Helvetica Physica Acta 0018-0238/91/071072-21$1.5040.20/0
Vol. 64 (1991) (c) 1991 Birkhduser Verlag, Basel

Translation invariant quantum master equation

By D. D. Botvich, V. A. Malyshev and A. D. Manita
Department of Mechanics and Mathematics, Moscow State University, Moscow, 119899, USSR

(3. 1V. 1991, revised 4. IV. 1991)

Abstract. We give the first rigorous derivation of a kinetic equation in a nontrivial translation
invariant situation. We consider the heavy particle (mass scaled as me ~%, § > 0).in the ideal fermi gas with
translation invariant interaction £V between them. In the Heisenberg representation we prove convergence
to the strongly continuous completely-positive semigroup T, for any value of scaled time s, ¢ = s/¢2 and for
6 > 2. When 6 =2 T, is not a semigroup. For 0 < é < 2 we announce some more weak results.

0. Introduction

Rigorous derivation of the quantum kinetic equations from the first principles is
one of the central problems of nonequilibrium statistical mechanics. The first results
(initiated by Van Hove [29]) were obtained for the so called weak coupling limit
between system and reservoir, where the system was described by finite-dimensional
Hilbert space #, and the reservoir was the ideal quantum gas [10, 34]. Further
progress was connected mainly with such finite-dimensional #, for the following
limits:

1. weak coupling limit [8-10, 12-16, 18];

2. singular coupling limit {28, 24, 26-27, 33];

3. low density limit [21, 22].

See also review of Spohn [37].

Recent progress for the case when the system is a Schroedinger particle, and
H, = L,(R", dx), see in [19, 1-4]. :

The main limitation of all these results is that the interaction is not translation
invariant. Otherwise speaking system interacts only with a bounded region of the
ideal gas.

In this paper we consider the weak translation invariant interaction between
Schroedinger particle and the ideal quantum gas. There are also some other novelties
in this paper;

(a) A quantum kinetic equation for an observable 4, can be conventionally

written as

0A4,(s)

ds
where 6 > 2,
L(4,) = (4, (s)e

ie® *[h,, A,(s)] + L,(A4,)
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L is the generator of a quantum semigroup, 4, is the free hamiltonian (e.g.
h, = —A). We discuss the arising mass renormalisation problem (see
remark 1).

(b) In all earlier papers the degree of interaction (see below) did not exceed 2.
This was connected with number of diagrams estimation problems. Here
we consider arbitrary degree of interaction in the fermi case.

(c) The generator of our quantum semigroup is unbounded and so it does not
fit into the known classification results [16, 17, 23, 28, 35].

(d) We consider also the case when the kinetic equation has non Markovian
character.

Our scaling of particle mass for § > 2 corresponds to the case when the test
particle has infinite mass (see Remark 1). In the quantum case such particles can
move because of the influence of the heat reservoir. The limiting behavior of this
particle does not depend on the parameter 6 > 2 (see the Theorem 1 and 2).

We think that for 0 < <2 a picture must be different from one described
above. In the weak coupling limit only the influence of the free kinetic motion of
the particle remains (see Remark 1°). It means that in the weak coupling limit in the
interaction representation the particle does not move. Now we can prove a weak
variant of this hypothesis (see the Theorem 3). This triviality is closely connected
with the unitary equivalence of the hamiltonians H, and H for sufficiently small lel,
g € R, when 6 =0 (see [6, 7]).

In the case & = 2 the influence of the kinetic motion of the particle and the heat
reservoir remain, but reduced dynamic has a memory.

In this paper we use an original method of diagram resummation. Already
similar methods were applied for the proof of the asymptotic completeness (see
[5-7, 20, 32)).

Boson case for the degree interaction 1 or 2 can be treated as well by the
similar methods.

1. Definitions and notations

Hilbert spaces are: #\” = L,(R") for the particle, and for reservoir it is the
antisymmetric Fock space #, = Z ,(#("), where # (" = L,(R"). Let A, be C*-al-
gebra of compact operators in #, = # (" with 1,, A, be C*-algebra of CAR in
F (AHD),

{a*(f), a(®)} = (2. /)1,

{a*(f), a*(g)} =1{a(f), a(®)} =0,

f,ge#V, (g, f) is assumed to be antilinear in g. The corresponding operator
valued distributions a * (x) are introduced by

a*(g) = j g)a*(x)dx,  a(g) = Jé(X)a(X) dx. .
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We define the free hamiltonian in #, ® #,

H,=¢h,®1,+1,0H,,

h,=—A, H,=dl(h,), h,=—-A+ul,, peR, 6§20, >0,
and the free dynamics on U, and A,

t9(4,) = exp (ite’h,)A, exp (—ite’h,), A,e,,

17(A,) =exp (itH,)A, exp ( —itH)), A, eU,.

