3.

5.7 Proof of the recurrence

Here for simplicity we also assume that the associated chain has a single
essential class with at least two essential states. Let

L=L(2) <0 (5.32)

We shall show that L7 is recurrent. As in the proof of transience for
any one-dimensional chain A(Y) and any o € A, o # 0, we introduce
a Markov process {,(a), n € Z; (see the definition of this process in
section 5.6). To prove the recurrence of Lr it is sufficient to prove the
recurrence of (,{a).

Let us choose €> 0, § >0, 7 € Z., so that, for any state /\(2) € 2, the
following inequality holds:

Z Z p(k)(/\((f),/\(”) log(tan @ + &) < —6. (5.33)
k=1 A@ ey

By (5.32) this is always possible as for any states /\( ) A?) € A we have

1 2
LS p0(0D AD) = 5(AD),
n
k=1
To prove the recurrence of the chain (i (), it is sufficient to prove the
recurrence of the chain nx(a) = (ar(a).
To that end, we use the well known recurrence criterion given in chap-
ter 2, theorem 2.2.1, which we recall now:
A Markov chain with the state space Z, and transition probabilities
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Dij, 4,J € &y, is recurrent if there exist a non-negative function f on
Z, and a finite set A C Z, such that, for any i € Z, — A,

Z pij fi —fi <0
J€Zy
and f; — oo as j — oo.
We define the function on the state space of n; putting for any a £ 0
f(a) =log3|a] and f(0) =0.

Let us show that there exists D > 0 such that for any & belonging to the
state space of n; and such that || > D, the following inequality holds:

E(f(¢(a))) < f(e). (5.34)

After this the proof of recurrence of 7, and so & will be finished.

Lemma 5.7.1 Let A(D) be some one-dimensional non ergodic face and
let B € NAVNT. Let 71(B) be the first time the process &(B) hits a
zero- or one-dimensional face different from AL, Then one can find
constants q1 > 0, C; > 0, k1 > 0, which do not depend on [ and are
such that, for any t > q1]8|,

P(mi(B) >t) < Cre ™¢

Proof It easily follows from theorem 2.1.7 that, for any t1 € Z,

P (Tl(ﬂ) >t1, At € Zy,t1 <t <71(B), p(&e(B), AD) < 6’t1>
S cle—a'tx, (535)

where §' >0, ¢ >0, k' > 0 do not depend on 8 € A() nor ont; € Z.
Moreover, due to boundedness of the jumps for £,(3), we have, for any
ty € Z4,

€, (B)] < 18] + dt1. (5.36)

Let us note that, for any two-dimensional chain A(?) the vector M, A2
has at least one negative component and therefore, by again using the-
orem 2.1.7, for any A, any o € A® NT and any ¢y € Z,

P(&(a) € AD t=1,. .. ty) <’ eMlal=r"tz (5.37)

where the constants ¢ > 0, ” > 0, h > 0 do not depend on A o €
A2 nor on ty € Z, . Let now some ¢t € Z be given. Let

ty = [yt], ta =t —t1.




120 5 Random walks in two-dimensional complezes
Then it easily follows from (5.35)-(5.37) that

P(ry(B) > 1) < ¢ e 1 ¢ exp {h|B]| + hdryt — £"1(1 — )} .
Lemma 5.7.1 is now obtained by taking v > 0 sufficiently small. ]

Lemma 5.7.2 Let us choose /\(11>, /\gl) and
AP e 5. (AD), AP e s (A NSy (Af)).
Then there exist constants g3 > 0, kg > 0, cg > 0 such that, for any
B e /\(11) NT and any r > qq,
P (6i(8) € A9, 1G1(B)] 2 1Bl (san 8\ +7)) < e =71,

Proof Let 8 ¢ /\gl) NT. Let 7(B) be the first time the process
&:(B) hits some one-dimensional face different from /\(11) (we recall that

G(B) =& (5 (B)).
By lemma 5.7.1, for any ¢ > ¢1|8|,t € Z, we have

P(ri(B) > t) < cpe” ™. (5.38)
On the other hand, from the boundedness of the jumps of &(B),

P (6n0)(8) € 157, n(a (B)] - 1Bl tan 0 > 2dm(8)) = 0. (5.39)
From (5.38), (5.39), for any ¢ > ¢1|3|, we get

P (¢n@(8) € A 16 0) (B > 16l tand, g +2dt) < ere™.
This concludes the proof of lemma 5.7.2. ]
Now we shall prove the inequality (5.34). Choose some A o e NONT
and /\(()2) € 2[,/\82) €8, (AM). Let A€ Zy, é>0,5>0 be the con-
stants of (5.33). It follows from lemma 5.6.1 that there exists a constant

¢ > Osuch that, for any sequence of two-dimensional faces Ay, ..., Aj; € U,
where a € Ag N'Aq, the following inequality holds:

U-V|<— (5.40)

o ”

where we have set

U=P (Ck(a) € Kk ﬂxk-ﬁ-la k= 17 o 7’77'7 'Cﬁ(a)l S |a| H(tan ¢/\j +g)) »
j=1

V =p(Ao, A1) -p(As—1,Ai).
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Moreover lemma, 5.7.2 shows that there exist constants ¢>0,x>0,¢>0
such that, for any sequence of two-dimensional faces A1, ...,Az €A such
that o € Ag NAy, and for any k > q,

PC(a) e AN ARpyrk=1,...,7 Htan¢A + k)

< ce "klal, (5.41)
From (5.40) and (5.41) it follows that
B(f(G@)) < fl@)+ Y, p(ro,M).. .p(Aso1,Az)

ALy AREYA

xlog H(tan dn; + € +0(a) ,
j=1
where () — 0 when |a| — oo.

From the latter inequality and using (5.33) one gets (5.34).
Recurrence is proved. [ ]

5.8 Proof of the non-ergodicity

Let there exist an irreducible class of essential states 2; for which
M%) > 0. (5.42)

As in the proof of transience, we consider, for any one-dimensional face
A and any o € AD N T, the random walk &;(c) with &o(a) = o,
corresponding to L7. Define the sequence of stopping times

() =0,11(a),...,mm(a),...,

where, for &, (o) #0, Tny1(a) is defined as the next time (after 7,(a))
the process () hits either 0 or some one-dimensional face different
from that of &, (a). If &, (a) =0, we put 7, 1(a) = (), etc. Let

C‘n(a) = §Tn(a)(a)7 n e Z+ ’
vie) = inf{ln€Zy &, (o) =0}.

From the definition of 7, (), n € Z., it evidently follows that 7,(o)(cx) is
the first time when &;(«) hits zero, so that 7, (q)4n(@) =7y (a)(a),n € Z,.
In order to prove the non-ergodicity of £;(«) it is sufficient to show that

E[mp(a)] > o, and n — co .
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Lemma 5.8.1 For any one-dimensional face AV, any a € A and
anyn € Z,,

T101(0) = Ta(@) 2 [6raoy] 25

To prove this lemma it suffices to note that, for each one-dimensional
face A(Y) and any o € A(D,

Ti(a) 2 |of as. ,
and then to use the relation

7'n-{—l(a) = Tn(a) + Tl(é.rn(a)(a)) a.s
[ |

Now let us denote by ©(%;) the set of all one-dimensional faces A(!) for
which

S_(ANYNA, #£0 .

We define the following function f on the set of states of (,(a) =
SNEICIE

£(5) = 18l, if e ADNT  with A(D € O(;),

~ | 0, otherwise.
Lemma 5.8.2 There exist constants 71 € Z,7 > 1,& > 0 such that, for
any one-dimensional face ANV and any a € AU NT,

E(f(¢a(a)) 2 7f(a) —¢. (5.43)

Proof For any A() € ©(%;) and any z € A) N T the inequality (5.43)
evidently holds for all ¥ > 1,6 >0, n e Z,.

Now, consider the case A(Y) € ©(%;) and choose 7 € Z,, € >0 and
4 > 1, so that, for any /\82) € A,

n
P(/\SQ)J\?)) e (2) (2) H (tan ¢,\(2> -8 >7.
AP AP e, j=1
(5.44)
This choice is possible by (5.42) and lemma 5.3.3. Consider now some
A e (), /\82) € S (AY, o e ADNT. From lemma 5.6.1, it easily
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follows that

E(f(¢i(@)))

i

2 2 2 2 ~

>lal Y pAP AP p(AD A Htanqu(z)—e —¢,
AP AP e, g=1

(5.45)
where ¢ = c(7, €) is a positive constant which does not depend on A(1)

or on o € A1), Then (5.44) follows from (5.45), (5.46).
Lemma 5.8.2 is proved. ]

Let us now prove (5.43). From lemma 5.8.1 it follows that for any one-
dimensional face A()| any 8 € A N T and anyneZy,

E(Tn+1(ﬁ) - Tn(IB)) > E(f(C‘n (,B))) (5'46)

From lemma 5.8.2 it follows that, for any A, any 8 € A AT and
ke Z+,

E(f(Cn(8))) 2 7" {f(ﬁ) ~3 E 1] : (5.47)

where € Z,5% > 1,2 > 0 are the constants we sw earlier in lemma
5.8.2.
Let A € 0;(2;) , Be A NT and £(8) =

Then using (5.47) and (5.48), for any k € Z,, we have

E(mia(B)) 2 ZETJTH—l B) — 75(8))

A%
g
=
Ly
a
=
vV
[~
2
x
=
N
X

so that
E(mm(8)) - >, asn — oo .