We use the same symbol for

=t®l, =181,
and define on A = AU,

T, =t" @1/

Let wg be B-KMS state [8] on A, w.r.t. the free dynamics ¢;. For any f,
geH#M

wp(a*(/)a(g)) = (1, Bsg),

wg(a*(fla*(g) = wgla(fHa(g)) =0,
where By =exp (—ph,)(1, +exp (—fh,)) “; 0<B;<1.

We define the bounded linear map w: A — A, by

(A, ®A,) = A,ws(4,), A, e, A, e, (1.1)
We note that

weor, =1t"ow (1.2)

It is convenient to consider #, as l-particle subspace of the Fock space
F . (A ,) with creation-annihilation operators b*(f), b(f) which can be either
bose or fermi. In # < F ® %, we consider the unitary group of translations I'(U)
generated by the corresponding group U, in L,(R"):

SO =UL)» =fy —x), feL(R).
E.g.
FUIb* (@ ®@a*(NTWU_,) =b*(g)®@a*(f)

where # means * or the absence of *
For any f'e L, we will denote by f the Fourier transform of the function f.
We define the perturbed Hamiltonian formally by

H=H,+:eV, V:f V., dx, (1.3)
Rw
H,=H,+¢V,, \/A:j V. dx, (1.3)
A

V,=TWU)rru,)-!
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for two classes ./ and # of operators V in # ® #,:
We say that Ve o, (Ve lg) if V has the following form

(A) V= Z Vm,n(yO’ZO;yl" -',ymazn"-'azl)b*(yo)b(zo) (14)

a*(yy) - a*(yplaz,) - alz) dyo dzo dy, - - dy,, dz, - - - dz,
where m,n in (1.4) are such that m + n is even and

V i € CE(RTED)(F,, , € SR+ 7+ DY)
We say that Ve, (Ve %) if V has the following form

(B) sz an(J’anl,sym’Zmazl)b*(}’o)b(}’o) (15)

a*(y)) - a*(ymalz,) - - alz) dyody, - - dy,, dz,, - - - dz,
where m,n in (1.5) are such that m + n is even and
17”'," e Cgo(Rv(m+n+ 1)) (4/7’"‘" e S(Rv(m+n+1)));

X, . ds a finite sum and it is assumed that the bounded operator V is
symmetric on F @ % .
Then the (unbounded) operator V is symmetric on the domain

HO= {JF(xO, Xpsoes X)b*(x0)a*(x,) - - - a*(x,)Qx

FeS(R™*+Y),n=0,1,2,... }

Q is the vacuum vector in # ® #,. Let us denote UL(AS), A (A) —subalgebras
of U generated by 1, and b*(f), a*(f) correspondingly for fe C*(R)
(feS(RY)); U =AW @A, A=A QU

The perturbed dynamics a, on U can be defined e.g. using the suitable
generalization of the Robinson’s argument [8§]

2,(A) = lim o (4) = lim oot ¥n) go=tlo+ ), (1.6)

using Dyson-Schwinger series in €. We do not stay on this as our expansions below
are uniform in A.
2. Main results

Let us consider the map (similar to an inverse Moller morphism)

yi U, U, yi(4,) =o(t_24,81,), 4,e¥U, rteR,. 2.1

Theorem 1. Let v =3, 0 =22, u € R and V belongs to either of 5 or B, and
o(V)=0.
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Then for any s € R, there exists the limit
s-limyé,.=T,, | T, | <1. (2.2)
£—0

and T is a strongly continuous completely positive map from W, into A,,.
Theorem 2. Under the conditions of the Theorem 1 for 6 > 2 T, is a semigroup

on W,. The generator L of the semigroup {T,, s = 0} which exists by strong continuity
of T, (see [8]) is given by (A, e Uy)

L(4,) = —” dx, dx, r@ dto(t7(Vy,), [Vi,» 4, ® L]) (23)

Corollary. Under the conditions of the Theorem 1 for 6 > 2 and when V has the
Jform

V=Y Vi@V, Vied§, Vieu,
Then T, is a semigroup and its generator L is given by (A, ® Ay)

M
L(Ap) = - Z JRZV dxl dx2 {gij(-xZ - xl)Vﬁxz[Vﬁxl’ Ap]

ij=1
- g@/(xz - xl) [Vﬁxla As] Vﬁxz}

where
aw = [ o0y
0

For 6 =2 T, is not a semigroup and it has more complicated structure.
For the case 0 <46 <2 we can prove the following more weak than the
Theorems 1 and 2 result. Let us consider the map y5* : 2, > A,