The non-ergodicity is proved. [ ]

5.9 Queueing applications
First we shall describe two models which in some sense are dual.
Model 1 A single service station has two infinite buffers 1 and 2,
& (), i = 1,2 being the number of customers in buffer i at time ¢. There

are two independent Poisson arrival streams with intensities A;, i = 1,2,
to the buffers ¢ = 1, 2 respectively.




]
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The station can serve the buffers according to several regimes numbered
from 1 to N. For a given regime j, the station serves the buffers, ac-
cording to independent exponential service times with rates u;; and
pr; Tespectively, provided that both buffers are not empty, i.e. §1(t) #
0, &(t) # 0. When one of the buffers is empty, the service rate is taken
to be equal to p. One can imagine changing algorithms, prophylaxis or
commuting context, etc.

Let r(¢) denote the regime of the station at time ¢. Let us assume that
r(t) =k, &(t)=0, &(t)#0 andlet 7>t be the first arrival of a
customer at the buffer <. Our assumption is that, at time 7, the regime
suddenly changes to r(7) = I, with probability p},, Z{ilp}cl =1. Simi-
larly, we define the probabilities pil.

If¢1(t) = &(¢t) = 0, then we do not specify the protocol, since it has no
influence on the ergodicity of the system.

Model 2 Let us consider a customer (computer, bus etc.) which has
access to N databases, but can use at time ¢ at most two of them,
r1(t) and 7o(t), where r;(¢t) € {1,...,N}, i =1,2. This user has two
buffers 1,2 accumulating data coming from the databases r1(t) and r9(t),
respectively. Let A; be the intensity of arrivals from the database i, ¢ =
1,2. Let &(t) be the number of units in buffer ¢ at time ¢ (necessarily
issuing from the database r;(t)).

Under the condition &;(¢) > 0, & (t) > 0 and ri(t) = k;, i = 1,2, the
customer serves the buffers with the following intensities:

(a) ;ﬂ}ci, when serving one unit from buffer ¢;
(b) tk,k,, when, simultaneously, one unit from buffer 1 and one unit
from buffer 2 are served.

When e.g. £1(t) =0, &(t) # 0, the user switches to another database.
The intensity of switching to database k is

Al(k)lr g?(t)) ’

where [ is the later database used by buffer 1. In a similar way, we
introduce

)\2(’9; §1(t), l) .

It is also assumed that the above swiching is accompanied with the
arrival of one unit from the database K at the corresponding buffer.

In model 1, a regime corresponds to a quarter-plane. In model 2, a
single database corresponds to a one-dimensional complex and a pair of
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databases corresponds to a quarter-plane. Both models can be treated
with similar methods, since they induce random walks in two-dimensional
complexes. They do not completely fit our main theorems, as the prob-
abilities of jumps from one-dimensional faces depend on the last visited
quarter-plane. We could solve this case also, by applying similar meth-
ods. Instead of this, we shall discuss in more detail a particular case of
model 1.

Analysis of model 1

Let us consider the set P of all 2N pairs (i, k), 1 = 1,2 and k = 1,...,N.
Thus (1, k) and (2, k) can be considered as the one-dimensional faces of
the k-th quarter-plane. We assume that P is subdivided into M < 2N
equivalence classes a, so that (z, k) and (4,1) belong to different classes if
i # j. This is equivalent to a gluing of the corresponding one-dimensional
faces. Let a(i, k) be the class to which (i, k) belongs.

So we assume that p}, = 0, if (4, k) and (4,1) belong to different classes
and that p}; depends only on o = a3, k). We shall write ad libitum Pa,l
instead of p}, if (, k) € . Our process is a triple (&1(2), & (), r(t) and
forms a countable Markov chain.

Correspondence with the random walk

Let us consider the N quarter-planes (Zi)i, 1=1,..., N, glued together
and let r(t) take the values 1,..., N. The one-dimensional faces corre-
spond to the equivalence classes which have been introduced in the above
gluing. This defines in fact a complex 7. It will be convenient to con-
sider an embedded discrete time Markov chain instead of the original
chain which is in continuous time. To that end, we choose ¢ > 0, suffi-
ciently large (the ergodicity conditions do not depend on the choice of
this constant), and we define the following transition probabilities on 7.

For k,1 > 1, (k,1); € (22 );, we can write

M, K =k+1,0=1,
A, K =k U=1+1,
pri, K =k—1,0=1,
poi K =k U =1—1.

cp[(k, l)ia (klv l/)l] =




Y
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On the boundaries,

epl(0,1);, (0,1')) = {22 téfi
epl(0,D)a, (1,I)] = Aipai , l/,:l’
it ol = {0 L2t
e[k, 0)as (K3 1);] = Aopaj , K =k .

We write (0,0), = (0,1);, if (3,1) € a and, similarly, (k,0)q = (k,0); if
(4,k) € a. The probabilities p[(k, 1), (k,1);] are defined by the normal-
ization condition.

Mean jumps Up to the multiplicative constant C~1, we have the
following possibilities:

o if /\1(-2) corresponds to the regime ¢, then
def
Mi< M A = = (M — p1i, A2 — p2i) 5
o if /\9) corresponds to the equivalence class «, then

def
Moo = Pr o M, @] = Ao — 4,

where A\, = A1 (resp. Ag), if £&(t) = 0 (resp. &1(t) = 0) ;

M. %y _{ (0,\2pa1), if & corresponds to &3(t) =0,
ol AP AP (A1Pai,0), if @ corresponds to &;(t) = 0.

(Recall that &;(t) is the content of buffer ¢, i = 1,2, at time ¢.)

Transience and ergodicity Should there exist only one regime, e.g.
4, then necessary and sufficient conditions for the system to be ergodic
for all ;» > 0 sufficiently large would be

A <pij 5 i=1,2. (5.49)

In fact, for several regimes, sufficient ergodicity conditions are: inequali-
ties (5.49) hold for allj =1,..., N and p sufficiently large. In this case,
the system is ergodic, independently of the p%,’s. As is to be expected,
these conditions are not necessary and we get, below, the exact neces-
sary and sufficient conditions, which connect the parameters phyy Aiy Bij
together. In particular, we show that if, for some ¢, j, we have

Ai > pij o,
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then, for some p;, the system may be ergodic. However, theorem 5.1.2
yields the following.

Corollary 5.9.1 If there exists § such that
AL > pig, Ag > paj, (5.50)
then the system is transient. ]

We note that a one-dimensional face AS) (or simply the equivalence
class o) such that (1,k) € « is ergodic if and only if Ay < pgg. In this
case, we have (see section 5.1).

A
sgn V/\S) = sgn Ag — »+ Z |:(/\1 — ulk)x?—ak‘
ki(1,k)ea 2T M2k

One could write similar formulas for ergodic faces A4 ), such that (2,5) €
a. This will be summarized now. Let us assume that, for all ergodic a,

S Z Ai — ik 20
kz(zk)Ea ”J’“

Then the following proposition holds.

Corollary 5.9.2 For the Markov chain L1 to be ergodic, it is necessary
that, for all ergodic

—p+ Z ”"’“ jPak < 0. (5.51)
k:(d, k)Ea

Theorem 5.3.2 gives the necessary and sufficient conditions for ergodicity
in the cases which are not covered by corollaries 5.9.1 and 5.9.2. To show
even more explicit computations let us consider a system admitting only
two classes, 1 and a3. In the usual language of queueing theory, this
means that the quantities

Ph=p , ph =1} (5.52)

do not depend on k. Let us classify the regimes in the latter case. The
regime j will be said to be 1-outgoing if

Ag > Haj - (5.53)

We have seen in this case that, for the system to be ergodic, it is neces-
sary to have

A1 < pij -




128 5 Random walks in two-dimensional complexes

The set of all 1-outgoing regimes will be denoted by A;. Similarly, we
define 2-outgoing regimes A,, when
Ag < w25 , AL > Hij - (5.54)

Clearly, for all other regimes (belonging to {1,...,n}\(41U Ag)), we
have
At < fij, Ag < pgj .

Let us note that the stationary probabilities of the associated Markov
chain (irreducible and aperiodic) are given by ‘

» 1 N
m E a(NY) = 32N, AP, (5.55)

where A1) is oy for 1-outgoing /\§2) and ay for 2-outgoing /\,(2). Using
(5.2), we have, e.g. for 2-outgoing A(?),
. A
@
Pee(AD, A = _4_0_1_(2'_)/_\_’_,

¢101 YA
A2)

where v = 7, (» is defined from equation (5.4), which reduces to

Al =) +pu(l =) = (N +p1) =0,
whence

7=1_‘ﬂ

Ai

Define the following real number:

% el (%)

JEAL

My =
Z Azp] ( “2.7)

JEA,

We can define M, in a similar way. Our final result, for the example
under consideration, is contained in the next

Theorem 5.9.3 Assume in model 1 that (5.52) holds and both Ay and
Ag are not empty. Then the system is recurrent if
M+ M; <0

and transient if
Mi+M;>0.
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Let us consider a system with only two classes a; and o9, under the
following assumptions:

e there is only one 1-outgoing regime j = 1, and
A2 > piar, A1 < pg;
e there are only two 2-outgoing regimes j = 2,3,
A2 < pigg , A1 > g,
and
Ay < pigg , A1 > i3
o for the other regimes 7 = 4, ..., N, we have
A2 < pg; and Ap < pyj .
Then the matrix (5.9) in the present case is given by

Ain = Ay =Ass=Ay3=A3=0,

Ay = \/tan ¢>,\§2> tan ¢,\§z> ,
Az = \/taﬂ ¢,\g2> tan ¢,\§z) ,
Ap = \/tan Pp@ tang, o) 3,
Az = \/tan ¢,\§2> tan ¢,\g2) 3.

One can show that the maximal eigenvalue of this matrix is given by
/\% = p2tan ¢A§2) tan ¢/\§"’) + p3tan ¢A§2) tan qugg) .

The above conditions imply the following result.

Theorem 5.9.4 Assume in model 1 that (5.52) holds and A; = {1},
Ag = {2,3}. Then the system 1is ergodic if

1 2 2
M= 3 log [p2 tan (]5/\52) tan (f)Agz) + p3tan (]5/\52) tan ¢/\g2)] <0

and non-ergodic if

M>0.

Note that under the conditions of theorem 5.9.4 it is not necessary to
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calculate the maximal eigenvalue of the matrix (5.9). It is sufficient to
note that, for any n € Z, in (5.7), we have
2n ”
E Htan Pn; 1Mo = /\(12) = [E (tan Oa, tan ga, Ao = /\(12))] .
j=1

5.10 Remarks and problems

Remark 1 In our case, we could have defined an associated Markov
chain with a different set of states: {A(1} instead of {A()} with transi-
tion probabilities

p(AD, Ay = p(A@ AP

for any A® e S, (A1) and the unique A{Y € S, (A{) N S_(AD), if
such /\?) exists, and 0 otherwise. In the more general case when Condi-
tion Al of section 5.1 (boundedness of jumps) is not satisfied, the situa-
tion becomes more complicated : the scattering probabilities depend on
the ingoing bristle of the hedgehog. Thus the probabilities p(A(2), /\(12))
and p(AS?, A(®) can be different for different A, AD € 5.(A D). But
this case can also be taken care of, using the same therapy.

Remark 2 It is of interest to generalize our results to the case when
the simplexes of our complex are not Z2 , but angles in R2 or in Zf).
Of special interest is the situation when these angles in Zi are not
commensurable with .

Remark 3 Our methods permit the classification of random walks
in Zf under the same non-zero and homogeneity assumptions, when all
vectors of mean jumps inside all faces A, with dim A > 3, have their coor-
dinates negative. Then Mx, with dim A =1 or 2, will become vectors
which can be determined from the corresponding induced chains.

Remark 4 We want to show now that all our assumptions have Lebesgue
measure 1 in the parameter space. Indeed, assumptions 01,03 are ful-
filled when all the p,g’s are positive. Assumption 0, is satisfied, except
for a finite number of hyperplanes. Finally, assumptions 04,05 are ful-
filled except when v,y in lemma 5.1.6 is equal to zero.
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Stability

The present chapter is devoted to the continuity of stationary distri-
butions for families of homogeneous irreducible and aperiodic Markov
chains. In section 6.1 we give a necessary and sufficient condition for
this continuity. In section 6.2 we present constructive sufficient condi-
tions for the continuity of the stationary probabilities in terms of test
functions. Finally, section 6.3 deals with the continuity of random walks
in ZN.

6.1 A necessary and sufficient condition for continuity

Let us consider a family of homogeneous irreducible aperiodic Markov
chains {L*} with discrete time and countable set of states 4 = {0,1,.. .},
for v € D, where D is an open subset of the real line. By pi;(t,v) we
denote the t-step transition probability from the point ¢ to the point
J in L”. Everywhere in this chapter we assume that the pij(1,v) are
continuous in v for all v € D and 4,5 € A. For the sake of brevity, we
will write

def
pij(v) = pi(1,v) .

Lemma 6.1.1 The p;;(t,v) are continuous functions of v (v € D) for
every naturel number t and all i,j € A.

Proof We prove the lemma by induction. For n = 1 the function
pij(1,v) is continuous in v for any %, € A. We have

pij(n+1,v) szk V)prj(n, v) = de(V) (6.1)
k=0

131
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It follows from the inclusion hypothesis that the ¢x(v) are continuous
functions of v for any k. We have

(o o]

Zp,-k(u) =1 (veD). (6.2)

k=0
Consequently, the series (6.2) consisting of continuous functions con-
verges uniformly with respect to v € D, and pyx(n,v) < 1 for any k,i,n
and v € D. These two conditions lead to the uniform convergence of
the series (6.1). The sum of a uniformly convergent series of continuous
functions is a continuous function. Consequently, the p;;j(n + 1,v) are
continuous in v. The lemma is proved. a

On the set Alet {m;(v),j € A, v € D} be a given family of distributions,
where D is some open subset of the real line. We have

Y m)=1 (veD).
jEA
Definition 6.1.2 The family of distributions {n;(v),5 € A, v € D}

satisfies Condition A\ at the point vy € D if, for any € > 0, there exist
6 > 0 and a finite set B¢ C A such that

> mv)<e, (6.3)

JEA\B-

for allv with | v — vy |[< 8.

Let the chains L be ergodic for every v belonging to some neighbour-
hood Uy C D of zero.

Theorem 6.1.3 The stationary probabilities 7;(v) depend on v contin-
uously at v =0 for all j € A if, and only if, the family of distributions
{m;(v)} satisfies Condition A at the point v = 0.

Before proving this, we make the following remark. Following Pro-
horov [Pro56], we form the metric space D(.A). To that end, we de-
fine the distance L{pi,uq) between any two measures pq and pg on
A=1{0,1,...,n}, so that convergence in the sense of this distance is
equivalent, to weak convergence of measures. The collection of all mea-
sures on A together with the function L{gy, ug) forms the metric space
D(A). Still in accordance with [Pro56] we introduce the following defi-
nition.
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Definition 6.1.4 A set T of measures on A satisfies Condition x if

(x1) the values p(A), € T, are bounded,

(x2) for any given € > 0, there exists a finite set K. of points such
that u(A\ K.) <e¢, forall pe T.

In [Pro56] it is proved that for t C D(A) to be compact, it is necessary
and sufficient that Condition x be satisfied. For {r;(v)}, Condition X
obviously implies Condition A. Therefore, as a result of theorem 6.1.3,
we have the following theorem.

Theorem 6.1.5 In order that the stationary probabilities 7;i(v) depend
continuously on v for all j € A it is sufficient that the family {m;(¥)} of
distributions be compact in D(A).

Let us pass to the proof of theorem 6.1.3. Let {r;(v)} satisfy Condition
A at v = 0. We prove that m;(v) is right-continuous at v = 0 for any
J € A (the left continuity can be proved analogously). Take an arbitrary
€ > 0. Condition A implies the existence of a vy > 0 and a finite set
k¢ C A such that for any v for which

0<v<w (Condition a;)

we have the inequality

Z () <e€. (6.4)

ke A\B¢
We prove that, for any j € A, there is a v (j) such that, for0 < v < v, (4),
|7i(v) — m;(0)] < 10¢ . (6.5)

By the same token, we prove the continuity of the m;(r) at v = 0. The
following inequality is satisfied for any ¢, and j:
imj (v) —m;(0)]
= |pi;(t,v) = pi;(¢,0) + m5(v) — pis(t, v) + pi (¢, 0) — 7;(0)|
< it v) = pis(t,0)] + |m5(v) — pig(t, v)| + [pis(t, 0) — 75(0)] .
(6.6)

From the ergodicity of the chains L” and L°, for fixed i and 7, it follows
that there is a ¢o(v) such that, for

t>to(v) (Condition ajy)
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we have

|7l'j(l/)—p,;j(t,ll)| < €,
|ps;(2,0) = m;(0)] < €. (6.7)

Consider the first term on the right side of (6.6). For any T' < ¢, we have
{pi; (t,v) — pi;(¢,0)]
> ot =TI (T + > pij(t — T, v)pis (T, v)

ke B ke A\ B¢
- > Pt =T, 0)ps(T,0)— > pus(t ~ T,0)pri(T, 0)‘
kEBs kEA\B=
< | Y pirlt = T, v)piy(T, v) — pak(t — T, 0)p; (T, 0)]’
kE€Be
+ > pat-Tv)+ Y pu(t—T,0). (6.8)
k€ A\Be k€A\Be

From (6.4) and the ergodicity of L and LY it follows that there is a
t1(v) such that, for

t—T >1t1(v) (Condition a3),

we have

EkEA\Be Pik(t -T, 1/) < 2e, (6 9)
>keane Pik(t —T,0) < 2. -

Let us pass to the study of the first term on the right side of (6.8).

S pult =T, pg(T,0) = pslt = T, 0)pis(T,0)]
keBs

=| Y ikt = T,v)pis(T,v) — pir(t = T, v)lpss(T, v) — ps (T, v)]
keBe

_pik(t - T, O)pij(Tv 0) + pik(t - T’ O) [pij (T, 0) — Pkj (T’ 0)]]‘

< Z pik(t — T,v)pi;(T,v) — pis(T, v)|
keBe

+ Z pik(t —T,0) |th(T 0) — pkj(T7 0)|
ke B¢

+|le(Ta V) Z p'ik(t - Ta V) _pij(T1 O) Z sz(t - T7 O)|
keBs ke B«
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<lpis(T,v) D pirlt = T,v) —pig(T,0) > pus(t — T,0)|
keB- ke B«

+ Y Ipis(T,v) = pig(Tov)| + D Ipig(T,0) — pis(T,0)]. (6.10)
kEBe keBe

It follows from (6.9) that, for t — T > ¢1(v), we have
{ 1= kepePik(t —=T,v) < 2,
1= epepik(t —T,0) < 2.