Yt (d,) = o(t_ 0} (4,®1,), (24
A, e, telR, .
where A is a domain in R’.
Theorem 3. Let v23, 0<d<2 peR, AR’ be a finite domain and V
belongs to either o ¢ or B, and
w(V)=0.
Then for any s € R, there exists the limit

s-lim )fi/ﬁ\z = Tw

e—-0

where T, is trivial, i.e. T,(A,)= A, for any seR,, A, e U,.
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It means that for 0 < § < 2 the limit

s-lim lim y&2, (2.5)
A—-RY -0

is trivial for any s R, . Our hypothesis is that the same is true in the translation
invariant case, i.e. when we change the order of the limits in

s-lim lim &% = s-lim y2,,
e—-0 A-RY £—0

as in the Theorems 1 and 2. Then the limiting semigroup will be trivial. But now we
can not prove this hypothesis because of some technical difficulties. The Theorem 3
follows from the results of [38]. Also we note that for § > 2 it is possible to change
the order of the limits in (2.5) and the limits will be the same. This follows from the
proofs of the Theorems 1 and 2.

Remark 1. In other words for 6 >2, 4, ¢ A,
eo(@ye2(d, @ 1,)) = 12,2 T (4,) | >0 if € 0. (26)
Putting
AC(s) =128,5 T,(4,), A e,

heuristically we get the equation

0A®(s) _
s

where

Ly =10,5(L) = ¢ M) Lo —is? =2y

ie = 2[h,, A9(s)] + L, (A (s)) (2.7)

For 6 >2 ©0,2(4,) > 4, if e-0 for any seR’, 4, € A,. It means that we can
rewrite (2.6) as

|eo(eryye2(4, ®1,)) — T, (4,)| =0 if & >0. (2.8)

Remark 1’. In the case when 0 <6 < 2 it follows from the Theorem 3 that for
any fixed domain A c R*

o@d.(4, ®1,)) —12,2(4,)|| >0 if e >0. (2.9)
for any seR’, 4,€U,.

Now consider the case when (V) # 0. Putting
h, = w(V) (2.10)

it is easy to see that in the case (A) the operator hy, is the multiplication operator
(in the k-representation) by a function A (k) and in the case (B)

hy =iV, B, w1, (2.11)
where A(V, B, u) is a constant.
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Let us consider the map (similar to renormalised inverse Moller morphism)
7o U, AU

7i(4,) =’ 2,(4,81,), A4,eU, teR,. (2.12)
where

t=tr @
and the free dynamics t;# on U, is defined by

157(A,) = exp (it(e°h, + eh},))A, exp (—it(e°h, + ¢h})), A, e,

Theorem 1. Letv = 3,6 > 2, peR and V belongs to Bs. Then for any s € R,
there exists the limit

sllimye,.=T,, |T,| <1 (2.13)

-0

and T is a strongly continuous completely positive map from A, into N,,.

Theorem 2’'. Under the conditions of the Theorem 1° for 6 > 2 and when V
belongs to B T. is a semigroup on A,. The generator L of the semigroup {T,,s =0}
is given by (A, e A,)

L4, = _”2 dx, dxzj dto(t;(V ), V., 4,11 (2.14)

Rev 0
where V =V —w(V).
For 6 =2 T, is not a semigroup and has more complicated structure.
Remark 2. If V is the two-particle interaction (formally):

V= J‘ ¥ (x — )0, @ a*(x)a(x) dy dx

where 6, = 6(x — y), there exist the difficulties in the proof of the Theorem 1 due to
more singular nature of this interaction.

Remark 3. The proofs of Theorems 1° and 2’ repeat the proofs of the
Theorems | and 2.
3. Proof of the Theorem 1

The strategy of the proof of the Theorem 1 is the following. First we prove the
existence of the limit

llrr(l) yi/ez(Ap)a

more exactly, the convergence of (2.2) on the dense subset of 2,, where V" has a



Vol. 64, 1991 Botvich, Malyshev and Manita 1079

special form (see (4.1), (4.2)). From here we get the convergence of (2.2) for V of
the general form. As for any t e R, e e R

vl <1

the convergence on 2, will follow.

The map 7% is completely positive as the maps t,, , and w are completely
positive for any 7 € R. Then, T, has this property.

Now we prove the convergence of (2.2) on some dense subset of .

We shall use the following series for y¢

Vi(A) = A, + Y (is)"j dtl...d,nj i, dx,
AL (RV)7

n=1
OV Lo Vipnye A, @11 1D (3.1)
where
AL ={(ty,...,1):0<t, < <1, <t} cR,
V=t (V) =V, @V,
Also we shall use the following notations
17 =exp (ite’h,)f, b =exp (ite’h,)f;
fr=exp(ith)f;  fi.=exp(ith)f..

forfe#,orfe AV, teR, xeR"
Unfolding of the brackets of all commutators in the n-th term of the series
(3.1) gives

(3.2)

oV WViyx)p 4,@L1 - = Y o(WiZ(4,81,)

ge P,

where
F=0ty, ... L), X=(x;, ..., %)

oW (4, ®1,) = b(0)V, V(A ® 1) (33)

(). Xg(n)

Logj— 1) %o(j - 1) V’u(lwxm 1)

P, is the subset of the symmetric group S,,, | P, \ =2" 0(c) = +1 and is determined
uniquely by o;/j =j(a) in (3.3) satisfy the inequalities

a(n) >an—1) > >0()),
o(j—1D<o(j—2)< - <o(l).