Since p;;(T,v) is a continuous function of v at zero for a fixed T, there
is a v9 = v9(T') such that, for

(6.11)

0 <v<w(T) (Condition as),
we have
lpis (T, v) — pis (T, 0)] <e. (6.12)
It follows from (6.11) and (6.12) that

|pis(T,v) D pir(t — T, v) = pis(T,0) > pir(t — T,0)| < 3e. (6.13)
keBe keBe

The chain L° is ergodic. Consequently, there exists

T =T(B*) (Condition as)

for which
€
max pi;(T',0) — pis(T,0)| < E (6.14)
> Ipis(T,0) — pes(T,0)] < e, (6.15)
keBe

where M is equal to the number of terms in the sum (6.15). The conti-
nuity of px;(T,v) at ¥ = 0 for a fixed T implies the existence of v3(T")
such that, for

v < v3(T) (Condition ag),

we have
€
sup lpr; (T, v) — pi;(T,0)] < WV (6.16)
keB<,v<v3(T)
Inequalities (6.14) and (6.16) yield
2e
sup |p7;j(T, I/) —pkj(T,I/)I < M . (617)

keBe,v<vi(T)
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Consequently,

Z pij (T, v) — pij(T, V)| < 2€ . (6.18)
keBe
Comparing (6.9), (6.13), (6.15), and (6.18), we obtain that if ¢,T and v
satisfy Conditions aj—ag, then

|7;(v) — 7;(0)] < 10e . (6.19)

The proof of the right continuity of 7;(v) at v = 0 will be complete if
we show there exist T and vy > 0 such that, for 0 < v < vy, there is a
t depending on v for which Conditions a;—ag are satisfied. This can be
shown easily in the following way. For the set B¢ we find T = T(B¢)
(Condition as), and for T' we find numbers v5(T') and v3(T). Set

Vl(T) = min {Vo, VQ(T), 1/3(T)} .

Then, for any v < v1(T), the choice ¢ > max {to(v),T +t1(v)} fulfils
Conditions ai—as.

Now we prove that the continuity of 7;(»/) at ¥ = 0 for any j € A implies
the satisfaction of Condition A for {m;(v)} at v = 0. The chain L° is
ergodic. Consequently, for any € > O there is a finite set B¢ for which

> om0 <3,
ke A\ B¢
Z 75(0) > 1 — % .
ke Bs

The continuity of 7¢(») at v = 0 implies that there exists 1 such that,
for |v| < vo, we have

€

Eé%’ﬂ”k(l’) =m0 < 537 s (6.20)
where M is the number of elements in the set B¢. Therefore,
€
> Ime(v) — m(0)] < 3 (6.21)
keBe
Z (V) <e. (6.22)
ke A\Bs

Consequently, {m;(v)} satisfies Condition A at v = 0. The theorem is
proved. [ ]
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6.2 Sufficient conditions for the continuity of stationary
probabilities

As in section 6.1, let us consider a family {L"} of irreducible aperiodic
Markov chains, with transition probabilities p;;(1,v) = p;;(v) continu-
ously depending on v, for v € D C R (D is an open set).

The theorem of this section will be formulated in terms of test functions.
Later, the continuity of stationary probabilities of random walks in YA
will be studied by means of the results of the present section.

Assume that on the set A ={0,1,...} there are given two families

v ={fr} and g* = {gV}, for i € A,v € D, of real functions, where

inf fY >0, inf g/ =6>0.
i€AveD icAveD

Theorem 6.2.1 Assume that for some finite non-empty set B C A the
Junctions {f}'} and {g¥} satisfy the following conditions:

me fr—ff <—g i¢B, veD.
(ii) sup Pi =\ < oo.
i€B, VEDZ ”

(iii) g¥ — o0 as 1 — oo uniformly inv € D.

Then the chains L” are ergodic for every v € D, and the stationary
probabilities w;(v) are continuous in v, forve D and j € A.

Proof The ergodicity of L for every v € D, follows from the hypotheses
of theorem 2.2.3. We define by induction

yi(v) = wlv)=1/,
i) = D op()yre)
=0

It is obvious that y?(v) > 0, for any natural numbers 7 and », and any
v € D. We have

yzz(y) = ZPW fu<fu_g1,_y1() gf,z¢B,

IN

/\, i€ B,

Zpij(l/) )‘sz](l’ )+ ZPU yz () —g{l-
=0

Jjg¢B

v (v)
v (v)
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Write

AL = sup g:“ sz n, V sz] n, V
i€BveD jeB

After easy calculations we obtain
¥} (v) < A+ A)pip(v) + 92 (v me : (6.23)
Moreover, the formula
W (V) < A+ A)pis(n — 2,v) + 577 me n—2,v)g; (6.24)

can be proved easily by induction. From the recurrence relation (6.24),
we obtain

y:L+2( ) )\‘i")\l szB 'r V) Zzpz] v g] ,

r=1j=0
and
n S e % 2 n r n+2
Zr:l Z]ZOP ]('l" V)gJ S _yi + (/\ T )\I)Erzl y 23] y, ( )
n n n n
y2(,,) 2
< —’7—z——+>\+>\1 <y;(v)+ A+ A (6.25)
Take 7 € B. Then
3 <~——ZT=1 H () o ) <R FAFM <D+ A . (6.26)
j=0

Take an arbitrary M > 0. Consider the set
M . - . I
B —{z.'r/rélgg (1) < M}.

Since g¢ — oo uniformly in v € D as i — oo, the set BM is finite. Fur-
thermore, if 5 € A\BM , then for any v € D we have g7 > M. It follows
from (6.26) that

jeEA\BM

Thus we get

) Z?=1Pij(7",1/)<2>\+/\1

- " (6.27)

jeEA\BM
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Now, it follows from (6.27) that

i 22+ A
3 ET—”’J“’ >1——%. (6.28)
jeBM
We have
m;(v) = lim Lr1 P55(¥) .
n—o0 n
Therefore, from the finiteness of BM and (6.28) it follows that
22+ Ay
z (V) < - (6.29)

jEA\BM
Since the number M can be chosen arbitrarily large and we can construct
the set BM for it, (6.29) implies the compactness of the family {7;(v)}
of distributions for v € D, which implies the continuity of m;(v) for any
Jj € Aand v € D by theorem 6.1.5. The theorem is proved. ]

Theorem 6.2.2 Assume that the following conditions are satisfied for
some 6 > 0, somey > 1, and a finite nonempty set B C A:

Zp” f{-Jff <=8 i¢gB veD.
(ii) sup Dij( 7=\, < oo.
ZEBVGDZ g 7

(iii) sup ZP’LJ VI =1 =Cy < oo

ieB,veD

(iv) ff - o0 umformly mv €D asi— oo.

Then the chains L are ergodic for every v € D, and the stationary
probabilities m;(v) are continuous in v forv € D and j € A.

Proof For some v > 1 let condition (iii) of theorem 6.2.2 be satisfied.
Then for any -y such that 1 < vy < v we have

sup Zp” W =™ <Cy+1<00.
i€AveED

Therefore, without loss of generality we may assume that 1 < v <2
For any such v and any y,z > 0 we prove the auxiliary inequality

y' -2 <ly—2[" +27 Iy - a). (6.30)

Set z = y/z. The inequality (6.30) can be rewritten as
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27—1—|z-1"—4(z—-1)<0. (6.31)

For the proof of (6.31) we consider two cases.
(i) Let z > 1. Then for z = 1 the left side of (6.31) is equal to zero,
and for z > 1 we have
d(zY =1 (z = )7 = 5(z = 1)
dz
Consequently, (6.31) is satisfied for z > 1.
(ii) Let z > 1. Then inequality (6.31) turns into an equality for z = 1,
and for z < 1 we have
d(z7 —1—(1—-2)T —y(z - 1))
dz
Consequently, (6.31) is satisfied for z < 1, and so is inequality
(6.30), for any 1 <y <2 and y,z > 0.
Let us use (6.30) to estimate Z;iopij(y)[(fj'/))‘ —(f¥)"], for i ¢ B. We
have

Al = (z=1)"t-1]<0.

=y (1= 2 = 1] >0,

3 P - ()
3=0

< I = T+ )T - O]
j=0

< S oy Wfy = BT+ Y )
3=0 §=0

Taking into account conditions (i) and (iii) in theorem 6.2.2, we finally
obtain the estimate

S BT = (TS Cy=f)7'8. (6.32)
=0

If for some family {f?} of functions the hypotheses of theorem 6.2.2 are
satisfied, then they will also be satisfied for the family {f} +7} = {f'},

where r > 0 is arbitrary. (The second hypothesis of the theorem will
be satisfied with another constant A, < co.) Therefore, without loss of
generality we may assume that (f?)?~16 — ¢, > o > 0 for some o and
anyi e A, veD. Set fY=(f) and §¥ = v(f/)""'6 — cy. Using
(6.32) and condition (ii) in the theorem, we obtain :

o>

Yopfy -f < -§, i¢B,veD,

=0
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© ~ -~
Y pWfy < XA <oo, i€B,veD.
7=0

Since v > 1, the fact that the f¥ tend to infinity uniformly as i — oo
implies the same for g7 = ~(f?)7~16 —c,. Hence, for the functions {™y
and {g}} all hypotheses of theorem 6.2.1 are satisfied. Consequently, the
m;(v) are continuous in v, for v € D and j € A. The theorem is proved.

|

Remark Let £y,&;, ... be the sequence of random variables correspond-
ing to the Markov chain L. Let C be a set, C C A = {0,1,...}. For
t € C introduce

ic=Plidc,.. 6n1€C, & eClen=1i).

Let 7 be the stopping-time representing the epoch of the first entry to
the set C. Then, under the condition & = i, we have, for any v > 0,

oQ

E(r")=> "n'fL.

n=1

When E(77) is finite, we will speak of the v-recurrence of the set C. As
follows from results of [Kal73], the hypotheses of theorem 6.2.2 guarantee
the vy-recurrence of B, uniformly in v € D. Moreover, it can be shown
that the uniform -recurrence of the family of chains {L*} with v > 1
implies the continuity of the stationary probabilities. In this way, we
have outlined yet another method of proving theorem 6.2.2.

On the set A= {0,1,...} let a family of integral-valued, positive, uni-
formly bounded functions ¥ = {k¥} be given for which

sup k& =b<oo.
i€EA,vED

Concerning the function {f? } already introduced, we assume the follow-
ing condition to be satisfied.

Boundedness condition There is a d > 0 such that

sup |f; — f{| > d implies that p;;(v) =0 .
veD

Theorem 6.2.3 Assume that the inegqualities

oo

> ok V) FY = FY < —e (6.33)

=0
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are satisfied for some € > 0, all v € D, and all © except some finite
nonempty set B. Then the chains L¥ are ergodic for every v € D,
and the stationary probabilities w;(v) are continuous inv forv € D and

je A

We first proceed to derive two lemmas. Let {£} be the sequence of
random variables corresponding to L. We have

TW)=PE #5,- Eia #5, & =3lE =1}

Lemma 6.2.4 The functions ff5(v) are continuous in v(v € D), for
any natural number n and any 1,5 € A.

Proof We prove the lemma by induction. For n = 1 the function
ilj(v) = p;;(v) is continuous in v for any i and j. Assume that f7%(v) is
continuous in v for any i,; € A. Use the formula

[o o)

fin~+1(1/) = Zpik(u)fl?j(y) —Pz'j(V)f?i(V) .

k=0

As in lemma 6.1.1 of the preceding section, we can prove the uniform
convergence of the series 3 7o o pik(v) f,’c‘j(u), which consists of continu-
ous functions. This implies the continuity of fi”j“(u). u

Lemma 6.2.5 Let the hypotheses of theorem 6.2.3 be satisfied. Then, for
any points 19 € A and vo € D chosen beforehand, there exist functions
{k¥} and {f’} such that sup;c 4 ,ep kY = b < 0o, and the boundedness
condition is satisfied for the functions {f'} with some constant d>0
and, in place of (6.33), the inequality

e ~ -~
> ikl ) fi < —e
=0

holds for some ¢; > 0, allv € D, and alli € A except 1= 1g.

Proof Without loss of generality we may set i = 0. From the as-
sumption that L*° has a single essential class of states, it follows for any
point j € B that there exist a positive integer r;j(vo) and €; > 0 such
that pjo(r;{(vo),v0) > €1. Since pyj(n,v) is a continuous function of v
(v € D, and 4,7 and n are arbitrary), there exists a neighbourhood D;
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of vo such that pjo(r;(vo),v) > €2 = €1/2, for any v € D Let

D = s
JEB
o {k;, j€B,veD,
! ri’s J€B,veD,
5 i J#0,veD,
;= b

where b is defined in the following way:

sup k"—b<oo d= d+2-(-i-lz.
i€A,veD €2
For any < ¢ B U0 we have
> ik —f"<—e weD). (6.34)

JEA

For i € B\0 and v € D we have

> . - 2db
me( VfY - fr = Zpu(k,-”,v)fj”—pio(k,-”,v)—eg——fi” (6.35)

J=0
< fY 4 dkY —2db— f¥ < —db . (6.36)

Hence, if we set € = min (e, d5), we finally obtain
pr Wi —fr<-E (veD,i#0). (6.37)

The proof of the lemma is completed. [

Proof of theorem 6.2.3 The ergodicity of the chains L* v € D follows
from theorem 2.2.3. Let us fix any point iy € A. Without loss of
generality, let 4o = 0. We prove that my(») is a continuous function of
v for v € D. Take an arbitrary point v9 € D. It follows from lemma,
6.2.5 that we can correct the functions f} and k! so that for some
neighbourhood D of vy we have (6.37). We may assume that f(‘)’ < fr,
for any i € A and v € D, since otherwise this can be achieved easily by
decreasing the values of f¥; in this case the inequalities (6.37) are not
violated. We introduce the quantity

oo

mo(w) = Y nffe(v),

n=1
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which is the mean time of entrance of LY into the null state. It follows
from the ergodicity of the chains LY (v € D) that mg(v) is finite, and

1
7!'0(1/) = mo(ll) .

We show that mo(v) is continuous in v for » € D. From the sequence of
random variables £§ = 0,&Y,... corresponding to L” we form a random
sequence {S%} by setting S% = f*{¢%}. From the sequence {{!} we
also form an integral-valued sequence {N}} by setting N§ = k*(¢) and
Ny =N/ + k¥ (¢v_,). It follows from the uniform boundedness of the
functions k¥ (i € A, v € D) that 1 < N¥,; — N} <b, for any i € A and
v € D, with probability 1. Tt follows from (6.37) that

E(S%./Sk._, > f8) < Sk._, —€ as. (6.38)
We have

foolv) = PE#0,....6 1 #0, & =0l =0)
= P(S{ 2 f5, 81> 6, Sp=f31S5 = fo) -

Therefore, taking into account (6.38) and applying theorem 2.1.7, we
obtain the following estimate for fg,(v):

f2(v) < cexp(—6n), ne A,ve D, (6.39)

where c,8 > 0 are constants not depending on v. Taking account of
(6.39), we conclude that the series Y o nffo(v), which consists of con-
tinuous functions (see lemma 6.2.4), converges uniformly in v for v € D.
Therefore the sum mg(v) of the series is a continuous functions of v, for
v € D, which in turn implies the continuity of mo(v) in v for v € D. It
remains to note that ¢ = 0 and vy € D were chosen arbitrarily. Hence
the 7;(v) are continuous functions of the parameter v, for v € D and all
j € A. The proof of the theorem is finished. [ ]

6.3 Continuity of random walks in Zf

Consider a family {L”} of homogeneous irreducible aperiodic Markov
chains in discrete time, with state space Zf . Here v € D, where D is an
open subset of the real line. pog(t,v), for o, 8 € Z¥ , is the probability of
the transition of L” from the point o to the point 8 in t steps. Concern-
ing the family {L"} of random walks, we assume that the homogeneity
condition and the boundedness of jumps hold uniformly in v € D. Let
B/, be the sets introduced in section 4.3. We assume the following.
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Homogeneity condition: There is a ¢ > 0 such that, for any A and
any vector a = (ay,...,an), witha; > 0,1 <3 < N, anda; =0,
for 7 & A, we have

Paﬁ(’/) = Po+ta,B+a (v),

for all a € B}, NZY and € Z¥ and v € D.

Boundedness of the jumps: For any o, the number of 3 ’s such that
SUp,¢p,, (V) > 0 is finite

The boundedness conditioin is equivalent to the following: There exists
d > 0 such that || & — 3 ||> d implies pog(v) =0 for any v. As before,
we shall assume that the p,s(1,v) are continuous functions of v for any
o,f € Zf and v € D. For every chain L” let us construct a vector
field V¥ by the method indicated in chapter 4. Then we obtain a family
{V*¥} of vector fields.

We shall say that the family {V*, (v € D C D)} satisfies Condition B if,
for some 6, b, and p > 0, there exists a function f(a), a € Rﬁ satisfying
the following conditions:

(i) f(e) >0, aeRY.
(i) f(e) = f(B) <b|l o~ B | for any o, 3 € RY.
(iii) For any A either all the L"(v) (v € D) or none of them are
ergodic.
(iv) For any A such that L"(v) is ergodic and for A = {1,..., N} and
all « € B* N B], we have

sup(f(e +v"(e)) ~ f(a)) < -6
veD

Theorem 6.3.1 If there exists a set U C D such that {V¥, v e U},
satisfies Condition B, then, forallv € U , the chains LV are ergodic, and
the stationary probabilities ma(v) are continuous in v for any o € Z¥
and v e U.

Proof Assume that there exist a set U C D and a function f(a),a €
RY, such that Condition B is satisfied. Set ¥ = f, i.e. set f*(a) = f(a)
for every a € Zf and v € U. It follows from the proof of theorem 6.1.3
that for any v € U there is a function m”{«a) such that

sup m”(a) =m” < oo
anf
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and, for all @ € Zf except some finite set C¥,

> Pap(m(a),v)fs - fo < —e1(v) (6.40)

N
pezd

for some €1 () > 0. From the method of proof of theorem 4.3.4, it follows
that
sup m¥ < oo,

veu (6.41)
inf e;(v)>0,
veU

and |J,cy C” is a finite set.

From (6.40) and (6.41) we conclude that all the hypotheses of theorem
6.2.3 are satisfied. Consequently, all chains L” are ergodic for v € U,
and the stationary probabilities 7,(v) are continuous in v for v € U and
any o € Zf . The theorem is proved. ]

For a random walk £ in ZY, where N < 3, in chapters 3 and 4 a
method was given for constructing the function f(c) satisfying Condi-
tion B, which leads to the formulation of ergodicity conditions in terms
of random walks of lower dimensions. Now we prove a theorem show-
ing that the satisfaction of these ergodicity conditions for the chain L*°
guarantees the continuity of the stationary probabilities of { L*} in some
neighbourhood of vg. We formulate the theorem for random walks in
Z3 . (This can be done analogously for Z} or Z2)

Theorem 6.3.2 Assume that the Markov chain L¥°, where vy € D,
satisfies the hypotheses of theorem 4.4.4 which guarantee the ergodicity of
L¥. Then there ezists a neighbourhood U C D of the point vy such that
for all v € U the chains LY are ergodic, and the stationary probabilities
To(v) are continuous in v for any a € Z3 and v € U.