We can write the series (3.1) in the form

cepP,

yi(4,) =4, + i ()" Y J; dt_J ) dx o(WFi (A4, ®1,) (3.4)
n=1 3 (RM)#
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where

dt=dt, - - - dt,, dx =dx, - dx

ne

The existence of the limit (2.2) in the Theorem 1 will follow from the following
estimate for n-th term of the series (3.1).

Lemma 1. Under the conditions of the Theorem | there exists a constant
C = C(V,v) > 0 such that for any n e N, s, € R, , o € P, the following bound holds
ife’tef0s,] A, U

f ar f dEo(W2 (4, ®1,))
AL J@oyn

[7/2] lk
} < C"C(A,,)sg"< y ) (3.5)

K=o k!

where d = 2v, C(A,) does not depend on n, s,, o.

Indeed, from (3.5) we have

> [n/2] tk
il < e, + 3 Z"Js!"C"C(A»sz"(kZO F)

n=1k=0 k'

‘o 2] leztlk
=<1 + Y Y 2 C"sZ"—-)C(A,,)
a  {n/2] 4 " (s(2d+l))k
<1+ esg|" O —>——-|C(4
( L, L, Vst Kl ) 2
If |es¢| < 1 we have
v A 2 d 2 (S
i< (1+ 8 (1% actest O
n=1\k=0 .
[r/2] (2C)n (S22d+ l))k
k=pma 1 (/A (kD)2
It is evident that the series in the right-hand side of (3.6) converges if

e 1
|E ’<mln<g,w>.
Therefore the expansions (3.1) for y¢ is norm convergent. The Theorem 1 is proved.
In the sections 4—6 we shall prove the Lemma 1.

5;2d+ 1))k

> C(4,) (3.6)

4. Diagrams and graphs

To simplify notations in the proof of the Lemma 1 we shall consider the case
when V has the form
V=1V,

V2 =b*(f)b(f)],, (4.1)
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Vi=a*(f) - a*(fy)alfy) - - a(fy)
—wg(@*(f)) - a*(fy)alfy) - a(fi) (4.2)
wg(V7) =0,

where f, f e CP(R"), i=1,...,N.
For A4 = b*(g,)b(g)|, € Wy, £, §> € C(R") we have

W;l,,g(Ap ® lr) = U%X(Ap)wﬁ(V;a("),xa(,,) U V;a(l),xa(l)) (43)
where
U%.?(Ap) = 9(6) Vﬁ,(,,), Xa(n) e Vfa(j)’xd(j)(Ap ® lr)
‘?a(j — ) Xe(j - 1) U V{)a( 1Xo(1)’ (4-4)
and j = j(o).

We put x,=0, 1,=0.

Lemma 2. Let de N, s,eR,. For ¢’te[0,s,], 0<e<1, geP,, xe(R)
uniformly on t € A, the following bound holds:

shCrC(A,) 11[ 1
xa(j)‘+l)d(|xa(j71) |+1)d =1 (‘xa(i)—xa(i—l) |+1)d
it 1)

U:I)?(Ap)

S(I

(4.5)
where C =C(V,v,d)> 0 is a constant depending only on V, v, d; C(4,) does not

depend on n, t, X, o.
Proof of the Lemma 2. For simplicity we consider the case when ¢ =g, € P,,
g,(iy=1,i=1,...,n We have

Uze(d,) = T1 (S0 f7 1 ) (x5 8DD*(SE, 1, )B(81) |ur,
i=2
The bound (4.5) can be proved by integration by parts d times in each variable
kO k=kW, ..., k™) in

(ffis-"l’ff:—]vxi—]) = f de(k)‘Zeieé(li — 1 DR (R + i — x; 1K)
RY

Then we have

Cfd) (2=t )D? _  C(f, d)ss

Y LA < < 4.6
ol NS D ST n?
fori=2,...,n and
C(f. A, d)s?
(7 g < LA D) (47)

(1 )

where C(f, d) depends on f, d and C(f, 4, d) depends on f, 4, d.
From (4.6), (4.7) it follows (4.5).
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Remark 4. The bound (4.5) allows us to integrate in (3.5) over the space
variables x, ..., x,.
To integrate in the time variables ¢, . .., 7, we estimate the expression
wﬂ(Vfu(n)v’Ca(n) T V;a(l)vxa(l)) (4‘8)
For this it is convenient to use the diagrams.
Let (o) be a quasi free state on A,. Graphically the monomial
Vv=a#(,fv,l)..'a#(f;.’,NL.)’ Uzla--"n
will be drawn as the vertex v and N, free legs (v, 1), .. ., (v, N,).