Proof It follows from the proof of theorem 4.4.4 that there exists a func-
tion f(a), a € Ri, which satisfies Condition B introduced in section
4.3 of chapter 4. In particular,

(i) f(e)>0, acR3.
(ii) |f(a)—f(B)| <b || a=B |, o, 8 € R}, where b > 0 is a constant.

Condition B guarantees the existence of a function m(a), @ € 73, with
values in the set of natural numbers such that

sup ma) =m < oo
aeZ}
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and, for all a € Zi except some finite set R,

Z Pap(m(a),v0)fs — fa < —€ (6.42)

pezs

for some € > 0. From the homogeneity condition and the boundedness
of jumps for the family of random walks {L”} it follows that pas(t,v)
is a continuous function of v for v € D uniformly in o,8 € Zi (t
is an arbitrarily given natural number). Therefore, taking account of
properties (i) and (ii) of the function f(a) we conclude that there is a
neighbourhood U of v such that forall v € U and o € Zi\B

€
> pas(m(a),v)fs—fa < 5. (6.43)
pez}
From the properties of f(a) and the uniform boundedness of the jumps

of the random walks in {L"}, it follows that there is a d > 0 such that

sup |ff — f{| > d implies that p;;(v) =0 .
veD

Hence all the hypotheses of theorem 6.2.3 are satisfied. Consequently,
the chains L” are ergodic for all v € U, and the stationary probabilities
Ta(v) are continuous in v, for v € U and any a € Z%. The theorem is
proved. |
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Exponential convergence and analyticity for
ergodic Markov chains

The aim of this chapter is to prove theorems of the following type: if the
Lyapounov function in Foster’s criterion for ergodicity satisfies certain
conditions, then

(i) the convergence to the stationary distribution is exponentially
fast; more precisely,

|p$) —mj |< Cre™® (7.1)

where C; depends on i but § > 0 does not depend on 1 or on j;

ii) m; decrease exponentially with j, for some metric defined on the
J
state space, i.e.

7, < Ce 1), (7.2)

for some function f(j);

(iii) the ergodicity is preserved under small perturbations of the tran-
sition probabilities and the stationary probabilities depend ana-
lytically on these perturbations.

7.1 Analytic Lyapounov families

Let us consider a family of Markov chains {L”,v € D} — where D rep-
resents an interval containing 0 — defined on the same state space S.
The matrix P, = [pi;(v)); ;s of transition probabilities can be consid-
ered as a bounded linear operator in [3(S). Let us assume that P, is
analytic in v as a function in D taking its value in the Banach algebra
of all bounded operators in /;(S). This means that P, can be Taylor

148
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expanded as
P, =) Pyw", (7.3)
n=0

where the P,’s are bounded linear operators satisfying
[Pl < Ca™, (7.4)

for some C,a > 0, i.e. the series in (7.3) is norm-convergent.

Definition 7.1.1 We say that in this case we have an analytic family
of Markov chains. We say that this family is an analytic Lyapounov
family if in addition the following conditions hold: there ezist nonnega-
tive functions f;, and positive integer-valued functions k¥ ,v € D, i € S,
such that

(i) supsesep ki =b < oo ;
(#) there exist C,p > 0 such that f > Ci#, for any i and v € D;
(iii) there exists d > 0 such that

pi;(l,v) =0, for allv € D, whenever | f — i1>d,

where the p;;(l,v)’s denote the one-step transition probabilities
corresponding to the parameter v;
(i) there exist n. > 0 and § > 0 such that, for any i € S and any

. def .
j€Vi = {j:sup,eppsv) >0},
pﬁ(n, 0) > 6 (75)
(v) for allv € D,i € S except some finite B C S and some € > 0,
> pig(kY,v) = £ < —, (7.6)
jes
so that, by Foster’s criterion the L,’s are ergodic for any v.
We will also say that an MC is an analytic Lyapounov MC if the family
L, = Ly is analytic Lyapounov.
Theorem 7.1.2 If L, is an analytic Lyapounov family then there exists
vo > 0 such that
(i) there ezist Cy, 89 > 0 such that

mi(v) < Cyexp(—6,f7), (7.7)
forallie S, veD;
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(i) there exist constants o3,Cg, 86 > 0 such that

Z | pij(n,v) — m;(v) |< Ceexp(—ben),for all v € D,2 €S, n > oo ft
JjES
(7.8)
(i) the stationary probabilities m;(v) are analytic in v, for v |< vy
and alli € S.

Corollary 7.1.3 If there is no dependence on v, i.e.
L, = Lo, pij(v) = pi;(0) = pij, mi(v) = i,

and if all properties (i)—(v) in definition 7.1.1 hold for v = 0, then
assertions (i) and (ii) hold, i.e., for alln > a2 f},

m < Cy 1707 (7.9)
and there exist constants C, 61,69 > 0 such that, for any i, we have
ST —my | <C 1St (7.10)
JES

We shall now make some comments about the nature of this exponen-
tial convergence. It is well known that uniform exponential convergence,
ie.

Sm - <, (7.11)
J

for some C, § > 0 not depending on %, holds for any finite MC and more
generally for MCs satisfying Doeblin’s condition defined in chapter 1.
The difference between (7.11) and (7.10) is connected with the nature of
the spectrum of the operator P in [{(S). Case (7.11) suggests that the
eigenvalue 1 is isolated, while in the case (7.10) this eigenvalue is gen-
erally embedded in an (absolutely) continuous spectrum. The simplest
example of this latter situation is given by the maximally homogeneous
random walk in Zi. The complete structure of the spectrum of P can
be easily obtained by means of generating functions.

7.2 Proof of the exponential convergence

First we shall prove the assertion (i) of theorem 7.1.2.

The ergodicity of the chains L” and the continuity of the stationary
probabilities 7;(v) (j € A; v € D) follow from theorem 6.2.3. Let
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£y, &7 ... .be the sequence of random variables corresponding to L”. We
introduce the classical taboo quantities

) = PE#5,86 #5.. &1 #0, & =35/& =1),
W) = P #k &k 6 #k & =5/&=1),

Il

[M]8

ki (v) = kPl (v) -

1

3
Il

In theorem 6.2.3, the estimate

f3o(v) < c1exp(—éin) (7.12)

has been proved for some c¢;,6; > 0 and any n € A and v € D. We can
also prove that

opoj < c1exp(—din), (7.13)

in an entirely analogous way. For the irreducible aperiodic recurrent
chain ¥, we have (see [Chu67})

SoaeoPij(n,v)

lim o =,p;.:(V). 7.14
m=s00 3 o Pii(n,v) i) (7.14)
For an ergodic chain, (7.14) becomes
mi(v) .
) P (V) - (7.15)
Consequently,
mi(v) < opg;(¥) (7.16)
o0 [f5 /d] I~
w50 =Y o) = 3 W)+ S ). (717)
n=1 n=1 [fy /d]

The first sum in the right-hand side of (7.17) is equal to zero. This
follows from point (iii) of definition 7.1.1. From (7.13), it follows that
there exist constants cy, 62 > 0 such that

S opBi(v) < coexp(—6afY) - (7.18)
n=[f¥/d]

So assertion (i) is proved.
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Lemma 7.2.1 There ezist constants c3, 63 > 0, such that

| Poo(n, v) — mo(¥) |< c3 exp(—63n), (7.19)
foranyne A andv e D.

Proof Introduce the generating functions

S(2) =D fEw)e", (7.20)
n=0

vi(z) = Zpij(n,l/)z" . (7.21)
n=0

Using the relation (convolution)

p,,]’n,I/ qu p“n——sll)

for the generating functions, we obtain

1

valid forz > 0.
It follows from (7.12) that F}(2) is analyticin 2, for | z |< 1—0, for some
o >0 and any v € D. Moreover, | F}{(z) |[<1for |z |=1, 2 # 1, since
the greatest common divisor k such that f& (v) # 0 is 1. There exists a
neighbourhood U of z = 1 such that the equation F§,;(z) = 1 has in U
only one root, namely z = 1. Therefore, for some o; > 0, the equation
F{(2) — 1 = 0 has no other roots for | z |[< 1 4+ o1. Consequently
bo(z) = 1/[1 — F¥,(2)] is a meromorphic function for | 2z |< 1 + a1,
having exactly one pole of first order at z = 1. Let Res(1) be the residue
of P§y(2) at z = 1. Then

1 z—1 1
Res(l) = Tomrm = MM e ~ M G e /e =0)
1 1

= -7y .

TdF(2)/d2) 1 Yo, (/nf5 )

Then P5y(z) = P%y(2) — 74/(1 — z) is holomorphic for |2| < 1+ €5. On
the other hand, since

oo
n
E Poonll —Wo)z s
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there exist constants cs, 83 > 0 such that
|poo(n, v) — mo(v)| < c3 exp(—83n) .
Lemma 7.2.1 is proved. [ ]

Lemma 7.2.2 There exist constants o,c4,64 > 0, such that
|pso(m, v) — mo(v)| < caexp(—84m) (7.22)
foranyve D, i€ A andn>of}.

Proof Using theorem 2.1.8, we find, as in the derivation of (7.12), that
there exist constants b1, a1, 01 > 0, such that

fio(v) < by exp(—ain), (7.23)

for any v € D,i€ A and n > o1 f}. Since

pio(n, V) Z "(¥)poo(r,v), (7.24)

it follows from (7.24) that

n oo
Ipio(n, v) = mo()| <D Ipoo(r,v) = mo(W)|fg ") + w0 Y fio(v)
r=1 r=n-+1
(7.25)
Choosing ¢ > 0y and n > o f}, we will at once estimate the right-hand
side of (7.24).

(a) Let r < eyn, with (1—¢€;)o > o1. Then (n—7) > (1—€1)n > o1 f?
and, by using (7.23), we obtain

fio T(v) < byexp[—ai(n —r)] < byexp[—a1(l —€1)n] .
(b) Let now r > e;n. Then lemma 7.2.1 yields
|poo(r,v) — mo(v)| < c3 exp(—63r) < c3 exp(—bzein) .

Combining both cases, we obtain
n
Z |poo(r, v) — mo(V)|fiy (V) < nbgexp(—asn), (7.26)
for any n > o f} and some by, ay > 0. It follows from (7.23) that

o Z fip(v) < bsexp(—agn) . (7.27)
r=n+1
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It follows from (7.26) and (7.27) that there exist constants cg,84 > 0,
such that (7.22) is satisfied for any v € D, i € A, and n > o f/. Lemma
7.2.2 is proved. [ ]

Lemma 7.2.3 There exist constants o1,cs5,65 > 0, such that i
|

[pij(n,v) — w;j(v)| < c5 exp(—bsn) (7.28)
foranyve D,iandje A andn>o1f. |
Proof 1

pij(n,v) = Zpio(ﬂ V)opgj_r('/) + opi3(v) (7.29)
r=1

| psj(n, v) — m;(v)|

n [>.9)
Z pio(r, V) (v))opg: " ( mo Z opPo; + opi; (V)
r=1 =n—
n o

r 1

< |pi0(’l",ll)‘-7l'0( )‘Op.(r)l] +7l'0 Z OpOJ +0p1]( ) (730)
r=1 r=n+1

Using lemma 7.2.2 and (7.13), we obtain {7.28) directly from (7.30). B

We are now in a position to prove assertion (ii) of theorem 7.1.2. For
that purpose, we write the decomposition

[ o)

Z |pij(n7 V) - Wj(y)!

j=0

= > ) -m@)+ DD Ipyln,y) - mv)l. (7.31)

Jify>fr4nd J:fy <fy+nd

The boundedness of the jumps of the random walks implies that, in the
first sum in the right-hand side of (7.31), p;;(n,0) = 0, for all j such
that ff > f) 4+ nd. The estimation (7.28) implies therefore that the
right side of (7.31) is less than ¢, exp{—65 f¥}, for some c§ > 0, § > 0.
It follows from lemma 7.2.3 that each term of the second sum is less than |
¢ exp(—6sn), whenever n > o1 f¥. Let now M" be equal to the number
of those j for which

FL<f4nd, (7.32)

Let j satisfy (7.32). Then from point (ii) of definition 7.1.1, it follows
that

cj“<f;-'<f,-"+nd,
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< E(f;’ + nd)] T E(aﬁl + nd)] T [l(i + d)] "

c'oy
Consequently,
biMY <nllv | (7.33)
where
1 1/p
by = [Z(% +d)} .
Hence

> Ipii(nv) — m(v)] < nt/ebics exp(—6sn) .
J:fr<fr4nd

Therefore, there exist constants g2, cg, 86 > 0, such that

Z |pis(n,v) — m;(v)| < ce exp(—éen),
whenever n > o, f}. This establishes part (ii) of theorem 7.1.2.
In the next section, we will need the following.

Lemma 7.2.4 There exist constants 67,c7,03 > 0 such that

ZZ |pz,7 n, V - 7",7( )I < 0'3]? + cr exP(_‘S?fiV) s (7~34)

n=1i=

foranyv e D and i € A.

Proof We have

Elemnv —m()| =

n=1 i=

oo
Y Shat)-molt Y S ) —me) (7.39)
n<og fy j=0 n>oafy j=0

together with
Y Ipijnv) = m(v)] <2, (7.36)

for any ¢,n € A. Therefore, the first sum in the right-hand side member
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of (7.35) is less than 204f. To estimate the second sum in the right
side of (7.35), we use (7.8), so that

>0 Dpiny) —mw) < Y csexp(—den) < crexp(—érfY),

n2oyfy j=0 n2o2fy

(7.37)
for some c7, 67 > 0. Combining these estimates leads to the assertion of
the lemma, which is thus proved. ]

Before the next two sections, which deal with the final part (assertion
(i)) of theorem 7.1.2, it is worth making some comments. In particular,
it is interesting to note that there exists a necessary and sufficient con-
dition for a Markov chain to have the exponential convergence property.
First, let us call a Markov chain geometrically ergodic if there exist
0 < ¢ <1 and constants C,p > 0, for all o, B € A (the state space),

[pap — T8l < Capq™ , n=1,2,....

Then the following result of Popov (see [Pop77]):

Theorem 7.2.5 For a Markov chain to be geometrically ergodic, it is
necessary and sufficient that there ezist a finite set B€ A, ¢ <1 and a
non-negative function f(a), a € A, such that

Zpaﬁef(ﬁ)_f(a) < q, a¢B,
¢
Epaﬁef(ﬁ)_f(a) < o, a€B.
g

The proof can be carried out along the same lines as in the lemmas of this
section and therefore will not be given in detail. The relationship of this
theorem with our results is obvious: we use criteria involving Lyapounov
functions with linear growth and here ef(®) increases exponentially fast,
in many typical examples. The sufficient condition of Popov’s result
does not bring much with respect to our results and, moreover, it is in
general easier to find a function with a linear growth. But the necessary
condition fills the gap we were feeling: in fact it shows again that one
should insist in trying to find a good Lyapounov function, whenever one
guesses exponential convergence.
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7.3 General analyticity theorem

Here we shall state general analyticity conditions for stationary prob-
abilities. At first sight, they might not look very useful, but we show
the contrary in the next section, where we use them to prove the last
assertion of theorem 7.1.2. Let A’ be a Banach space and B(X) the set
of all bounded linear operators in X.

Definition 7.3.1 A set M C B(X) is called a set of uniform convergence
for the operator P € B(X) if PM C M and there exists a function
¢(n),n=1,2,..., such that

$= ¢(n) < oo, (7.38)
n=1

and some element y € M such that

I[Pz —y|| < ¢(n), (7.39)
for alln and x € M.

Theorem 7.3.2 Let P, (sometimes written P(v) for notational con-
venience) depend analytically on v as a function taking its values in
the Banach algebra of operators B(X), and assume that the following
conditions are salisfied.

(i) For the operator Py there exist two sets My and My of uniform
convergence such that M1 C My and inf e, ||| > 0.
(ii) There is a vo > 0 such that P,z € M, for all |v] < vy and any

x € M.
(iii) There is a vy > 0 such that
(P, — Py)xo
T+ ————=— € My,
HP,, - PO”

for vl < vy and any x1,z9 € M.

Then there is a v2 > 0 such that, for |v] < vy and z € My, the limit

lim P"(v)x = r(v)

exists and depends analytically on v.

Proof Forany B € X(A4,Y) and G € B(X) we write

e
IGlz = sup LGzl
o£zeB |||




S
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It follows from the hypotheses of the theorem that there exist a function
#(n) and an element y € My such that conditions (7.38) and (7.39) are
satisfied for any =z € Ms.

Lemma 7.3.3 Under the hypotheses of theorem 7.3.2, there is a constant
¢ > 0 such that

155" (P = Po)llm, < cop(n)||Py— Pol| . (7.40)

Proof Take an arbitrary z € M;. Setting P,x = 21 and Pyz = 29, we
have

| P3(P, ~ Po)al
= 1P (1 - 2
|Ps 1221, = Poll = 22]1P = Poll + (21 = 22)]

Il

< 1P, = PRS2 = )l + 1Py = Poll| P32 + = =
< 1P, = Poll(n) + 1P, = Pollg(n)
= 26(n)|P, - Pl (7.41)

In the proof of (7.41) we have used the fact that, by assumption, z9 =
Pox and (22 —21)/|| P, — Py|| belong to the set Mj of uniform convergence.
Moreover, using (7.41), we have

I1P5 (P, — Po)z|

| Pe(Py — Po)llmy, = sup
zeM, Iz
2 P, - P,
< 220IP =Pl oy, - Rl
k|
Lemma 7.3.3 is proved. [ |

Let us continue with the proof of theorem 7.3.2. Put
R=QW)=PF, -P (7.42)
and write for simplicity
Qi) = PQPFQ-- F*Q

where k > 1,4; >0 (j =1,2,...,k),8 is the (k + 1)-tuple (k,4,... ),
and Q¢ = 1. Let ro = Pz = limy_,00 PJ(z), for z € My. The
existence and uniqueness of ro obviously follow from conditions (7.38)
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and (7.39) for the set My. We prove that r, = P)°z = lim,, . Pz
exists for all z € M1, is unique and can be represented in the form

r= Qrg = Y. QUiniyg 4 pg (7.43)
5 k>1
i1,enyin >0

The latter series converges absolutely in X(A4, ¥.) (note that r, does not
necessarily belong to Ms). It follows from lemma 7.3.3 that

1PFQlm, < cp(n)||Py — Pol| - (7.44)

Therefore, the series (7.43) is dominated by the numerical series

3" 6G)- - dlin) P, = Poll* + 1= (1P, = Polle)* . (7.45)
k>1 k=0

i1y, 20

The series (7.45) is convergent, provided that ||P, — Pol| < 1/c¢ and,
consequently, the series (7.43) is absolutely convergent. We will now
prove equality (7.43). For this, we estimate the difference

[ ZQ% (Po+Q)"lln, -

The following equality is obvious:

(Po+ Q)" =F5 + PPT'Q+ PI"QPo+ -+ P QPF -+ Q" .