Lemma 3. Let (v,, p,) be any fixed leg of V., For any quase-free state { o ) the
Jollowing formula takes place:

V)= Z) Eeoprem V17 Vew " - Vvo!pa Y
. p
(0.p) # (v5.0,)
where

I717,;7 =a #(f;,l) ot a #(ﬂ,pf l)a #(f;v,p+ 1) T a #(f;z,Nv)s
(=Da*(f.,p)a”(fop)>, ifv>u0,

or v=yv, andp>p,

&y p) o) = .
(_1)q<a#(ﬁ,p)a#(f;a,pu)>’ lf v <vo9
or v=v, and p<p,
and q is the number of creation-annihilation operators in V, - - - V, between a * (e, .p.)

and a* (f, ,).

Proof of the Lemma 3 is similar to the integration-by part formulae in the
classical case [31].
We say that in (4.9) the term

g(vo,p‘,)),(u,p)< Vl e Vu;P T Vvo,[’o e Vn>

in {V,---V,) corresponds to the coupling of the leg (v,, p,) of the vertex v, with
the leg (v, p) of the vertex .

With the line / =((v,, p,), (v, p)) we associate the number

8 0po)v.p)

which one calls the contribution of this line.

In other words the formula (4.9) means that a quasi-free state of the product
of the monomials may be represented as the sum of the terms in which the fixed leg
(v,, p,) is connected with some leg (v, p).
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We shall use the formula (4.9) many times to represent (4.8) as a sum of
admissible diagrams which we define below.

We can assume that the vertices of a diagram are the points ¢,, ..., ¢, on the
real line. The vertices are numerated in the order of increasing of the times 7,
0<1t < -<t,<rand this ordering does not depend on ¢ € P,. Then the line of
a diagram is the pair (7,, t,,). We identify the line (¢,, ¢,,) with the coupling of the
leg (v, p) and the leg (v', p*), for any | <p < N,, 1 < p” < N,, which appears in the
right-hand side of (4.9) for (4.8). We say that a contribution of this line (¢,, z,.) is
equal to

g[(tl‘ - tu” Xy — Xt?')

from (4.9), where / = ({v, p), (v’, p’)). We note that our estimates of g,( o ) will be
uniform in p, p’.

We define the algorithm which constructs all admissible diagrams and only
them. The set of all admissible diagrams thus constructured is denoted by 4,. We
shall define also some distinguished subset D, — 4, which we call surviving admis-
sible diagrams. We shall prove that exactly these diagrams survive.

The algorithm consists of not more than 2Nn steps. We numerate these steps
by

(,1),...,(1,2N), ..., 1), ..., (n 2N).

On the steps (1, 1) we construct a line from the leg (1, 1) to some leg (v’, p’).
We call one of the special type if v"=v or v"=v+ 1. Then we proceed by
induction. Let the lines /,,...,/, be already constructed and we are on the step
(v, p). The rules of the algorithm are the following:
1. On each step (v, p) we construct a line from the leg (v, p) if the following
conditions 2-3, 5 are satisfied;
2. If on the step (v, p) we did not construct a line then on the steps (v, p’),
p’ > p we also do not construct lines, i.e. we begin with the new vertex
v+ 1
3. If on the step (v, p) we construct a line which is not special then on the steps
(v, p"), p’ > p, we do not construct lines;
4. If on the step (v, p) we construct a line from the leg (v, p) to some leg (v’, p")
then we call v” “used on the step (v, p)”’;
5. If the vertex v was used on the earlier steps then on the step (v, p), we do not
construct a line;
6. The algorithm stops on the step (n, 2N).
The admissible diagram is the graph without free legs and its lines are
constructed by this algorithm.
We denote the set of all the admissible diagrams by A4, and the set of all the
diagrams only with the lines of the special type by D,, D, < A4,. Let us call the
elements of D, surviving admissible diagrams. From the condition

w(V) =0

and from the algorithm of the construction of admissible diagrams it follows that
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for any vertex of a diagram from A, there exists at least one line from this vertex
which is not a loop.

We remark that the number of the connected components of any admissible
diagram G € 4,, is bounded by n/2 for even n and (n — 1)/2 for odd n.

We denote by 4,, the subset of A, of diagrams with k the connected
components.

Lemma 4. D, c A, if nis even and D, =0 if n is odd.

Lemma S. For any o € P, the following formula takes place

wlg(V:a(n)'xo(n) o Vzﬂ(l)’xﬂ(l)) = Z J% + Z g;wﬂ(WG) (411)
GeD, Ge 4,\D,
where
‘é: I—[ g;’(tv_tv” XU_xv’) (412)
le G
I=((p),v,p")
and W is the set of all the free legs (which are not coupled) in V;,,(,,),x,(n) s V{a( et 1y*

Proofs of the Lemma 4 and the Lemma 5 evidently follow from the description
of the algorithm of A4, and from the fomula (4.9).

Lemma 6. Let v=3 60=22 d=2v and (V') =0. Then there exists some
constant C = C(V, v) > Osuch that foranyn e N, s, > 0,6 € P, A, € US the following
estimate holds if €t € [0, 5,]

(4.13)

1
A% o(WE(4, ®1,)| < C"C(4,)s S S
J;Rv)n X CL)( : ( P ® )) “ ( [J)s rezG (1 + ,tv _ tg’ )v/2

r={(v,v)

where C(A,) does not depend on n, s,, t € A., ¢, a.

Lemma 7. Let g € L/(R)n L, (R), g > 0 symmetric and Riemann integrable.
Then there exists C > 0 not depending on n, k, t such that

Ccr*
E [ 10 <SG e (4.14)
€ App JAL re .

r=(v,v")

Remark 5. It is evident that for the function

40 eL(R)NL, (R), g=0,

1
(1t

The lemma 1 follows from the Lemma 6 and the Lemma 7.
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Proof of the Lemma 6. For x,, x, € R, t,, t.€[0,1] if v,v" >0 we have
‘g(;(fz‘ - tz“? Xy — xr’)l = |wﬁ(a*(f:l.,xl.)a(f;rr,.\',,r))|
= ‘(f‘;r.x,.’ E/}f:,.r.x,./)|

=C ‘ J exp ((i(t, — 1, ), (k) + i(x, — x,., k) 7, (k)T (k)b (k) dic

c(v)
< Ty . L Nyo
(1 + |tr - tlf’|)w2
where the operator B; may be equal to either B, or 1" — B, and C(V) does not
depend on n, x,, x., 4,.
If v or v” is equal 0 then we have
< CV, A,)
(14|t — 1)
where C(V, 4,) does not depend on n, x,, X, .
The Lemma 6 follows from the bounds (4.15), (4.16) and the bound (4.13) for
(op= Wy

(4.15)

| g?([, — L Xp — xl") (416)

5. Proof of the Lemma 7

We write the inequality (4.14) in the form

n—k
Y J dr,---dr, ] g(t,—1.)< C”J ds, - - dsk<f g(r) dr> (5.1)
Ge A,y JA, reG Af R

r= (v,

where C >0 does not depend on #.

We shall call the lines of G old lines. For any diagram G € A4,, we do the
following procedure. We add the vertex 0 to the diagram G and we add k lines of
the form (v, v + 1) (which we shall call new) to G so that the diagram G will become
connected. It is easy to see that such k new lines exist. The contribution of any new
line will be equal to 1, by definition. We denote the resulting diagram by G. Let Z,,,k
be the set of all the diagrams G, G € 4,, .

It is evident that in the left-hand side of (5.1) we can change ZGE,{M on

Yie A

We approximate both sides of (5.1) by Riemannian sums

v 5 [z sn-msew( Ty )
O<ri<- <1,<t\Ged,, reCG O<s 4+ Fsp<t
r=(r) 5> 0

n—k
(Z SR || g(h)) (5.2)
r#0 ok #0i=1

where ¢, r;, 5, € Z; (Z5 is one-dimensional J-lattice).
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We omit 6" in (5.2) and we define for fixed (s,,...,50 7, ..., 7 _ i)
O<si+-+s<t,5>0,i=1,...k,0<r,<t,i=1,...,n—k, the algorithm
by which one can construct not more than C” admissible diagrams from A, for
some 0 <t <---<t, <t with the contribution equal to

gry) - glra_y)
The algorithm consists of not more than 2N(n + 1) steps. We numerate these
steps by

(0,1),...,(0,2N), ..., (n, 1), ..., (n 2N).

On the step (0, 1) we take s, and construct a new line from 7, =0 to s,. This line
connects vertices #, =0 and ¢, in the left-hand side of (5.2) which has the
contribution equal to 1. The following step has the number (1, 1). We take r, and
construct an old line from s, to the vertex s; + r,. This line has the contribution
g(ry) = g((sy + r;) —s,). This old line connects ¢, and some vertex in the left-hand
side of (5.3). Then we proceed by induction.
Let the old lines ry, ..., r, and the new line s,, ..., s, be already constructed
and we are on the step (i, ), then the rules of the algorithm are the following.
1. On each step (i, /) we decide whether to construct 1 old line r, , ; or 1 new
line 5, ; or not to construct lines at all on this step;
2. If on the step (7, j) we decided not to construct a line then on the steps (i, j*),
J'>j we also do not construct lines;
3. The new line can be constructed only on the step (i, 1) and then on the steps
(1,79, j> 1, we do not construct lines;
4. On the step (7, 1) we choose one of the constructed vertices v; and on the steps
(4, 1), ... (i, 2N) we can draw the lines from v,. We call v; “used on the step
@ D7
5. The choice of v; is uniquely defined by the rule: v, is the first already
constructed vertex not used in the earlier steps.
6. The algorithm stops either on the step (n, 2N) or when there are used vertices
or when (n — k) old lines and k new lines are constructed.
It is evident that each admissible diagram G will be constructed and each array
(Sys e sSkslis. -, r,_i) is used not more than C” times.
The Lemma 7 is proved.