(7.46)
Hence
I > QP —(Po+ Q) lIm,
)
< D lQoNIEE - PR
k>1
Gt <n/2
+ YRR+ > 1@
k>1 k>1
i1t tig>n/2 i1t tin>n/2
< S Qi —ip = —i)+ 2 Y Q)
E>1 k>1
iy tip<n/2 i1+t >n/2
< Yl —in = =i+ DR+ D IRl
k>1 k<q/n/2 k>+/n/2

itk <n/2 iy i >n/2 bt >n/2
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IA

P, — Po||2¢)F
jomex ¢ m)Z(H 0ll2¢)
+ 2 Z $(i1) - $ix)* (| P, — Pol*
n/2
i1+"'+ik>n/2
+ 2 qu #(ix)c®|| P, — Pol|*

n/2
’11+~"+ik>n/2
o0

< P, - k
< nﬂgﬁ/ﬁ( )%(II Pol| 2¢)
+ Z¢ (k)| P, — Po|*
n/2
i1+"-+ik>n/2
+ Z (1P, = Poljcg)*
n/2

The first and third sums in the right-hand side of (7.47) converge to zero
as n — oo because the series (7.45) is convergent and ¢(n) converges to
zero as n — oo. Every term of the second sum contains a factor ¢(m)
with m > y/n/2. Therefore, the second sum is dominated by

2 ma m P, — Pyll(co)®
m>\/§W¢( ) 2;1/211 ofl(ce)

which converges to zero as n — oo. Thus (7.43) is proved.
It remains to prove the analyticity of the vector
ry, = lim PJz, for z € M.
n—o0

The absolute convergence of (7.43) implies the analyticity of r, in Q@
for ||@Q]] smaller than some gg. Since Q is an analytic function of v for
v € D, there exists v such that, for |v| < vq, we have ||@Q,|| < go, Which
implies the analyticity of r, in v for |v| < vs.

The proof of theorem 7.3.2 is concluded. ]

‘We shall make some comments. In the case of MCs satisfying Doeblin’s
condition (section 1.4), one can take M equal to the set of all probability
measures on S. In general M consists of sufficiently smooth functions
defined on the spectrum of Py. The fact that we need two sets of uniform
convergence is clear from the fact that generally P, M is not contained in
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M for v # 0. But if PyM; C M; then Mj can be trivially constructed,
as shown below.

Remark All results of this chapter could be generalized for a general
state space S, with absolutely continuous transition probabilities d la
Tweedie [Twe76]. In this case one must take X equal to a suitable
Banach space of measures on S.

7.4 Proof of analyticity completed

Now we finish the proof of theorem 7.1.2. For some o > 1, we introduce
the set

o0

M, = {(zo,x1,.. s zn...): |z < am(0); Zmi =1}. (7.47)

i=1

We prove that M,, is a set of uniform convergence for the operator P(0)
corresponding to the Markov chain L°. We show that P(0 )Mo C M,.
Let = = (zo,%1,...,%n) € My and set

PO)z =y = (y0,41,---,¥n,..) -

Thus
oQ oQ
ly;| = sz‘j(o)zz < sz‘j(ﬂ)am(o):aﬂ(o)~
i=0 i=0
Moreover, 72 y; = 1,y € Ma. Set
¢n = sup ||P*(0)x — «(0)|| . (7.48)
zeM
We have
bn = :g52|z:vzpm n, 0 —WJ(O)I
= sup lewz (pij(n,0) — m;(0))]
a:EMJ ~0 i=0
< sup Z |.’L'-L|Z ‘pﬁj n,0) — WJ(O)l
zEM (7,
<

Z am;(0) Z pij(n,0) — 7;(0)], (7.49)
i=0 =0
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Yodn < ad > m(0)Y |pii(n,0) — m;(0)]
n=1 j=0

n=114=0

= ay m(0)) > Ipi(n,0)—m;(0) . (7.50)
=0

n=1j=0

To estimate the series (7.50), we use lemma 7.2.4 and inequality (7.7) of
theorem 7.1.2. This yields
Y dn<ad crexp(=62f!)osf! +crexp(~6:57)] . (7.51)
n=1 i=0

=

It follows from (7.51) that there exist constants a; and b; such that

D dn<ary exp(-bif!). (7.52)
n=1 =0

The convergence of the series (7.52) follows from condition (ii) of def-
inition 7.1.1. By the same token, we have shown that M, is a set of
uniform convergence for the operator P(0). Take a; < ag and the sets
Mo, and M,, of uniform convergence for the operator P(0), such that
Mo, C Ma,. Take z = (z1,29,...) € My,. We have .7°z; =1 and
z; < oy (0).

Set y = (y1,y2,...) = P(v)x, where y; = S ieopij(v)z;. We have
>0 ui = 1, since P(v) is a Markov operator. The probability pij(v) is
different from zero only for j € V; (the set V; is defined in the hypothesis
of the theorem). It follows from (iv) of definition 7.1.1 that there is a
constant a > 0 such that for all points 7 € V; we have

> m(0) < ami(0),
JEVs

for any 7 € A. Therefore

il < 3 pis)leil < 3 pi)aums(0) < aom(0) . (7.53)
=0 =0

It follows from (7.53) that, if ac; < a3, then y € My, and condition (ii)
of theorem 7.3.2 is satisfied by the same token. Let z',z2 € M,,. We
show then there exists v, such that
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for |v| < vo, where 2 = (29,21,...). From the definition of z, we have
3.0 # = 1. We also show that |z;| < aym;(0). We have

1 oo
|2i < |=}] + m| Y (psiv) —ps(0))2?] . (7.54)
v =0

The quantities p;i(v) and p;;(0) are different from zero only for j € V;.
As shown before, there exists an a > 0 such that, for all points 5 € V;
and any i € A, we have 2 jev; ™i(0) < am;(0), so that

1
lzil < a1mi(0)+ 12 =Bl = lpji(v) = p3(0)] D om;(0)
v oo : J€Vi
< o (0) + agam;(0)

= m(0)ai{l +a).

Setting ag > a1(1+ a), we obtain that z € M,,. By the same token,
the hypotheses of theorem 7.3.2 are satisfied. This in turn implies the
analyticity of the stationary probabilities and concludes the proof of
theorem 7.1.2. [ ]

7.5 Examples of analyticity

Consider a family {L”} of homogeneous irreducible aperiodic Markov
chains with discrete time and set of states Zf = {(21,...,28) : 2z >
0, integer} (v € D, which is an open subset of the real line). We shall
assume that the homogeneity condition and the condition of bounded-
ness of jumps introduced in section 6.3 are satisfied. Besides, we assume
that there exist n,6 > 0 such that, for any v € D, o € Zf and B € V,,
where

Va = {ﬁ . sup paﬁ(V) > O}:
veD

we have

pﬂa(n, V) > f.
As in section 6.3, we introduce the family of vector fields {V¥,v > 0}.
Theorem 7.5.1 Assume that the operator P, defined by the chain L*
depends on v analytically for all v € D. If there exists a set U C D

such that the family of vector fields {V¥,v € D} satisfies condition B
of section 6.3, then the chains LY are ergodic, for all v € U, and the
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stationary probabilities m,(v) are analytic in v, for any o € Zf and
velU.

Proof As in section 6.3, condition B implies the existence of a function
f¥(a),v € D, which satisfies (7.6). Moreover, the families of functions
{k?} and {f}} satisfy all necessary conditions to be analytic Lyapounov
families (see definition 7.1.1). Therefore, it follows from theorem 7.1.2
that the mq(v)’s are analytic with respect to v, for & € ZY and all
velUcCD.

For the families of random walks {L*} in Z¥, with N < 3, the an-
alyticity conditions for the stationary probabilities can be formulated
explicitly, since we have succeeded in constructing a function f(e) sat-
isfying condition B for the family {L*}. Let us formulate the precise
theorem for random walks in Z:j_.

Theorem 7.5.2 Assume that the Markov chain L*°, where vog € D,
satisfies the hypotheses of theorem 4.4.4 guaranteeing the ergodicity of
LY. Moreover, assume that the operator P, depends analytically on v
for v € D. Then there is a neighbourhood U of vo, U C D, such that
the chains LY are ergodic, for all v € U, and the stationary probabilities
mo(V) are analytic in v, for any a € Z‘i and allv € U.

The proof of this theorem mimics totally that of theorem 6.3.2 and will
not be included.

Other examples of analytic Lyapounov families are Jackson networks,
which were introduced in section 3.5. Then, using the notation of sec-
tion 3.5, theorems 3.5.7 and 3.5.8 can be rewritten in terms of analytic
Lyapounov families as follows:

Theorem 7.5.3 For the Lyapounov function f, satisfying the condi-
tions of theorem 3.5.7 with k(x) = 1, the Jackson network is an analytic
Lyapounov Markov chain.

Theorem 7.5.4 Let us consider a Jackson network such that 0 € IL
Then, for the Lyapounov function f, satisfying the conditions of theorem
3.5.8 with k(z) = k sufficiently large, the Jackson network is an analytic
Lyapounov Markov chain.
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Markov chains are an important idea, related to random walks,
which crops up widely in applied stochastic analysis. They are
used for example in performance modelling and evaluation of
computer networks, queuing networks and telecommunication
systems. The main point of the present book is to provide meth-
ods, based on construction of Lyapunov functions, of determin-
ing when a Markov chain is ergodic, null recurrent or transient.
These methods, which are on the whole original and new, can
also be extended to the study of questions of stability. Of partic-
ular concern are reflected random walks and reflected Brownian
motion.

The authors provide not only a self-contained introduction to
the theory but also details of how the required Lyapunov func-
tions are constructed in various situations.
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