6. The interaction of the general form

We have proved the Theorem 1 for the interaction of the special form (4.1),
(4.2). Here we say briefly about a proof of the Theorem 1 for the interaction of the
general form.

Lemma 8. V e .o/, can be represented as
V= Z Z Z. Crun(L, N)b*(eL,)b(eLz)lxp
mn L N

®a*(ey,) - a*(ey,)alen, ) -aley, ) (6.1)
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where L =(L,,L,), N=(N,,...,N,.,), |lex| =1, ex€ C¥(R"), K, L, N, e 2",
i=1,2,j=1,...,m+n,

Y Z Z |Cnl L, N)| < 20 (6.2)
mn L N
and if we fixed 0 > 0 then for any fe C*(R*), N, N'€Z', x, x' eR", 1, 1’ €[0, s,/
(e?)] the following bounds hold

» , C(d)s?
|(eN;r.x’ eN’;I'.X’)I <(1 + ”(x + N) _ (X’ + N’) )d (63)
, C(f, d)st
|(eN;1,x’f)1 S(1 + Hx + N”)d (64)
~ Cc@
|(67V;1.X’ BB");V’;/’—")| s(l + ‘t —(t)’ )v/270 (6.5)

where the operator Eﬁ may be equal to either By or 1V — By or 0, and C(0) does not
depend on N, N', x, x’, t,t".

Remark 6. It is casy to see that we can use the bounds (6.3), (6.4), (6.5) instead
of the bounds (4.6), (4.7), (4.15), correspondingly, and (6.2) and prove the
Theorem 1.

Proof of the Lemma 8. Let the Fourier transforms of the kernels ¥7,,, be

Y un €CE(RE),  E=m+n+2.

Then there exist M € R, such that

supp ¥ pun S[— M, M]*E

for any m, n.

We put

k(k) exp (2mink | A)
d,

where the function x(k) is from C(R), 0 <«(k) <1, k(k) =1 for |k|< B and

k(k) =0 for all |k| > B + 1. The constants d, are chosen so that |e,| =1.
We choose 4 and B so that M < B <2M < 4. Then we have

e, (k) = , keR (6.6)

P nn = LT Con L. ) T1 (k) 6.7)

j=1
where L =(L,,L,), N=(N,,...,N,,.,)
It is evident that for any ¢ € N there exists C(g) such that

_ C _ _
Con LM < iz H=ZIEL =Sk 68
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and for ¢ > vE the following bound takes place

; Y |Crnl L, N)| < 00 (6.9)

Therefore, the functions e, and e,

v v

ey = I_I en,(kj) ey = H en’/-(kj)

j=1 j=1

satisfy tl}e bounds (6.3), (6.4), (6.5).
If ¥, € S(R'®), we shall use the partition of unity

Y o, (k) =1 (6.10)

where
diam supp «, < const

uniformly in .

Then we represent the kernels ¥, , as £, ¥, ,a, of the kernels from C(R*E)
and by using an expansion similar to (6.6) for ¥ mn, (With correspondingly shifted
functions e)) we repeat the proof of the Lemma 8.

7. The estimation of the contribution of all nonsurviving admissible diagrams

In this section we prove that in the weak coupling limit all the admissible
diagrams from 4,,\D,, k <n, give the zero contribution to T,.

Definition. We define L{(R) for x > 0 by:

MWEJU+MVMMm<w.

Lemma 9. Let g e LY(R)n L (R), k >0, g =0 and n =2m. Then there exist
C >0, 0 >0 not depending on n, t such that for t > 1

ntn/Z -0

dt, - dt, t, —1,) € —— : 71
GEA%\D" L}, ] rIJG 8 ) (n/2)! (7.1)

r=(v.0)

Proof of the Lemma 9. This lemma follows from Lemma 7. Indeed, for
each diagram GeAd,,\D,, n=3m, there exist some line (v,v") and
ve{l,...,n—1}, v"<v, v"<v+1, such that the line (¢",v") belongs to the
diagram G and if we add the line (v, v + 1) to G then-G will have (m — 1) connected
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components

Let 0 <y <1, y+k>1 then we have

e e A+t — -]
gl =) = (U e = 1o e = 00) G s
1

< —t.h* L — 1. )t
<+ |ty — 1:)* gty — 1) 1 (14t — 1<

We add the line (v, v + 1) to G and define its contribution as
1
(1 + |t — 1. *7

Then, for the function

(1) = max {(1 + |t g (o), } eL(R)NL,(R), £=0,

(1+ |ty — 1,7
it follows from the Lemma 7 that the left-hand side of (7.1) is bounded by
anm - lt-/
m!

(7.2)

where C, y do not depend on n, m.
For 8 =1 — 7 the bound (7.1) holds. Lemma 9 is proved.

Remark 7. By using the bounds (4.5), (4.14), (7.1) and by repeating the proof
of the bound (3.6) we see that the contribution of all nonsurviving admissible
diagrams can be bounded by

£%2C(A,) (7.3)

if 0 <& <min{1/4C?s¢,1/s?}. Hence only surviving admissible diagrams may have
the nonzero limit if e 50, et —s, s > 0.

8. Case 6 > 2. The generator of the semigroup T,

In this section we prove that for § > 2 T is a semigroup. Also we calculate the
generator L of T.
We denote

OV, b Vi s 4, @11 D

def
— P L P P
- Z 9(0) Vt,(,,),x,,(,,) V'nu)vxau)(AP ® 1’) V’ou —1¥e(j — 1)
ge P,
R 744 r PR 4
V’o( 1)-Xa( l)wﬁ( V’a(n)sxa(n) V’a( 1)Xea( 1))G

where 6(c) and j = j(o) are the same as in (3.3); w4( ) denotes the term JZwg(We)
in the expression (4.9).
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Lemma 10. For n =2m the following formula takes place

Z w([Vtz,n,xzm’ [ M [th,xls Ap ® lr] . ]DG

Ge D,

=0V 0 Wiy v @0V, g Vi 4 4, @ 1D D) (8.1)

Proof of the Lemma 10 follows from the definitions of the map w and of
surviving admissible diagrams.
For n =2m and 4, € A let us put

L(4,) = (i8)"j

A

dl—f dxoV, .[-- Vi, A4,®L] 1)
7 (Rv)n

Lemma 11. Under the conditions of the Theorem 2, for s e R, , A, € U there
exist the limits

Flzllr& L‘,z’(Ap) =sl(4,) (8.2)
e—0
n m A
fim L7 (4,) = ) 3
= !
where
L(4,) = —JJZ dx, dxzf dro([z;(V.,,), Vi 4,® L1 (8.4)
R2Y ()

Moreover, the convergence in (8.2), (8.3) is uniform on [0, s,] for any s, e R, and T,
is the strongly continuous semigroup and the operator L is its generator, i.e. (4 ,€UY)

=%

T.4) = 3 TL74,) = exp L) (4) (8.5)

m =

Proof of the Lemma 11. We begin with (8.2), (8.3). At first we prove the
Lemma 11 for the case when V e o/°.

Let u, e L5(R), k >0, x € R and for some C >0

fu|*<C
holds.

Then for 6 > 2, i € {1, 2} and for any compact set #" = R we have

lim &2 f u.(t, — t,) exp (ie°t,K) dt, dt,
A

e2r=5
&—0
o0 3 (eieéfst_ 1) ifK=0 ©
=f udf)dis lim 2T =sf u (f) dt (8.6)
0 86220: ie’K lfK?éO 0

uniformly over K € 4.
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For 6 >2, n =2m, m > | it is easy to show that for any compact set " < R*
the n-dimensional analog of (8.6) takes place

m 2m—1
. 2 8
121m e I1 Utz — ) €Xp <13 Y (ogrr = to)Kiwy Jdt, -+ - dt,
gr=s AL i=1 i=0

e 0

- Bl ( J u, (1) dt) o (8.7)

uniformly over K e 4, K= (K, ..., K,) (to prove (8.7) one can use the following
substitution s, = &%, i=1,...,n).
By changing the order of integration in (8.3) and by using (8.6), (8.7) for
ux(t) = wﬂ( V:x Vr)
we get (8.2), (8.3) and (8.4), correspondingly.
The formula (8.5) follows from (8.2), (8.3) and (8.4). The Theorem 2 is proved
for Ve

When V e U the proof of this Lemma is similar. In this case we can use the
following bound

| exp (ie°th(k)) — 1| < Cle2 s, |k]° (8.8)

for any ¢ €[0,s,/(¢?)], k e R", # >0 is constant not depending on ¢, 1, s,, k. For
h = (k, k) it is evident that 6 = 2.
9. Case 6 =2

In the case 6 =2 the family of the maps T, is not a semigroup. The following
formula takes place

. Lo s, if K=0 def
lalglAejJO e K gy = @X_1)" ifK %0 = F(K, ) (9.1
e 0 —

iK

where F,(K, s) is a nonlinear function on s and depends essentially on K. This
means that T is not a semigroup.
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